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Learning Viewpoint Invariant Perceptual
Representations from Cluttered Images

Michael W. Spratling

Abstract—In order to perform object recognition, it is necessary to form perceptual representations that are sufficiently specific to

distinguish between objects, but that are also sufficiently flexible to generalize across changes in location, rotation, and scale. A standard

method for learning perceptual representations that are invariant to viewpoint is to form temporal associations across image sequences

showing object transformations. However, this method requires that individual stimuli be presented in isolation and is therefore unlikely to

succeed in real-world applications where multiple objects can co-occur in the visual input. This paper proposes a simple modification to

the learning method that can overcome this limitation and results in more robust learning of invariant representations.

Index Terms—Computational models of vision, neural nets.

�

1 INTRODUCTION

INFORMATION about object identity is processed by a series of
cortical regions along the ventral pathway leading from the

primary visual cortex to the temporal lobe [14], [46]. At each
stage along this processing pathway, neurons selectively
respond to increasingly complex stimuli. In addition,
receptive field sizes also become progressively larger, such
that responses are increasingly invariant to stimulus location
and scale. For example, cells in area V1 are responsive to
simple stimuli, such as oriented edges, at specific locations
[17], while neurons in temporal areas are selective to complex
objects, such as faces, appearing anywhere in the visual field
[6], [21], [28], [29], [32], [42], [45]. Hence, cortical cells along
the ventral pathway learn increasing specificity togetherwith
increasing invariance [18], [45]. In each cortical region,
neurons learn to respond to specific patterns of activity
generated by the neurons in more peripheral cortical regions
fromwhich they receive their inputs.Higher-level perceptual
representations are thus learned from lower-level ones and
this process can be repeated hierarchically, such that, at each
stage, neurons become tuned to ever more specialized and
invariant features of the environment [7], [44]. This process
makes tractable the task of learning complex perceptual
representations [7] and has formed the basis for many
hierarchical neural network models of object recognition.

Differentmathematical processes are required for learning
more specific representations and for learningmore invariant
representations.Amore specific representation results froma
node responding to a combination of coactive lower-level
features. A nodemust thus learn to represent a conjunction of
presynaptic inputs. In contrast, a more invariant representa-
tion results from a node responding tomultiple, noncoactive,
lower-level features. A node must thus learn to represent a
disjunction of presynaptic inputs. Hence, several existing

architectures for invariant object recognition (e.g., the
Neocognitron [11], [12] and the HMAX model [30], [31])
consist of alternating stages of neural populations that
perform these two operations. A simple, two-stage, neural
hierarchy of this kind is shown in Fig. 1. It has been proposed
[12], [31], [43] that these two forms of processing correspond
to the functionality of simple and complex cells observed in
the primary visual cortex [16].

What operation is performed by a node critically depends
on how its inputs are combined to determine its output (i.e.,
what combination function is employed). To respond to a
conjunction of inputs, a standard weighted sum of presy-
naptic activation values can be used. Such a function will
cause the output of the node to be a maximum when all the
lower-level features to which it responds are simultaneously
active. In contrast, to respond to a disjunction of inputs, a
function can be used which causes the output to depend on
themaximuminput activity [30], [31]. Sucha function enables
anode to respond invariantly across anumberof inputswhile
maintaining the feature specificity of its response. Hence, an
appropriate combination function for responding to a
disjunction is obtained by taking the max over the inputs,
while an appropriate function for representing conjunctions
is obtained by taking the sum over the inputs.

While many neural networks employ learning rules
appropriate to finding conjunctions of inputs, methods for
learningdisjunctionsarenot sowell established.Forexample,
in the Neocognitron, learning occurs for conjunctions.
However, weight-sharing is used to ensure the same feature
is learned at different locations and fixed weights are used to
pool responses from these nodes to achieve translation
invariance [11], [12]. Similarly, in the HMAX model, all the
weights are predefined except those that associate the output
of the hierarchy with specific object or category representa-
tions [30], [31]. Hence, viewpoint invariance is built into both
of these architectures, rather than being learned.

