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ABSTRACT 
 
 

Monitoring and diagnosis of mean shifts in manufacturing processes become 

more challenging when involving two or more correlated variables.  Unfortunately, 

most of the existing multivariate statistical process control schemes are only effective 

in rapid detection but suffer high false alarm. This is referred to as imbalanced 

performance monitoring. The problem becomes more complicated when dealing with 

small mean shift particularly in identifying the causable variables. In this research, a 

scheme to enable balanced monitoring and accurate diagnosis was investigated in 

order to improve such limitations. Design considerations involved extensive 

simulation experiments to select input representation based on raw data and statistical 

features, recognizer design structure based on individual and synergistic models, and 

monitoring-diagnosis approach based on single stage and two stages techniques. The 

study focuses on correlated process mean shifts for cross correlation function, ρ = 0.1 

~ 0.9 and mean shift, μ = ± 0.75 ~ 3.00 standard deviations. Among the investigated 

designs, an Integrated Multivariate Exponentially Weighted Moving Average with 

Artificial Neural Network scheme gave superior performance, namely, average run 

lengths, ARL1 = 3.18 ~ 16.75 (for out-of-control process) and ARL0 = 452.13 (for in-

control process), and recognition accuracy, RA = 89.5 ~ 98.5%. The proposed 

scheme was validated using an industrial case study from machining process of 

audio-video device component. This research has provided a new perspective in 

realizing balanced monitoring and accurate diagnosis of correlated process mean 

shifts.  
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ABSTRAK 
 
 

Pemantauan dan diagnosis ke atas anjakan purata dalam proses pembuatan 

menjadi semakin mencabar apabila melibatkan dua atau lebih pembolehubah 

terkorelasi. Walau bagaimanapun, skema kawalan proses statistik pembolehubah 

berbilang yang sedia ada hanya berkesan bagi pemantauan secara deras tetapi 

memberikan amaran palsu yang tinggi. Ini merujuk kepada keupayaan pemantauan 

yang tidak seimbang. Masalah menjadi lebih rumit apabila melibatkan anjakan purata 

yang kecil terutama dalam mengenalpasti pembolehubah penyebab variasi. Dalam 

kajian ini, skema untuk membolehkan pemantauan seimbang dan diagnosis tepat 

telah dikaji bagi memperbaiki kelemahan tersebut. Pertimbangan rekabentuk 

melibatkan ujikaji simulasi yang mendalam bagi memilih perwakilan masuk 

berasaskan kepada data mentah dan sifat-sifat statistik, rekabentuk struktur pengecam 

berasaskan kepada model-model individu dan tergabung, serta pendekatan 

pemantauan-diagnosis berasaskan kepada teknik-teknik satu peringkat dan dua 

peringkat. Kajian ditumpukan ke atas anjakan purata proses terkorelasi pada fungsi 

korelasi rentas, ρ = 0.1 ~ 0.9 dan anjakan purata proses, μ = ± 0.75 ~ 3.00 sisihan 

piawai. Di antara rekabentuk-rekabentuk yang dikaji, skema tersepadu Purata 

Bergerak Pemberat Exponen Pembolehubah Berbilang bersama Rangkaian Neural 

Tiruan telah menghasilkan keputusan yang terbaik, iaitu, purata panjang larian, ARL1 

= 3.18 ~ 16.75 (bagi proses luar kawalan) dan ARL0 = 452.13 (bagi proses dalam 

kawalan) serta ketepatan pengecaman, RA = 89.5 ~ 98.5%. Skema yang dicadangkan 

telah diuji sah menggunakan kajian kes perindustrian di dalam proses pemesinan 

komponen peralatan audio-video. Kajian ini telah memberikan perspektif baru dalam 

merealisasikan pemantauan seimbang dan diagnosis tepat ke atas anjakan purata 

proses terkorelasi.           
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
1.1 Background of the Research 
 
 

The American Society for Quality Control defines quality as the totality of 

features and characteristics of a product or service that bears on its ability to satisfy 

stated or implied needs (Johnson and Winchell, 1990). Recently, customer demand 

towards quality products has increased thoroughly in line with advances in 

communication and information technologies. Their expectation and satisfaction 

level have become more dynamic, diversifies and complex. 

