7,054 research outputs found

    Learning from accidents : machine learning for safety at railway stations

    Get PDF
    In railway systems, station safety is a critical aspect of the overall structure, and yet, accidents at stations still occur. It is time to learn from these errors and improve conventional methods by utilizing the latest technology, such as machine learning (ML), to analyse accidents and enhance safety systems. ML has been employed in many fields, including engineering systems, and it interacts with us throughout our daily lives. Thus, we must consider the available technology in general and ML in particular in the context of safety in the railway industry. This paper explores the employment of the decision tree (DT) method in safety classification and the analysis of accidents at railway stations to predict the traits of passengers affected by accidents. The critical contribution of this study is the presentation of ML and an explanation of how this technique is applied for ensuring safety, utilizing automated processes, and gaining benefits from this powerful technology. To apply and explore this method, a case study has been selected that focuses on the fatalities caused by accidents at railway stations. An analysis of some of these fatal accidents as reported by the Rail Safety and Standards Board (RSSB) is performed and presented in this paper to provide a broader summary of the application of supervised ML for improving safety at railway stations. Finally, this research shows the vast potential of the innovative application of ML in safety analysis for the railway industry

    A Similarity-Based Prognostics Approach for Remaining Useful Life Prediction

    Get PDF
    Physics-based and data-driven models are the two major prognostic approaches in the literature with their own advantages and disadvantages. This paper presents a similarity-based data-driven prognostic methodology and efficiency analysis study on remaining useful life estimation results. A similarity-based prognostic model is modified to employ the most similar training samples for RUL estimations on each time instance. The presented model is tested on; Virkler’s fatigue crack growth dataset, a drilling process degradation dataset, and a sliding chair degradation of a turnout system dataset. Prediction performances are compared utilizing an evaluation metric. Efficiency analysis of optimization results show that the modified similarity-based model performs better than the original definition

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Stochastic RUL calculation enhanced with TDNN-based IGBT failure modeling

    Get PDF
    Power electronics are widely used in the transport and energy sectors. Hence, the reliability of these power electronic components is critical to reducing the maintenance cost of these assets. It is vital that the health of these components is monitored for increasing the safety and availability of a system. The aim of this paper is to develop a prognostic technique for estimating the remaining useful life (RUL) of power electronic components. There is a need for an efficient prognostic algorithm that is embeddable and able to support on-board real-time decision-making. A time delay neural network (TDNN) is used in the development of failure modes for an insulated gate bipolar transistor (IGBT). Initially, the time delay neural network is constructed from training IGBTs' ageing samples. A stochastic process is performed for the estimation results to compute the probability of the health state during the degradation process. The proposed TDNN fusion with a statistical approach benefits the probability distribution function by improving the accuracy of the results of the TDDN in RUL prediction. The RUL (i.e., mean and confidence bounds) is then calculated from the simulation of the estimated degradation states. The prognostic results are evaluated using root mean square error (RMSE) and relative accuracy (RA) prognostic evaluation metrics

    Prediction of wheel and rail wear using artificial neural networks

    Get PDF
    The prediction of wheel wear is a significant issue in railway vehicles. It is correlated with safety against derailment, economy, ride comfort, and planning of maintenance interventions, and it can result in delay, and costs if it is not predicted and controlled in an effective way. However, the prediction of wheel and rail wear is still a great challenge for railway systems. Therefore, the main aim of this thesis is to develop a method for predicting wheel wear using artificial neural networks. Initial tests were carried out using a pin-on-disc machine and this data was used to establish how wear can be measured using an Alicona profilometer. A new method has been developed for detailed wheel wear and rail wear measurements using ‘Replica’ material which was applied to the wheel and rail surfaces of the test rig to make a copy of both surfaces. The replica samples were scanned using an optical profilometer and the results were processed to establish wheel wear and rail wear. The effect of load, and yaw angle on wheel wear and rail wear were examined. The effect of dry, wet, lubricated, and sanded conditions on wheel wear and rail wear were also investigated. A Nonlinear Autoregressive model with eXogenous input neural network (NARXNN) was developed to predict the wheel and rail wear for the twin disc rig experiments. The NARXNN was used to predict wheel wear and rail wear under deferent surface conditions such as dry, wet, lubricated, and sanded conditions. The neural network model was developed to predict wheel wear in case of changing parameters such as speed and suspension parameters. VAMPIRE vehicle dynamic software was used to produce the vehicle performance data to train, validate, and test the neural network. Three types of neural network were developed to predict the wheel wear: NARXNN, backpropagation neural network (BPNN), and radial basis function neural network (RBFNN). The wheel wear was calculated using an energy dissipation approach and contact position on straight track. The work is focused on wheel wear and the neural network prediction of rail wear was only carried out in connection with the twin disk wear tests. This thesis examines the effect of neural network parameters such as spread, goal, maximum number of neurons, and number of neurons to add between displays on wheel wear prediction. The neural network simulation results were implemented using the Matlab program. The percentage error for wheel and rail wear prediction was calculated. Also, the accuracy of wheel and rail wear prediction using the neural network was investigated and assessed in terms of mean absolute percentage error (MAPE). The results reveal that the neural network can be used efficiently to predict wheel and rail wear. Further work could include rail wear and prediction on a curved track

    Wear Measuring and Wear Modelling Based on Archard, ASTM, and Neural Network Models

    Get PDF
    The wear measuring and wear modelling are a fundamental issue in the industrial field, mainly correlated to the economy and safety. Therefore, there is a need to study the wear measurements and wear estimation. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin which is made of steel with a tip, is positioned perpendicular to the disc, where the disc is made of aluminum. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument; where the Talysurf profilometer was used to measure the pin/disc wear scar depth, a digital microscope was used to measure the diameter and width of wear scar, and the alicona was used to measure the pin wear and disc wear. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling. Simulation results are implemented by using the Matlab program. This paper focuses on how the alicona can be considered as a powerful tool for wear measurements and how the neural network is an effective algorithm for wear estimation
    • 

    corecore