To learn a conjunction, it is necessary for a node to form
strong connection weights with a set of coactive inputs. By
doing so, a neuron learns to become selective for statistical
regularities across the input space [1], [9]. To learn a
disjunction, it is necessary for a node to form strong
connection weights with a set of noncoactive inputs. The
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problem is to decide when distinct input patterns result from
the same object. “One possible solution to this problem is to
associate those images whose appearance is closely tempo-
rally correlated, on the assumption that multiple views of an
object are frequently experienced in close temporal succes-
sion” [51]. Bydoing so, aneuron learns tobecomeselective for
statistical regularities across time. This suggestion [15] has
formed the basis for a large number of algorithms that learn
invariance from sequences of images, e.g., [2], [3], [4], [5], [8],
[10], [19], [24], [25], [26], [33], [38], [39], [40], [43], [47], [48], [49],
[54], [55], [56]. This approach is justified on the grounds that
objects are seen for periods of time, during which they may
undergo a number of transformations or be observed from a
number of viewpoints. Furthermore, both psychophysical
and physiological evidence indicates that object representa-
tions are learned from temporal associations [22], [34], [37],
[41], [50], [51], [53]. One popular implementation of this form
of learningmodifies an activity-dependent learning rule such
thatamovingaverage(orshort-term trace)ofpreviousactivity
is used instead of a value or instantaneous activity. This
enables previous activity to influence learning of subsequent
input patterns and, hence, transforms temporal regularities
into spatial ones [47].

Despite the large number of different algorithms that have
been developed to exploit temporal correlations in learning
invariant representations, none have been proposed that can
work in more realistic environments that may contain
multiple objects or background clutter. Previous algorithms
thus require stimuli to bepresented in isolation [10], [24], [40],
[48] and, hence, would be inappropriate for real-world
applications. The following section describes a simple
modification to the learning method that can overcome this
limitation. The proposed learning rule cannot only success-
fully function when multiple objects co-occur, but its
performance is actually enhanced in such circumstances.
The proposed algorithm thus provides a more robust and
more efficient mechanism for learning invariance.

2 METHOD

When multiple objects are present in a scene, learning
invariance purely by finding temporal associations across
image sequences would require knowledge of which repre-
sentations derived from each image corresponded to the
same object. This is a temporal version of the correspondence

problem that occurs in stereo vision. Solving this complex
bindingproblemfor everypair of images in a sequencewould
be computationally expensive. However, it is also possible to
employ another constraint in the learning process in order to
learn invariant representations without solving the corre-
spondence problem. In terms of translation, this constraint
exploits the fact that the same object cannot occupy two
distinct locations at once. However, the proposed method is
not limited to learning invariance under translation, but is
applicable to any form of transformation. In more general
terms, the proposed additional constraint exploits the fact
that the same object cannot generate two distinct percepts at
once. Since the proposed method takes advantage of an
additional source of information within the image data,
learning of invariance is actually improved by having
multiple objects appear simultaneously.

Current methods for learning invariant representations
using a short-term trace of previous activity cause synaptic
weights to be increased when there is correlation between
previous outputs and the current inputs (or between the
current outputs and previous inputs, depending on the
implementation details). In contrast, the proposed method
allows such synaptic weight increases for only one input
and decreases the weights from all other simultaneously
active inputs (implemented by (6)). Hence, when multiple
object representations are active in response to a single
image, the proposed learning mechanism biases disjunctive
learning in the next stage of the hierarchy so that only one
of these representations is encoded by any individual node.

In addition, the proposed algorithm does not employ a
trace of previous activity, but learns correlations between the
current input and the output generated in response to the
previous image. Hence, temporal associations are learned
between consecutive pairs of images, rather than across
longer sequences of images. With this proposed mechanism,
the output generated by the current image does not affect
learning at the current iteration (it will only affect learning at
the next iteration). This was also the case for the learning rule
employed by Rolls and Milward [33], who found that
learning was improved when a trace of previous activity
was used that did not include a contribution from the current
iteration. However, the proposed method not only excludes
the activity in response to the current image from affecting
learning, but it also excludes effects from all activity
generated prior to the previous image and, hence, eliminates
the trace completely. This has the advantage that there is no
need to calculate or remember a trace of previous activity.
Furthermore, there is no parameter controlling the length of
the trace and, hence, no requirement to adjust the trace time
constant to be appropriate for different tasks [24], [33], [55].

