
Predicting Train Occupancies based on Query Logs and
External Data Sources∗

Gilles Vandewiele Pieter Colpaert Olivier Janssens
Joachim Van Herwegen Ruben Verborgh Erik Mannens

Femke Ongenae Filip De Turck
{firstname}.{lastname}@ugent.be

Internet and Data Lab - imec
Ghent University, Belgium

ABSTRACT
On dense railway networks –such as in Belgium– train trav-
elers are frequently confronted with overly occupied trains,
especially during peak hours. Crowdedness on trains leads
to a deterioration in the quality of service and has a nega-
tive impact on the well-being of the passenger. In order to
stimulate travelers to consider less crowded trains, the iRail
project wants to show an occupancy indicator in their route
planning applications by the means of predictive modeling.
As there is no official occupancy data available, training data
is obtained by crowd-sourcing using the iRail web app1 and
the mobile Railer application for iPhone2. Users can indi-
cate their departure & arrival station, at what time they
took a train and classify the occupancy of that train into
the classes: low, medium or high. While preliminary results
on a limited dataset conclude that the models do not yet
perform sufficiently well, we are convinced that with further
research and a larger amount of data, our predictive model
will be able to achieve higher predictive performances. All
datasets used in the current research are, for that purpose,
made publicly available under an open license on the iRail
website3 and in the form of a Kaggle competition4. More-
over, an infrastructure is set up that automatically processes
new logs submitted by users in order for our model to con-
tinuously learn. Occupancy predictions for future trains are
made available through an api5.

∗(Produces the permission block, and copyright informa-
tion). For use with SIG-ALTERNATE.CLS. Supported by
ACM.
1https://iRail.be
2http://railer.be
3http://gtfs.irail.be/nmbs/querylogs
4https://inclass.kaggle.com/c/
train-occupancy-prediction
5https://github.com/GillesVandewiele/SpitsGidsREST

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW’17 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3051699

.

Keywords
linked data; public transport; predictive modeling

1. INTRODUCTION
In Belgium –as well as in other countries with dense rail-
way networks– train travelers are frequently confronted with
overly occupied trains. In 2016, the ceo of the national rail-
way company suggested peak-load pricing6 in the hope that
a more uniform load over the course of the day could be
achieved. As an alternative, travelers that have the luxury
to take a train earlier or later could be informed about the
crowdedness of that train. To that extent, the iRail initia-
tive, an independent non-profit project founded by Pieter
Colpaert, to stimulate digital creativity concerning mobility
in Belgium, wants to introduce a feature that indicates the
occupancy of each train in its data feeds.

A system that accurately predicts the occupancy level of a
train in the near future can have positive implications as
the capacity of that train could be adapted, if possible, ac-
cording to these predictions. This results on the one hand
in a decreased probability of crowdy trains, thus an increase
in the quality of service. On the other hand, a decrease in
operational costs can be realized by reducing the capacity
of trains that are expected to have a low occupancy.

The continuously increasing use of smart cards for auto-
mated fare collection offers a unique opportunity to under-
stand passenger behavior at a massive scale. Unfortunately,
in Belgium, such an automated system is not yet used. Thus,
the Belgian railway company does not have real-time occu-
pancy data at their disposal. IRail can therefore only rely
on usage statistics of their api, feedback from their users, as
well as other public datasets.

The most popular user agents reusing this api are the Railer
App for iPhone, the BeTrains app for Android7, and the
iRail Web app. These are classic route planning applica-
tions following a straight-forward user story: a user selects
a departure stop, a destination stop and a desired time of

6http://www.knack.be/nieuws/belgie/
bus-en-treintickets-worden-duurder-in-de-spits/
article-normal-525199.html
7https://play.google.com/store/apps/details?id=
tof.cv.mpp

1469

https://iRail.be
http://railer.be
http://gtfs.irail.be/nmbs/querylogs
https://inclass.kaggle.com/c/train-occupancy-prediction
https://inclass.kaggle.com/c/train-occupancy-prediction
https://github.com/GillesVandewiele/SpitsGidsREST
http://www.knack.be/nieuws/belgie/bus-en-treintickets-worden-duurder-in-de-spits/article-normal-525199.html
http://www.knack.be/nieuws/belgie/bus-en-treintickets-worden-duurder-in-de-spits/article-normal-525199.html
http://www.knack.be/nieuws/belgie/bus-en-treintickets-worden-duurder-in-de-spits/article-normal-525199.html
https://play.google.com/store/apps/details?id=tof.cv.mpp
https://play.google.com/store/apps/details?id=tof.cv.mpp