 

Figure 1.1 illustrates the scenario leading to the current research issue. Based 

on engineering point of view, advances in manufacturing technology and growth in 

customer demand has become the push-pull factors that motivate manufacturers to 

focus on product miniaturization. Continuous quality improvement is implemented 

towards manufacturing smaller scale (compact), higher capability and cost effective 

products for various applications such as computer, television, hand phone, audio-

video, video-camera, among others. Production is moving towards precision 

(minimum variation, tight tolerance), minimum cost (minimum waste, rework, fault) 

and systematic decision making (computerized, intelligence system).    
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Current issue: 
The existing MSPC charting schemes mainly show: 
“imbalanced monitoring” and “lack of diagnosis” 

• Imbalanced monitoring: rapid detection of mean 
shifts but inadequate to minimize false alarms 

• Lack of diagnosis: Inaccurate identification of 
variables causing the variation for small shifts. 

Challenge:  
Joint monitoring and diagnosis for bivariate (correlated) 
process variation 

Process Requirement 

 Precision machines. 
 Advanced processing 

method. 

 Automated 
inspection. 

 Automation and 
robotics 

 

Process variation impairs 
quality characteristics 

SPC charting to monitor and diagnose the sources of variation  

Customer Demand 

 Higher expectation and satisfaction level. 
 Higher quality, lower price, timely delivery. 
 Good service.  

Product Miniaturization 

 Smaller scale 
 Higher capability 
 Various models 

Advances in Manufacturing Technology 

 Precision – tight tolerance, minimum variation. 
 Minimum cost – no waste, rework, and fault. 
 Systematic decision making – computerized and intelligence system 
 Ready for correlated variables. 

Continuous 
quality 
improvement 

Pull

Push

Figure 1.1 : Scenario leading to the current research issue 

 

Advances in manufacturing technology such as processing machines, 

material handling system, and measuring and inspection system have enabled 

automation to be applied into product manufacturing and quality control. Despite 

such advances, unnatural process variation that is unavoidable has become a major 

source of poor quality products. Process variation can be caused by tool wear and 

tear, vibration, machine breakdown, inconsistent material, and lack of experienced 

operators, among others.  
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Variation in manufacturing process environment causes no parts or products 

can be produced in exactly the same size and properties. Process variation as shown 

in Figure 1.2 can be influenced from chance causes (random error) and/or assignable 

causes (systematic errors). The figure shows that from initial time t0 to period t1, 

process mean (μ0) and standard deviation (σ0) are in-control. Disturbance due to 

assignable causes can be indicated in three situations. Firstly, at time t1, an 

assignable cause may shift the process mean (μ1 > μ0) but maintain the dispersion 

(σ0). Secondly, at time t2, it may change the dispersion (σ2 > σ0) but maintain the 

mean (μ0). Thirdly, at time t3, other assignable cause may effects both process mean 

and dispersion to be out-of-control, μ3 < μ0 and σ3 > σ0. Grant and Leavenworh 

(1996) stated that lack of control usually cause the changes in process mean, while 

cause no or little changes in process dispersion.  

 

 
Figure 1.2 : Process variation (Montgomery, 2005) 

 

In order to maintain and improve the quality, effort towards minimizing 

process variation in manufacturing environment has become an important issue in 

quality control. Statistical quality engineering (SQE) tools have been developed for 

systematically reducing variability in the key process variables or quality 

characteristics of the product (Montgomery, 2005). Statistical process control (SPC) 
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charting is one of the SQE tools that useful for monitoring and diagnosing process 

variation. Researches in design of SPC charting schemes focused on heuristic, 

smaller shift detection, process pattern identification and automated pattern 

recognition. Besides minimizing process variation, such advances are ultimately aim 

to minimize human intervention through computerized decision making. 

 

In the related study, many manufacturing processes involve two or more 

dependent variables, whereby an appropriate scheme is required to monitor and 

diagnose such variables jointly. In contrast, attempting to monitor such variables 

separately using univariate SPC charting scheme would increase false alarms and 

leading to wrong decision making. This joint monitoring-diagnosis concept is called 

multivariate quality control (MQC). The main challenge in MQC is the need for an 

effective MSPC charting scheme for monitoring and diagnosing of bivariate process 

variation in mean shifts. In recent years, the artificial neural network-based pattern 

recognition schemes have been developed for this purpose. Such advanced schemes 

are generally more effective in detecting process mean shifts rapidly compared to the 

traditional MSPC charting schemes such as T2, multivariate cumulative sum 

(MCUSUM) and multivariate exponentially weighted moving average (MEWMA) 

control charts. Unfortunately, it showed a limited capability to avoid false alarm 