Several previous models which learn invariance have
calculated node activity using a weighted sum of the inputs,
e.g., [10], [24]. As mentioned in Section 1, the max operator
has been proposed as a more appropriate combination
function for generating invariant responses [30], [31].
Summation allows multiple, nonoptimal, stimuli to generate
as strong a response as the optimal stimulus. For example,
rather than selectively responding to a particular object, a
node employing summation might be fully activated by
disjoint object parts occurring at a range of locations.
Furthermore, a node employing summation would be more
active in response to multiple occurrences of the same object,
than to a single object. To avoid theseproblems, the algorithm
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Fig. 1. The proposed neural network architecture for learning perceptual
invariances. Nodes in the lower region receive connections from an
input image and learn to represent conjunctions of these presynaptic
inputs, thus forming more specific representations. Nodes in the upper
region receive connections from all the nodes in the lower region and
learn to represent disjunctions of these presynaptic inputs, thus forming
more invariant representations.



proposed here employs the max operator for finding
disjunctions (see (1)). The proposed model is thus distinct in
that it both learns invariance and employs themax operator.
In contrast, previous models that employ an appropriate
combination function for generating invariant responses fail
to learn those invariances, e.g., [30], [31], while those models
that do learn invariances use an inappropriate combination
function, e.g., [10], [24].

2.1 Implementation Details

The performance of the proposed algorithm was explored
using a simple neural hierarchy consisting of two stages, or
regions (see Fig. 1). One region learned conjunctions and the
other region learned disjunctions. The conjunctive region
was implemented using the algorithm presented in [35],
[36], but with minor modifications which improve perfor-
mance. Implementation details for both types of region are
given below.

2.1.1 Activation

As discussed above, different combination functions are
appropriate for learning disjunctions and conjunctions.
Hence, in the proposed algorithm, the activations of
nodes in the disjunctive region were calculated using the
max operator:

ytjk ¼ max
m

i¼1
Zt
ijk

n o
ð1Þ

and the activations of nodes in the conjunctive region were
calculated using summation:

ytjk ¼
Xm
i¼1

wijkX
t
ijk

� �
; ð2Þ

whereytjk is theactivationofnode j inregionkat time t,m is the
totalnumberof inputs to the region,wijk is thesynapticweight
from input i to node j in region k, Zt

ijk is the normalized
weighted activation received at input i of node j in region k,
andXt

ijk is the activation received by node j in region k from
input i after preintegration lateral inhibition:

Zt
ijk ¼ xt

ijk

wijk

maxmq¼1 wqjk

� � wijk

maxnq¼1 wiqk

� �
 !

; ð3Þ

Xt
ijk ¼ xt

ijk 1� �t max
n

p¼1

ðp6¼jÞ

wipk

maxmq¼1 wqpk

� � yt�1
pk

maxnq¼1 yt�1
qk

n o
8<
:

9=
;

0
B@

1
CA

þ

;

ð4Þ

where xt
ijk is the input activity received at input i of node j

in region k, yt�1
pk is the activation of node p in region k at time

t� 1, n is the total number of nodes in the region, �t is a
scale factor controlling the strength of lateral inhibition, and
ðvÞþ is the positive half-rectified value of v. The presynaptic
activity values (xt

ijk) are either the activations of nodes in the
lower region at the previous time step (i.e., yt�1

j0k�1) or are
external, sensory, inputs supplied to the hierarchy.

The value of Zt
ijk depends upon the strength of presynap-

tic activity and the strength of the weight received from that
input (i). This value is adjusted using both post and

presynaptic weight normalization. Such normalization
causes the value of Zt

ijk to be reduced if the node receives a
stronger connection from another input or if another node
receives a stronger connection from input i. The value of Zt

ijk

is thus dependent on prior weight changes that have taken
place in this and other nodes. The first form of normalization
biases the node to respond to an active input to which it has
previously responded, while the second form of normal-
ization biases the network to respond to each input using a
single node. Through activity-dependent learning (see
Section 2.1.2), nodes thus become selective for disjunctive
sets of input patterns and each disjunctive set is represented
by an individual node.

