14 research outputs found

    Single phase inverter system using proportional resonant current control

    Get PDF
    This paper presents the harmonic reduction performance of proportional resonant (PR) current controller in single phase inverter system connected to nonlinear load. In the study, proportional resonant current controller and low pass filter is discussed to eliminate low order harmonics injection in single phase inverter system. The potential of nonlinear load in producing harmonics is showed and identified by developing a nonlinear load model using a full bridge rectifier circuit. The modelling and simulation is done in MATLAB Simulink while harmonic spectrum results are obtained using Fast Fourier Transfor. End result show PR current controller capability to overcome the injection of current harmonic problems thus improved the overall total harmonic distortion (THD)

    Control Chart Pattern Recognition Using Small Window Size for Identifying Bivariate Process Mean Shifts

    Get PDF
    There are many traits in the manufacturing technology to assure the quality of products. One of the current practices aims for monitoring the in-process quality of small-lot production using Statistical Process Control (SPC), which requires small samples or small window sizes. In this study, the recognition performance of bivariate SPC pattern recognition scheme was investigated when dealing with small window sizes (less than 24). The framework of the scheme was constructed using an artificial neural network recognizer. The simulated SPC samples in different window sizes (8 ~ 24) and different change points (fixed and varies) were generated to study the recognition performance of the scheme based on mean square error (MSE) and classification accuracy (CA) measures. Two main findings have been suggested: (i) the scheme was superior when recognizing shift patterns with various change points compared to the shift patterns with fixed change point, with lower MSE and higher CA results, (ii) the scheme was more difficult to recognize smaller window size patterns with increasing MSE and decreasing CA trends, since these patterns provided insufficient information of unnatural variation. The outcome of this study would be helpful for industrial practitioners towards applying SPC for small-lot-production. &nbsp

    Quantitative infrared thermography resolved leakage current problem in cathodic protection system

    Get PDF
    Leakage current problem can happen in Cathodic Protection (CP) system installation. It could affect the performance of underground facilities such as piping, building structure, and earthing system. Worse can happen is rapid corrosion where disturbance to plant operation plus expensive maintenance cost. Occasionally, if it seems, tracing its root cause could be tedious. The traditional method called line current measurement is still valid effective. It involves isolating one by one of the affected underground structures. The recent methods are Close Interval Potential Survey and Pipeline Current Mapper were better and faster. On top of the mentioned method, there is a need to enhance further by synthesizing with the latest visual methods. Therefore, this paper describes research works on Infrared Thermography Quantitative (IRTQ) method as resolution of leakage current problem in CP system. The scope of study merely focuses on tracing the root cause of leakage current occurring at the CP system lube base oil plant. The results of experiment adherence to the hypothesis drawn. Consequently, res

    Control Chart Pattern Recognition Using Small Window Size for Identifying Bivariate Process Mean Shifts

    Get PDF
    There are many traits in the manufacturing technology to assure the quality of products. One of the current practices aims for monitoring the in-process quality of small-lot production using Statistical Process Control (SPC), which requires small samples or small window sizes. In this study, the recognition performance of bivariate SPC pattern recognition scheme was investigated when dealing with small window sizes (less than 24). The framework of the scheme was constructed using an artificial neural network recognizer. The simulated SPC samples in different window sizes (8 ~ 24) and different change points (fixed and varies) were generated to study the recognition performance of the scheme based on mean square error (MSE) and classification accuracy (CA) measures. Two main findings have been suggested: (i) the scheme was superior when recognizing shift patterns with various change points compared to the shift patterns with fixed change point, with lower MSE and higher CA results, (ii) the scheme was more difficult to recognize smaller window size patterns with increasing MSE and decreasing CA trends, since these patterns provided insufficient information of unnatural variation. The outcome of this study would be helpful for industrial practitioners towards applying SPC for small-lot-production. &nbsp

    Identifying Unnatural Variation in Precision Rotational Part Manufacturing

    Get PDF
    In the manufacturing industry, it is well known that in-process variation is a major contributor to poor quality products. In order to fabricate a precise part, the source of unnatural variation (UV) needed to be properly identified, monitored and controlled while the process is running. In relation to this issue, this study aims to identify the error root causes of UV in bivariate process associated with statistical process control (SPC) chart patterns. In research methodology, in-process variation in manufacturing roller head component was discussed systematically based on real product of roller head, computer aided design (CAD) and statistical process control (SPC) chart patterns. Initially, the CAD software was used to model a precise rotational part, and to analyse the cause of UV. Then, the programming software was used to generate the artificial SPC data streams based on an established mathematical model. Data generation also involved linear correlation between two dependent variables (bivariate). The outcome of this study would be helpful for industrial practitioners as a database when applying SPC for monitoring bivariate process