(average run length of in-control process, ARL0 ≈ 200) as compared to the de facto 

level for univariate SPC charting schemes (ARL0 ≥ 370). In this research, this 

scenario is called “imbalanced monitoring” as illustrated in Figure 1.3. In diagnosis 

aspect, the existing schemes are also inadequate to accurately identify the sources of 

variation, particularly in dealing with small mean shifts. These situations have 

resulted in poor decision making and lead to unnecessary troubleshooting. In order to 

improve these limitations, it is necessary to investigate improved scheme towards 

“balanced monitoring” and “accurate diagnosis”. The intended scheme should be 

able to detect process mean shifts rapidly (average run length of out-of-control 

process, ARL1 ⇒ 1) with minimum false alarm (ARL0 ≥ 370) and correctly identify 

the sources of variation (recognition accuracy, RA ≥ 95%).  
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Ideal state 

Perfect balanced: able to detect process mean shifts as soon as possible (ARL1 = 1) 

without triggering any false alarm (ARL0 = ∞)  

Sensitivity in mean shift detection 
Shorter ARL1 represents faster 

detection of process mean shifts

Current state 

Imbalanced monitoring: able to detect process mean shifts rapidly (ARL1 ⇒ 1) 

but inadequate to minimize false alarm to the de facto level (ARL0 ≈ 200 << 370)  

Desired state (for this research) 

Balanced monitoring (reasonable for current practice): able to detect process mean 

shifts rapidly (ARL1 ⇒ 1) and maintain minimum false alarm to the de facto level 

(ARL0 ≥ 370)  

ARL0 ≥ 370 ARL1 ⇒ 1 

ARL1 ⇒ 1 

ARL1 = 1 ARL0 = ∞

ARL0 ≈ 200 << 370 

Capability in false alarm avoidance 
Longer ARL0 represents smaller 
false alarm 

Figure 1.3 : Current state and desired state towards balanced monitoring 
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1.2 Statement of the Problem 
 

In manufacturing industries, monitoring and diagnosis of process variation is 

necessary towards continuous quality improvement. It will be more challenging 

when involving two or more dependent variables (multivariate), whereby an 

appropriate scheme is required to perform joint monitoring and diagnosis. It is 

important that the multivariate process variation be rapidly and correctly identified 

with minimum false alarm. Failure to avoid false alarm and incorrect diagnosis 

could lead to wrong decision making. The existing multivariate pattern recognition 

schemes are mainly inadequate to fulfill these requirements. Such schemes mainly 

show imbalanced monitoring, which is only effective to detect mean shifts rapidly 

but inadequate to maintain minimum false alarm to the de facto level as for 

univariate SPC (ARL0 ≥ 370). Additionally, they are also lacking to accurately 

identify the sources of variation particularly when dealing with small mean shifts. In 

order to improve these limitations, it is necessary to investigate a scheme for 

enabling “balanced monitoring and accurate diagnosis”. 

 
 
 
 
1.3 Purpose of the Research 

 

The purpose of this research is to design, develop and test runs a scheme for 

enabling balanced monitoring and accurate diagnosis of bivariate process mean 

shifts. The desirable characteristics for the intended scheme are applicable for (i) 

bivariate process (correlated data streams) and (ii) on-line situation (dynamic data 

streams). The desirable monitoring-diagnosis performances are capable to: (i) rapidly 

detect process mean shifts (ARL1 ⇒ 1), (ii) minimize false alarms to the de facto 

level for univariate SPC charting schemes (ARL0 ≥ 370), and (iii) accurately identify 

the sources of variation in mean shifts (recognition accuracy, RA > 95%).  

 
 
 
 
 
 



 7

1.4 Objectives 

 

The objectives of this research are: 

 

(i) To design and develop a baseline scheme for enabling on-line 

monitoring and diagnosis of bivariate process mean shifts. 

  

(ii) To improve the performance of the scheme towards achieving 

“balanced monitoring and accurate diagnosis”, that is, effective in 

rapidly detecting process mean shifts with minimum false alarm, and 

accurately identifying the sources of variation in mean shifts. 

 
 
 
 
1.5 Scope and Key Assumptions 

 

The scopes of this research are: 

 

(i) Bivariate process variables are dependent to each other based on 

linear cross correlation (ρ). In particular, focus is given to positive 

data correlation (ρ > 0). 

(ii) In a statistically out-of-control process state, predictable bivariate 

patterns are limited to sudden shifts (upward shift and downward 

shift) in the component variables. 

(iii) Bivariate process variation is limited to changes in mean shifts at 

specified data correlation, or changes in data correlation at specified 

mean shifts. 

(iv) Magnitudes of mean shifts in the component variables are limited 

within ± 3 standard deviations based on control limits of Shewhart 

control chart. 