The value ofXt
ijk depends upon the strength of presynap-

tic activity and the strength of the lateral inhibition directed
toward thatparticular input.ThevalueofXt

ijkwill be strongly
inhibited if another node (p) is strongly activated by the
overall stimulus (i.e., if yt�1

pk has a high value relative to all
other node activations) and that other node receives a strong
synaptic weight from input i (i.e., if wipk has a high value
relative to all the other weights received by node p). Hence,
this form of lateral inhibition provides competition by
enabling each node to “block” its preferred inputs from
activating other nodes. There is thus strong competition
which causes nodes to become selective for distinct con-
junctive sets of inputs, but which does not prevent multiple
nodes from responding simultaneously to the presentation of
multiple, distinct, stimuli. To help ensure that a steady-state
solution is reached, it has been found useful to gradually
increase the value of �t at each iteration from an initial value
of zero. In the simulationsdescribed in this paper, the valueof
�t was increased from zero to 10 in steps of 0.25, while the
input image was kept fixed. Activation values generally
reached a steady-state at lower alpha, in which case, the
competition was terminated prior to �t reaching its max-
imum value.

Finally, the activity of each node was also modified by a
small amount of noise such that:

ytjk ¼ ytjk 1þ �ð Þ: ð5Þ

The noise values, �, were logarithmically distributed
positive real numbers in the range [0, 0.01]. This noise is
essential to cause nodes to learn to represent distinct
stimuli. Since the magnitude of the noise is small, it has very
little effect on neural activity except when multiple nodes
have virtually identical synaptic weights. When this occurs,
the noise causes one of these nodes to win the competition
to be active in response to the current stimulus.

2.1.2 Learning

All synaptic weights were initially given equal values.
Weights were modified using the final, steady-state,
activation values found using the equations given above
(the t superscript is thus dropped from subsequent
equations). For nodes in a disjunctive region, the following
learning rule was employed:

�wijk ¼ � �xijkPn
p¼1 y

�
pk

y�jk � �yy�k

� �þ
; ð6Þ

where � is a parameter controlling the learning rate (� ¼ 1
4

was used in the simulations presented in this paper), y�jk was
the activity of the node in response to the previous input
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pattern, and �yy�k was the mean of the output activations in
response to the previous input pattern (i.e., �yy�k ¼ 1

n

Pn
j¼1 y

�
jk).

Using y�jk causes learning of the correlation between the
current input activity and the previous output activity.
Learning only occurs for nodes that were more active than
average at the previous iteration and at synapses with
currently active inputs. This learning rule has a positive
value at synapses where Zijk ¼ yjk and a negative value
otherwise. Hence, only the weight of the most active input
was increased and weights to all other active inputs were
decreased. This learning rule thus encourages each node to
learn weights selective for a set of noncoactive inputs. This is
achieved since, when a node is more active than average, it
increases its synaptic weights to a single active input and
decreases its weights to all other active inputs. Hence, only
sets of inputs which are seldom coactive will generate strong
afferent weights. This rule thus enforces the proposed
additional constraint for learning disjunctions: that the same
object cannot generate two distinct percepts (i.e., inputs) at
the same time. Following learning, synaptic weights were
clipped at zero such that wijk ¼ ðwijkÞþ and were normalized
such that

Pn
j¼1 wijk ¼ 1. This normalization process provides

an implicit form of competition between different disjunctive
nodes since, if one node strengthens its connection to a
particular input, then connections from that input to all other
nodes are weakened.

For nodes in a conjunctive region, the following learning
rule was employed for weights with values greater than or
equal to zero:

�wijk ¼
� xijk � �xxjk

� �Pm
p¼1 xpjk

yjk � �yyk
� �þ

; ð7Þ

where� isaparametercontrolling the learningrate (� ¼ 1was
used in the simulations presented in this paper), �xxjk is the
mean of the input activations (i.e., �xxjk ¼ 1

m

Pm
i¼1 xijk), and �yyk is

the mean of the output activations (i.e., �yyk ¼ 1
n

Pn
j¼1 yjk).

Following learning, synaptic weights were clipped at zero
such that wijk ¼ ðwijkÞþ and were normalized such thatPm

i¼1ðwijkÞþ ¼ 1. This learning rule encourages each node to
learn weights selective for a set of coactive inputs. This is
achieved since, when a node is more active than average, it
increases its synaptic weights to active inputs and decreases
itsweights to inactive inputs.Hence, only setsof inputswhich
are consistently coactive will generate strong afferent
weights. In addition, the learning rule is designed to ensure
that nodes can represent stimuliwhich share input features in
common (i.e., to allow the network to represent overlapping
patterns). This is achievedby rectifying thepostsynaptic term
of the rule so that no weight changes occur when the node is
less active than average. If learning was not restricted in this
way, whenever a pattern was presented, all nodes which
representedpatternswithoverlappingfeatureswouldreduce
their weights to these features.