    A New RBFNDDA-KNN Network and Its Application to Medical Pattern Classification

    Get PDF
    Abstract. In this paper, a new variant of the Radial Basis Function Network with Dynamic Decay Adjust (RBFNDDA) is introduced for undertaking pattern classification problems with noisy data. The RBFNDDA network is integrated with the k-nearest neighbours algorithm to form the proposed RBFNDDA-KNN model. Given a set of labelled data samples, the RBFNDDA network undergoes a constructive learning algorithm that exhibits a greedy insertion behaviour. As a result, many prototypes (hidden neurons) that represent small (with respect to a threshold) clusters of labelled data are introduced in the hidden layer. This results in a large network size. Such small prototypes can be caused by noisy data, or they can be valid representatives of small clusters of labelled data. The KNN algorithm is used to identify small prototypes that exist in the vicinity (with respect to a distance metric) of the majority of large prototypes from different classes. These small prototypes are treated as noise, and are, therefore, pruned from the network. To evaluate the effectiveness of RBFNDDA-KNN, a series of experiments using pattern classification problems in the medical domain is conducted. Benchmark and real medical data sets are experimented, and the results are compared, analysed, and discussed. The outcomes show that RBFNDDA-KNN is able to learn information with a compact network structure and to produce fast and accurate classification results

    Portable marketing set

    Get PDF
    Folding table (Figure 8.1) that consist of chair or also known as ā€œPortable Tableā€ is an item that have been widely used all over the world. However, in Malaysia this concept of idea is still new and needs publicities. This portable table usually consist of a rectangular table and chairs around it. The development of the table is based from the dining table at home to gather family member and for eating. Folding tables are produced in many sizes, design and configuration and it can be made from plastic, metal, plastic and other material. Mostly special material will be used by engineer to produces the product

    Design optimization for the two-stage bivariate pattern recognition scheme

    Get PDF
    In manufacturing operations, unnatural process variation has become a major contributor to a poor quality product. Therefore, monitoring and diagnosis of variation is critical in quality control. Monitoring refers to the identification of process condition either it is running within in statistically in-control or out-of-control, whereas diagnosis refers to the identification of the source of out-of-control process. Selection of SPC scheme becomes more challenging when involving two correlated variables, which are known as bivariate quality control (BQC). Generally, the traditional SPC charting schemes were known to be effective in monitoring aspects, but there were unable to provide information towards diagnosis. In order to overcome this issue, many researches proposed an artificial neural network (ANN) - based pattern recognition schemes. Such schemes were mainly utilize raw data as input representation into an ANN recognizer, which resulted in limited performance. In this research, an integrated MEWMA-ANN scheme was investigated. The optimal design parameters for the MEWMA control chart have been studied. The study focused on BQC with variation in mean shifts (Ī¼ = Ā±0.75 ~ 3.00) standard deviations and cross correlation function (Ļ = 0.1 ~ 0.9). The monitoring and diagnosis performances were evaluated based on the average run length (ARL0, ARL1) and recognition accuracy (RA) respectively. The selected optimal design parameters with Ī»=0.10, H=8.64 gave better performance among the other designs, namely, average run length, ARL1=3.24 ~ 16.93 (for out-of-control process) and recognition accuracy, RA=89.05 ~ 97.73%. For in-control process, design parameters with Ī»=0.40, H=10.31 parameter gave superior performance with ARL0 = 676.81 ~ 921.71, which is more effective in avoiding false alarm with any correlation

    Method of lines and runge-kutta method in solving partial differential equation for heat equation

    Get PDF
    Solving the differential equation for Newtonā€™s cooling law mostly consists of several fragments formed during a long time to solve the equation. However, the stiff type problems seem cannot be solved efficiently via some of these methods. This research will try to overcome such problems and compare results from two classes of numerical methods for heat equation problems. The heat or diffusion equation, an example of parabolic equations, is classified into Partial Differential Equations. Two classes of numerical methods which are Method of Lines and Runge-Kutta will be performed and discussed. The development, analysis and implementation have been made using the Matlab language, which the graphs exhibited to highlight the accuracy and efficiency of the numerical methods. From the solution of the equations, it showed that better accuracy is achieved through the new combined method by Method of Lines and Runge-Kutta method
    corecore