(v) The foundation modeling and simulation for bivariate correlated 

samples are based on established model (Lehman, 1977), whereas the 

validation tests are performed using industrial data. 
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(vi) The Baseline scheme is developed based on artificial neural network 

(ANN) recognizer and raw data-based input representation. 

 
 
 
 
1.6      Importance of the Research 

 

 The research is significant in theoretical and real world perspectives. In 

theoretical perspective, implementation of balanced monitoring and accurate 

diagnosis scheme in MQC would be useful for minimizing errors through 

computerized decision making. In real world perspective, an intended scheme would 

be effective towards realizing precision (minimum variation, tight tolerance), 

minimum cost (minimum waste, rework, fault) and systematic decision making 

(computerized, intelligence system) in today’s manufacturing environment. 

 
 
 
 
1.7      Research Approach 

 

 The solution concept for addressing imbalanced monitoring and lack of 

accurate diagnosis of bivariate process mean shifts was investigated through 

extensive computer simulation-experiments. Broadly, the investigation was divided 

into four phases. In initial phase, the Baseline scheme was designed and developed 

for enabling on-line monitoring and diagnosis of bivariate process mean shifts. In the 

following phases, further investigation was focused on improved input 

representation, improved recognizer design and integration between monitoring and 

recognition. As such, three alternative enhanced schemes, namely, Statistical 

Features-ANN, Synergistic-ANN and Integrated MEWMA-ANN schemes were 

designed and developed towards achieving balance monitoring and accurate 

diagnosis performances. Details methodology adopted in this research are presented 

in Chapters 3 to 5. 
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1.8      Definition of Terms 

 

 The following terms are important and frequently used in this research: 

 

(a)     On-line process 

 

On-line process refers to in-process environment in manufacturing industries, 

that is, during manufacturing operation is running. Based on individual 

samples, continuous data streams patterns will be produced through 

automated measuring and inspection devices. An in-control process is 

represented by random/normal patterns, while an out-of-control process is 

represented by gradual trend or sudden shift pattern.    

 

(b)     Process monitoring and diagnosis 

 

Process monitoring refers to the identification of process status either it is 

running within a statistically in-control or has become a statistically out-of-

control. Process diagnosis refers to the identification of sources of variation 

in relation to a statistically out-of-control process.   

 

(c)  Sources of variation 

 

Source of variation refers to a component variable or group of component 

variables that indicate a bivariate process has become out-of-control. In this 

research, it is focused on sudden shift in process mean (process mean shifts). 

This information is useful towards diagnosing the root cause error. 

 

(d)  Balanced monitoring 

 

Balanced monitoring refers to the desirable monitoring performance, that is, 

effective to detect bivariate process mean shifts rapidly and maintain the 

minimum false alarms to the de facto level (ARL0 ≥ 370). 
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(e)  Imbalanced monitoring 

 

Imbalanced monitoring refers to the undesirable monitoring performance, 

that is, only effective to rapidly detect bivariate process mean shifts but 

inadequate to minimize false alarms to the de facto level (ARL0 ≥ 370). 

  

(f)  De facto level (de facto monitoring level) 

 

De facto level refers to a widely acceptable average run length value for the 

first false alarms to occur in monitoring process variables or quality 

characteristics. Specifically, it refers to ARL0 ≥ 370 based on the traditional 

univariate SPC charting schemes such as Shewhart, CUSUM and EWMA 

control charts. 

 

(g)  Accurate diagnosis 

 

Accurate diagnosis refers to a desirable diagnosis performance, that is, 

effective to correctly identify the sources of variation with high recognition 

accuracy (> 95%). 

 

(h)  Control chart patterns (CCPs) 

 

Control chart patterns refer to the patterns of univariate process data streams 

that can be indicated graphically using Shewhart control chart. 

 

(i)  Bivariate patterns 

 

Bivariate patterns refer to the unified patterns that are able to indicate the 

linear correlation between two dependent variables. In this research, these 

patterns are represented graphically using scatter diagrams.    
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(j)  Pattern recognition 

 

Pattern recognition is an operation of extracting information from an 

unknown process data streams or signals, and assigning it to one of the 

prescribed classes or categories (Haykin, 1999). In this research, it deals with 

bivariate patterns.  

 

(k)  Pattern recognition scheme 

 

Pattern recognition scheme refers to a set of related procedures formulated 

and presented in a unified manner for addressing the problem of control chart 

pattern recognition (Hassan, 2002).  