For weights with values less than or equal to zero, the
following learning rule was employed:

�wijk ¼
� Xijk � 0:5xijk

� ��Pn
p¼1 ypk

yjk � �yyk
� �

; ð8Þ

whereXijk is the input activation from source i to node j after
inhibition (see (4)), and ðvÞ� is the negative half-rectified
value of v. Negative weights were constrained such that

0 �
Pm

i¼1ðwijkÞ� � �1. This learning rule is only applied to
synapses which have a weight of zero (or less than zero)
causedbyapplicationof the learning rulegiven in (7) (orprior
application of (8)). Negative weights are generated when a
node is active and inputs that are not part of the nodes’
preferred stimulus, are inhibited. This can only occur when
multiple nodes are coactive. If the pattern to which this set of
coactive nodes are responding reoccurs, then the negative
weightswill grow.When thenegativeweights are sufficiently
large, the response of these nodes to this particular pattern
will be inhibited, enabling other nodes to successfully
compete to represent this pattern. On the other hand, if the
pattern to which this set of coactive nodes are responding is
just due to the coactivation of independent input patterns,
then the weights will return toward zero on subsequent
presentations of these patterns in isolation.

2.1.3 Comparison with Previous Methods

In contrast to previous methods, the above algorithm for
learning temporal correlations employs the activity at the
previous iteration rather than a trace of previous activity. To
determine the effects of this, certain experiments were
repeated, using an identical procedure to that described
above, but with the y�jk value in (6) replaced by a trace of
previous activity such that:

y�jk ¼ 0:2yjk þ 0:8y�jk:

An identical equation for calculating a trace of previous
activity has been employed in several papers, i.e., [10],
[47], [48].

To compare the results of the proposed algorithm with
previous methods, certain experiments were also repeated,
using the algorithm proposed in [10] for the disjunctive
region. Hence, (6) was replaced by:

�wijk ¼ 0:02 xijk � wijk

� �
y�jk;

where y�jk was a trace of previous activity, calculated as
above, and (1) was replaced by:

ytjk ¼
Xm
i¼1

wijkx
t
ijk

� �
;

following which a winner-takes-all competition was applied
so that the node receiving the strongest weighted input was
given an activity of one, and all other nodes were given an
activity of zero. This algorithmhas formed the basis formany
previous methods of learning invariance, e.g., [24], [40], [47],
[48] and, so, will be referred to as the standard method.

3 RESULTS

The proposed algorithm was applied to the task of learning
line orientation invariant to translation. A similar task was
used previously to test other methods [10], [19], [24]. A two-
region hierarchy of neural networks was used. The lower
region received input from images of training stimuli and
learned conjunctions of features within these images, while
the upper region received input from all the nodes in the
lower region and learned disjunctions across the activity
patterns generated in the lower region. A network consist-
ing of 32 nodes was used for the lower region and a
network containing five nodes was employed for the upper
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region. Learning in both networks proceeded from the start
of training (i.e., there was no pretraining of the lower
network before training the upper network).

Training data consisted of a series eight-by-eight pixel
images,withinwhich one-pixelwidehorizontal, vertical, and
diagonal bars could appear. Twomethods for generating the
training data were used. Bars could be selected such that
orientations were mutually exclusive or the bar orientations
present in each image could be independently selected:

Mutually exclusive orientations: Each image contained only
onebarata time.Ateachiteration, theorientationof thisbar
could be changedwith a fixed probability.

Independently selected orientations: Each image could
contain an arbitrary number of bars at different orienta-
tions. At each iteration, each orientation could be changed
from being present to absent (or vice versa) with a fixed
probability.
In both cases, specific bars at the chosen orientation(s),

were selected at random. The algorithm was tested using a
range of values for the probability of successive images
containing bars of the sameorientation andwith either twoor

four different orientations being used (i.e., images could
contain only horizontal and vertical bars in some experi-
ments, but horizontal, vertical, and diagonal bars1 in others).
Fig. 2 shows typical examples of the type of image sequences
that were used.