 
 
 
 
1.9 Research Contributions 

 

The contributions for this research can be summarized in a hierarchical form 

as shown in Figure 1.4. The main contribution is a concept to improve monitoring-

diagnosis performances of the MSPC charting scheme. In order to proof this concept, 

philosophy for improvement, namely, “balanced monitoring and accurate diagnosis” 

was implemented in developing the proposed scheme that is effective to detect 

bivariate process variation (mean shifts) rapidly with minimum false alarms and 

accurately identify the sources of variation (mean shifts). The supporting 

contribution is the design strategy towards developing an intended scheme. It 

involves application of the existing procedure and investigation on improved and 

new procedures. The existing procedure includes modeling of bivariate process 

samples and patterns, which is less reported in this field. The improved procedures 

involve modification on the statistical features input representation and the 

Synergistic-ANN recognizer that have been applied in univariate process monitoring 

and diagnosis. The new procedure investigated is two-stage monitoring and 

diagnosis using the integrated MEWMA – ANN scheme.  
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Balance monitoring and 
accurate diagnosis 

Improved monitoring-
diagnosis performances 

Modeling for 
bivariate 

correlated 
samples and 

patterns 

Improved 
statistical 

features input 
representation

Synergistic-
ANN 

recognizer 

Two stage monitoring and 
diagnosis using integrated 
MEWMA – ANN scheme 

Philosophy 
(to realize 
concept of 

improvement) 

Proof-of-Concept 

Modules of 
Investigation 

Main 
contribution 

Supporting 
contribution 

To improve pattern discrimination capability towards identifying 
the sources of bivariate process variation rapidly and correctly 

with minimum false alarms 

Figure 1.4 : Hierarchy of research contributions 

 
 
 
 
1.10 Organization of the Thesis 

 

Organization of this thesis is summarized in Figure 1.5. The first chapter 

describes the foundation of the research. This is followed by an extensive literature 

review in Chapter 2 that provides background information in the related fields and 

research trends leading to the current issue addressed in this research. Chapter 3 then 

presents the research methodology adopted for solving the focused issue. In Chapters 

4 and 5, the proposed methodologies were then applied into design, development and 

testing for the Baseline scheme and Enhanced schemes towards achieving balanced 

monitoring and accurate diagnosis performances. Overall discussion on the research 

findings are provided in Chapter 6. The conclusions of this research, list of 

publications, knowledge contribution and practical impact, limitations, and 

suggestions for further research are highlighted in the final chapter. 
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Chapter 1 
Introduction 

Chapter 2 
Literature Review 

Chapter 3 
Research Methodology 

Chapter 4 
Baseline scheme for Monitoring and 
Diagnosis of Bivariate Process Mean 

Shifts 

Chapter 5 
Enhanced Scheme for Balanced 

Monitoring and Accurate Diagnosis 

Chapter 6 
Discussions 

Chapter 7 
Conclusions 

Figure 1.5 : Organization of the thesis 
 
 
 
 
1.11 Summary 

 

This chapter has provided an essential introduction to this research through 

the statement of problem, purpose, objectives, scopes and key assumptions, and 

importance of the research. A brief note of research approach is then provided, 

important terms are defined, research contributions are summarized and organization 

of the thesis is outlined. 
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CHAPTER 2 

 
 
 
 

LITERATURE REVIEW 
 
 
 
 

2.1 Introduction 
 

This chapter provides a review on the existing researches related to the 

subject of this thesis. This includes a general review on multivariate quality control 

(MQC) and research works in multivariate statistical process control (MSPC), and a 

specific review on statistical process control pattern recognition (SPCPR) schemes. 

The need for joint monitoring of two dependent variables has led to the extensive 

researches in the area of MSPC. Issues in development of the SPCPR schemes and 

limitations of the existing multivariate pattern recognition (MPR) schemes are 

reviewed. This chapter is organized as follows: Section 2.2 describes the 

fundamental concept of joint monitoring of bivariate process variation, which is 

supported with an industrial example. Section 2.3 focuses on the designs of MSPC 

charting schemes. Section 2.4 then presents the advances in SPCPR schemes. This is 

followed by further discussions on issues through out the development stages of the 

SPCPR schemes in Section 2.5. Section 2.6 discusses the limitations of existing 

MPR schemes. Finally, the summary of the review is outlined in Section 2.7.   
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2.2  Monitoring of Bivariate Process Variation 

 

In manufacturing industries, it is commonly known that process variation 

such as wear and tear, machine vibration, inconsistent material and lack of human 

operators, among others has become a major source of poor quality. It can be 

monitored and diagnosed using the statistical process control (SPC) charting tools.  

 

In monitoring and diagnosis of univariate process variation in mean shifts, 

the traditional SPC charting schemes such as Shewhart (Nelson, 1984; 1985; 1989), 

cumulative sum (CUSUM) (Hawkin, 1981; 1993) and exponentially weighted 

moving average (EWMA) (Crowder, 1989; Lucas and Saccucci, 1990) control charts 

remains among the most important tools for maintaining process stability. The key 

feature of control chart is the promising technique to differentiate between a 

statistically in-control and an out-of-control state of a running process or quality 

characteristic. 

 

In practice, many processes or quality characteristics comprised of two or 

more dependent (correlated) variables, whereby they are need to be monitored-

diagnosed jointly. This scenario, which is sometimes called multivariate quality 

control (MQC) (Montgomery, 2005) can be observed in machining of counterbore 

feature in hard disc drive (HDD) component as shown in Figure 2.1. The 

counterbore features namely, the counterbore hole and the counterbore head are the 

critical features for component assembly. It is machined using different tools that 

are: the counterbore hole is machined using boring tool, whereas the counterbore 

head is machined using endmill tool. The positioning of counterbore hole and the 

concentricity of counterbore head are two dependent process variables (bivariate) 

that need for joint monitoring and diagnosis. This bivariate process is the simplest 

case in MQC. Automation system is applied for handling and loading the work piece 

into the machine, and it is hold using pneumatic fixture for machining. 
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Figure 2.1 : Positioning and concentricity of counter-bore feature 

 

Unnatural variation in bivariate process could exist due to “loading error” 

and “offsetting tool” as illustrated in Figure 2.2. Loading error occurred when metal 

chips or hard particles sticked at the datum pad of pneumatic fixture. Consequently, 

the positioning (P) of counter-bore hole would be suddenly increased (upward shift), 

whereas the concentricity (C) of counter-bore head remains in-control (normal 

pattern). Offsetting tool occurred when metal burr sticked inside the cutting tool 

holder. In this case, both quality characteristics (P and C) would be suddenly 

increased (upward shift). The related sources of variation are summarized in Table 

2.1. Notation ‘1’ represents shifted variable, while notation ‘0’ represents normal 

variable. Bivariate in-control process is represented by (0, 0), whereby both quality 

characteristics (Positioning, Concentricity) in normal patterns. Bivariate out-of-

control processes are represented by (1, 0), (0, 1) or (1, 1), whereby one or both 

quality characteristics in shift pattern.     
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Figure 2.2 : Process variation due to loading error and offsetting tool 

 

Table 2.1: Sources of variation in bivariate process 
 In-control  

(0, 0) 
Loading error  

(1, 0) 
Offsetting tool  

(1, 1) 
 

Positioning (P) 

Normal Upward Shift 
 

Upward Shift 

 

Concentricity (C) 

Normal Normal 
 

Upward Shift 

 

Based on common sense, one may think that the bivariate process variation 

as described above should be easily monitored and diagnosed independently 

(separately) using several Shewhart control charts. In certain situation as illustrated 

in Figure 2.3, however, this assumption could be inefficient and leading to erroneous 

decision making. In the presence of data correlation, an unusual sample with respect 

to the other samples can be identified using joint monitoring approach (based on 

joint control region) rather than using independent monitoring approach (based on 

different Shewhart control charts). This situation also indicates that the unusual 

sample could be deviate based on data correlation structure. Montgomery (2005) 

noted that univariate SPC charting schemes is nearly impossible to detect an 

assignable cause in the presence of bivariate correlated samples. 
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Independent monitoring (based on different Shewhart control charts) 

 

 
Joint monitoring (based on joint control region) 

                    

Figure 2.3 : Independent and joint monitoring (Montgomery, 2005) 
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2.3 Researches in Multivariate Statistical Process Control (MSPC) 

 

The need for joint monitoring-diagnosis as described in Section 2.2 has 

become the basis for investigation in multivariate statistical process control 

(MSPC). Previous researches have focused on design and application of the MSPC 

charting schemes.   