To succeed in the task, nodes in the lower region needed to
learn to represent all the individual bars at all locations and
distinct sets of nodes in the upper region needed to learn
weights such that they received the strongest connections
projected by all the nodes in the lower region which
represented bars of a single orientation. Fig. 3 shows a typical
example of the weights learned when the hierarchy succeeds
in learning to represent horizontal and vertical bars. For each
combination of orientation selection method, number of bar
orientations, and probability of successive images containing
barsofthesameorientation, thehierarchywastrained10times
using different randomly generated sequences of input
patterns. The number of these trials for which the task was
successfullylearnedareshowninFig.4.Fortrails inwhichtwo
orientations were present, the hierarchy was trained for
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Fig. 2. Typical examples of image sequences used for learning bar orientations invariant to translation. Bars were selected such that orientations
were mutually exclusive in (a) and (b) and bar orientations were independently selected in (c) and (d). Images could contain bars at two orientations
(horizontal and vertical) in (a) and four orientations (horizontal, vertical, and both diagonals) in (b), (c), and (d). The probability that successive
images contained bars of the same orientation was 0.9 in (a), (b), and (c) and 0.6 in (d).

1. The seven longest diagonals in each direction.



5,000 iterations and, for trials in which four orientationswere

used, since there were twice as many representations to be

learned, the hierarchy was trained for 10,000 iterations.

It canbe seen that theproposedalgorithmreliably learns to

represent bar orientation, invariant to position, across a wide

range of conditions. As with previous methods, learning
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Fig. 3. A typical example of the synaptic weights formed by learning to represent horizontal and vertical bars. A 5-node disjunctive network received
input from a 32-node conjunctive network which, in turn, received input from an 8 by 8 pixel input array. The synaptic weights, learned after
5,000 iterations, for (a) the 32 nodes in the lower network and (b) the 5 nodes in the upper network. For each node in the upper network, the weights
received from each of the 32 nodes in the lower network are shown in the same order in which these nodes are presented in (a). The darkness of
each pixel is proportional to the strength of that weight. Nodes in the lower network have become selective for sets of pixels which correspond to
individual bars at each location. One node in the upper network has learned to represent horizontal bars, while another has learned to represent
vertical bars: Each of these nodes is selective for all the nodes in the lower network which represent bars of that orientation.

Fig. 4. Reliability of learning representations of line orientation invariant to translation. Each graph shows the percentage of trails for which the
hierarchy successfully learned distinct representations for bars of each orientation at all image locations. Within each graph, the number of
successful trials is plotted for varying the probability that successive images will contain bars of the same orientation. The left column shows results
when two orientations of bars (horizontal and vertical) were used and the right column shows results when four orientations of bars (horizontal,
vertical, and both diagonals) were used. The top row shows results when bar orientations were independently selected (i.e., when multiple bars could
be present within the same image) and the bottom row shows results when bar orientations were mutually exclusive (i.e., each image contained only
one bar). Plots are shown for the proposed algorithm, for the proposed algorithm using a trace of previous activity, and for the standard algorithm.
The dashed line shows the performance of the proposed algorithm when 10 percent of images contained two bars of the same orientation.



relies on different views of the same object being presented
across sequences of images. Hence, decreasing the prob-
ability that successive images contain bars of the same
orientation (i.e., shortening the average length of image
sequences containing bars of the same orientation) leads to a
reduction in performance and, eventually, to failure to learn
the task in all trials. The point at which the algorithm fails to
learn reliably, occurs at shorter sequence lengths when
images contain multiple rather than isolated bars (compare
the top and bottom rows of Fig. 4). Hence, the presence of
multiple objects within the visual input improves learning
using the proposed method. This is to be expected since the
proposed algorithm can exploit an additional source of
information when multiple objects appear simultaneously.
Note that all bar orientations were present in every image for
the condition in which independent selection was used
together with a probability of one that the same orientation is
present in successive images. The failure to successfully learn
in this condition, when using four bar orientations, resulted
from the lower-region failing to represent all the bars in nine
out of 10 trials. It is thus primarily a failure of conjunctive
rather than disjunctive learning.Hence, when the probability
that successive images contain bars of the same orientation is
very high, the lower (conjunctive) network can fail to learn
successfully, while, at low probabilities, the upper (disjunc-
tive) network fails.

The proposed learning mechanism assumes that, when
multiple object representations are active in response to a
single image, these representations cannot correspond to
different views of the same object. This assumption will be
invalid in rare situations when two, or more, identical
objects are present in the same scene. To ensure that the
proposed method is still robust even in such circumstances,
experiments were repeated so that 10 percent of images
would contain two bars of the same orientation. Results are
shown as a dashed line in the top left-hand plot of Fig. 4. It
can be seen that, when images may contain multiple views
of the same object, a reduction in the number of successful
trials only occurs for very short sequence lengths. For
longer sequence lengths, learning is still reliable.