 
 
 
 
2.3.1 Design of MSPC Charting Schemes 

 

Advances in design of MSPC charting schemes have focused towards 

achieving better monitoring and diagnosis capabilities as shown in Figure 2.4. The 

T2 control chart (Hotelling, 1947) that is developed based on logical extension of 

univariate SPC chart (Shewhart control chart) was claimed as an original work in 

MSPC. Initially, it was applied for joint monitoring of multivariate process of 

bombsight data during World War II (Montgomery, 2005). Nevertheless, it was 

found to be effective only for detecting mean shift in large magnitudes (≥ 1.5 

standard deviations). In order to improve capability for detecting mean shift in 

smaller magnitudes (< 1.5 standard deviations), the multivariate cumulative sum 

(MCUSUM) (Crosier, 1988; Pignatiello and Runger, 1990) and the multivariate 

exponentially weighted moving average (MEWMA) (Lowry et al., 1992; Prabhu 

and Runger, 1997) control charts were developed based on logical extension of 

univariate CUSUM and EWMA control charts respectively. These multivariate 

control charts are commonly known as the traditional MSPC charting schemes. 
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2010 onwards 
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Figure 2.4 : Advances in MSPC charting schemes 

 

The monitoring capability of the traditional MSPC charting schemes 

particularly the T2 control chart was then enhanced for dealing with economical 

aspect, variable sampling interval (VSI), process dispersion (shift in covariance 

matrix), mean vector and covariance matrix, autocorrelated process, and specific 

situation, among others. Montgomery and Klatt (1972) proposed an economic T2 
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charting scheme by including cost model into the multivariate charting procedures. 

Chen (1995) investigated the additional statistical constrains into the T2 control 

charting procedures. Aparisi and Haro (2001) proposed the T2 control chart for 

variable sampling interval (VSI) to improve sensitivity in detecting mean shifts. 

Chou et al., (2003) proposed the economic-statistical design of the multivariate 

control chart for monitoring the mean vector and covariance matrix simultaneously. 

Chou et al., (2006) and Chen (2007) applied genetic algorithm (GA) into the 

economic design of VSI-T2 charting schemes. Chou et al., (2006) utilized GA for 

searching the optimal design parameters of the VSI-T2 control chart (sample size, 

long sampling interval, short sampling interval, warning limit and control limit) 

towards minimizing the expected total cost. Chen (2007) used Markov Chain 

approach in designing the cost model, whereas GA was utilized to determine the 

optimal design parameters towards minimizing the cost function. Khoo and Quah 

(2003) developed a multivariate control chart for monitoring shifts in the covariance 

matrix based on individual observations. Alwan and Alwan (1994), Apley and 

Tsung (2002), and Jiang (2004) investigated the application of T2 control chart for 

monitoring mean shifts in univariate autocorrelated processes. Wei Jiang (2004) 

focused on the global properties of the T2 test in a situation where mean shift 

information is unknown. Ngai and Zhang (2001) proposed the MCUSUM control 

chart based on projection pursuit to deal with a specific situation, that is, the process 

mean is already shifted at the time the control charting begins. The extensive 

literature review based on the international journal papers as cited above revealed 

that there is a strong interest in the fields of economical and VSI designs of the T2-

based control chart for monitoring multivariate process mean and dispersion. 

 

The traditional MSPC charting schemes are only effective for monitoring 

(detecting) mean shifts but they are unable to diagnose (identify) the sources of 

variation in mean shifts. In other word, it is unable to provide diagnosis information 

for a quality practitioner towards finding the root cause errors and solution for 

corrective action. Therefore, besides research in the fields of economical and VSI 

designs, major attention was also focused for improving capability in identifying the 

sources of variation, particularly variation in mean shifts. Among others, the 

Shewhart control charts with Bonferroni control limits (Alt, 1985), Shewhart control 
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charts with an exact simultaneous control interval (Hayter and Tsui, 1994), principle 

component analysis (PCA) (Jackson, 1980; 1991), T2-decomposition (Mason et al., 

1995; 1996; 1997), Minimax control chart (Sepulveda and Nachlas, 1997), 

multivariate profile chart (Fuchs and Benjamini, 1994), dynamic Gabriel biplot 

(Spark et al., 1997), T2 with ratio charts (Maravelakis et al., 2002; Bersimis et al., 

2005) and Andrews curves (Maravelakis and Bersimis, 2005) are several methods 

proposed for solving this issue. Further discussions on these schemes can be 

referred in (Lowry and Montgomery, 1995; Kourti and MacGregor, 1996; Mason et 

al., 1997; Bersimis et al., 2007).  

 

The review also reveals that there are other schemes or procedures have been 

proposed in the recent years towards improving the capability to identify the sources 

of variation. They included the moving principle component analysis (MPCA) and 

dissimilarity index (DISSIM) (Kano et al., 2002), vector autoregressive residual 

(VAR) (Pan and Jarrett, 2007), and pattern recognition (PR) (Chih and Rollier, 

1994; 1995; Wang and Chen, 2001; Zorriassatine et al., 2003; Chen and Wang, 

2004; Niaki and Abbasi, 2005; Guh, 2007; Cheng and Cheng, 2008; Guh and Shuie, 

2008; Hwarng, 2008; Cheng and Cheng, 2008; Yu and Xi, 2009; Yu et al., 2009; El-

Midany et al., 2010; Hwarng and Wang, 2010), among others. The MPCA and 

DISSIM scheme, as enhancement from the PCA method, can be used to identify the 

sources of mean shifts by monitoring the direction of principle components and the 

dissimilarity index. The VAR scheme was designed for monitoring multivariate 

process in the presence of serial correlation. The PR schemes were designed for 

monitoring and diagnosis of bivariate process variation based on automated 

recognition of data streams patterns. This technique coupled with knowledge of 

manufacturing processes and quality characteristics would result in very effective 

information for diagnosis and corrective action purposes. In this research, further 

investigation was focused on these schemes since it was found as one of the 

advanced techniques in the MSPC charting designs and showed significant 

improvement in overall monitoring-diagnosis capabilities. As such, further 

discussions on PR schemes are provided in the next section.   
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Briefly, the design of MSPC charting schemes as discussed above can also 

be classified as in Figure 2.5.  

 

 

MSPC chart design 
(Control chart for variables) 
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 FIS-based 

ANN-based
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 MCUSUM 
 MEWMA 
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 Economic T2 
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 VSI-T2  Economic VSI T2 

Variable sampling 
interval 

 Bonferroni 
control limit 

 PCA,  
 PLS 
 Minimax 

 M Profile chart 
 Gabriel biplot 
 Ratio chart 

Fixed sampling 
interval 

Graphical
method 

Figure 2.5 : Classification of MSPC charting schemes 

 
 

Basically, the MSPC charting schemes for variables can be categorized to: 

(i) statistical design, and (ii) economical design. Both design categories can be 

further classified to fixed sampling interval (FSI) and variable sampling interval 

(VSI). The traditional MSPC charting schemes that are T2, MCUSUM and 

MEWMA control charts were designed based on statistical consideration for dealing 

with FSI. In the same level, the T2 charting procedures were enhanced to deal with 

VSI (VSI-T2), economical consideration (economic-T2), and joint VSI-economic 

consideration (economic VSI-T2). Based on the diagnosis issue of the T2 charting 

scheme, various schemes designed towards identifying the sources of mean shifts 

can be classified to (i) statistical method (such as PCA, PLS, MPCA and DISSIM, 
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and VAR, among others) (ii) graphical method (such as M-profile chart, Gabriel 

biplot and ratio charts, among others), and (iii) pattern recognition method (such as 

expert systems (ES), neural-fuzzy (ANFIS), artificial neural network (ANN), 

support vector machine (SVM) and decision tree (DT), among others.  

 
 
 
 
2.3.2 Application of MSPC Charting Schemes 

 

Advances in automated inspection, data acquisition, computerized SPC, and 

their integration systems have enabled the application of MQC in manufacturing 

industries. Satisfy applications of T2 control chart have been reported in Flores et al. 

(1995), Mason et al. (2001), Parra and Loziza (2003; 2004), and Williams et al. 

(2006), among others. In semiconductor manufacturing, T2 control chart was used to 

monitor six quality parameters for achieving optimal micro-lithographic 

performance. Such parameters provided effects to the wafer grid-staging error 

(Flores et. al., 1995). In spatialty plastic polymer manufacturing, T2 control chart 

was used to monitor seven chemical compositions for achieving rigid chemical 

formulation. The chemical formulation is necessary for mould release when the 

spatialty plastic polymer has completely transformed into a product (Mason et al., 

2001). In drug manufacturing, T2 control chart with T2 decomposition procedures 

was used to control seven major organic impurities profile that constitutes an 

identifier of a particular drug substance (Parra and Loziza, 2003; 2004). Then, the 

used of T2 distribution based on ‘successive differences estimator’ was presented by 

Williams et al. (2006). 

 

Singh and Gilbreath (2002) and Milatec et al. (2004), among others, have 

reported effective application of principal components analysis (PCA) and partial 

least square (PLS) schemes in chemical industries. In developing a real-time control 

system prototype, PCA was utilized for monitoring process performance and 

product characteristics (Singh and Gilbreath, 2002). Milatec et al. (2004) reported 

the development of an on-line monitoring system for multivariate processes, which 

involve system design, integration, performance evaluation with on-line systems, 
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