The proposed algorithm learns correlations between the
current input and the output generated in response to the

previous image. When the proposed learning rule was
modified to use a trace of previous output activity, results
were worse in all conditions where images contained only
single bars. When trained using isolated bars, the proposed
algorithmusing a trace learning rule produces similar results
to the standard method of learning invariance (which also
uses a trace). When training images contained multiple bar
orientations, employing a trace of previous output activity
with the proposed algorithm also generally resulted inworse
performance.However,when only two bar orientationswere
used andbars of the sameorientationwerepresented for very
short sequence lengths, employing a trace in the proposed
learning rule appears to improve performance. However, in
these conditions, the trace does not provide any useful
information and replacing y�jk in (6) with a value of 1þ �
(where � is a randomvariable in the range [0, 0.01]) produced
even better results (i.e., a 100 percent success rate for both two
and four orientations and a probability of 0.4 that successive
stimuli contain exemplars of the same orientation). Hence, it
appears that, for very short sequence lengths, excluding node
output activity from making any contribution to learning
enables the constraint that coactive stimuli should not be
represented by the same node to be even more successful in
detecting distinct bar orientations. In contrast, the standard
method completely fails when images contain multiple
objects. The standardmethod requires objects to bepresented
in isolation and the proposed method is therefore far more
robust in situations were this does not occur.

The above results provide examples of learning invariance
to translation. However, the proposed method can also be
applied to learning invariant perceptual representations
under other forms of transformation. An upper region node
learns to respond to a disjunctive set of lower region nodes.
Hence, if the lower region nodes learn to represent distinct
views of an object under arbitrary transformations, then the
upper region can learn to represent all thesedifferent viewsof
the same object. As a simple illustration of this point, the
neural hierarchydescribed abovewas trainedusing eight-by-
eight pixel images, withinwhich the letters “F” and “I” could
appear, either at two different scales or at different in-plane
rotations (see Fig. 5 for typical examples of the image
sequences thatwere used). For each of a range of probabilities
that successive images contained exemplars of the same
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Fig. 5. Typical examples of image sequences used for learning invariance to scale and rotation. Images containing the letters “F” and “I” at
(a) different scales and (b) different orientations were created by independently selecting exemplars from each class to be present. In these
examples, the probability that successive images contained the same letter was 0.7.



letter, the hierarchy was trained 10 times using different
randomly generated sequences of input patterns. Training
occurred for 2,500 iterations in each case. Thenumber of these
trials for which the task was successfully learned is shown in
Fig. 6. It can be seen that the results are similar to those
obtained above for learning different bar orientations invar-
iant to translation.

4 CONCLUSIONS

Generalization is a vital component of intelligence. In vision,
generalization underlies the formation of concepts by
enabling the categorization of perceptually distinct objects.
In addition, generalization underlies the recognition of
individual objects by enabling identification despite changes
in appearance. While much fruitful work in machine vision
hasexplored theuseofperspective invariants as amechanism
for object recognition, this does not appear to be the method
employed by the brain [27]. In the cortex, object representa-
tions are built up over a hierarchy of processing stages
through learning [13], [20], [23], [52] and the viewpoint
invariance of these representations results from learning
associations across time [22], [34], [37], [41], [50], [51], [53].
Many neural network models have been proposed which
exploit this form of learning to develop invariant object
representations. However, existing algorithms require train-
ing to be performed with isolated stimuli presented against
blank backgrounds. This paper has suggested a simple
modification to such methods that enables learning to
succeed when the training environment contains multiple,
co-occurring, stimuli. This suggested modification biases
learning so that coincident objects will be represented by
distinct nodes. The proposed algorithm also improves on
previous methods by employing a more appropriate combi-
nation function and by learning correlations between
consecutive image pairs rather than across sequences of
images. It was shown that these modifications improved
performance on a simple task where training data could
contain co-occurring stimuli such that the reliability with
which learning succeeded went from zero to 100 percent,
across a range of conditions. Performancewas also improved
inexperimentswhere stimuliwerepresented in isolation.The
proposed algorithm thus provides a more robust method of
learning invariant representations and could form the basis
for the development of more powerful algorithms for
learning invariance in real-world applications.
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