1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0%

3%

6%

9%

Monday Tuesday

Wednesday Thursday

Friday Saturday

Sunday

hour of the day

q
u
e
ri

e
s

Figure 1: The average distribution of the iRail api
query logs per day was the first inspiration to use
the query logs as an indication of travel demand.

departure; the app then suggests up to 6 possible itineraries.
Other user agents exist, such as Next Train8 (an app for the
Pebble smart-watch), chat bots, data harvesters or search
engine bots. As they only represent a minor part of the
query logs, they are discarded in this research. Colpaert et
al. [4] showed that, when enough query log data is gathered,
it looks similar to actual travel demand, as illustrated in
Figure 1. In this paper, we go one step further: we try to
classify the occupancy level of a train using these query logs
and external data sources.

2. RELATED WORK
Tirachini et al. [13] provide many interesting insights con-
cerning the impact of high occupancy levels in public trans-
port systems regarding different dimensions. First, when the
occupancy level of a train is low, passenger transfer occurs
smoothly and passenger-related disruptions that impose un-
expected delays are less likely to happen. As the number of
passengers increases, some users need to stand inside vehi-
cles, hindering the movement of other passengers. This in
turn results in an increase in riding time or an increase in
the probability that an unexpected delay arises. Puong [11]
showed that the average boarding time in uncrowded condi-
tions is on average 2.3 seconds per passenger. This increases
to 4.4 seconds per passenger when the number of standees
per door reaches a threshold of 15 or more. Milkovits [9]
showed that this effect is even more significant for the alight-
ing time, explained by the difficulties of alighting passengers
walking among too many standees. Second, high occupancy
levels can give rise to a phenomenon called train bunching.
When a train is too full, not all passengers can board it, lead-
ing to an increase in waiting time for these passengers and
a higher number of expected passengers for the next train.
Finally, crowding has a significant negative impact on the
passengers’ well-being. Authors have documented increased
anxiety, stress, feeling of exhaustion and perceptions of risk
to personal safety amongst others [7, 1].

A few private initiatives exist to predict occupancy scores.
As an example, the Open Capacity project9 is a consultancy
firm that creates occupancy scores for public transport agen-
cies. It does this by measuring passenger load using existing

8https://apps.getpebble.com/en_US/application/
52cf056321e5796173000081
9http://opencapacity.co

public transport data sources, such as weight sensors, cctv
cameras, door sensors, and ticketing information.

The Dutch railway system introduced a feature in its app to
report the occupancy of a train10. Three scores are possi-
ble, based on the sentiment of the passenger: positive, neu-
tral and negative. The railway system uses this commuter
feedback as a transparent means to research occupancy on
trains. When many high occupancies are reported on a cer-
tain train, caused by a structural problem, its capacity is
increased if possible.

Over the past years, a few research attempts tried to map
the occupancy levels of public transport. In Nuzzolo et al.,
Short Term Occupancy Prediction (STOP) is proposed [10].
STOP is a system that enables predicting the number of
passengers on a bus in the nearby future, using available
real-time information on smart cards of passengers. The
system was evaluated by integrating it in the bus manage-
ment system of the public transport company in Santander,
using data collected in a limited timespan of one day. The
system achieved a mean squared error of 3.25, in predicting
the number of occupants on a bus, which is equal to a rela-
tive root mean squared error of 46% due to the rather small
capacity of a bus.

Silva et al. conducted an analysis of data collected by the
Transport for London railway system [12]. Hundreds of mil-
lions smart-card readings over 70 days from February 2011
till February 2012, containing a time stamp, location code
and event code were used to create regression models that
predict the number of passengers on a train. In this re-
search, real-time information was used as well, leading to a
small increase in the predictive performance when the fore-
casting horizon decreases. A RMSE of 6.76 and 6.82 are re-
ported, using 5-fold cross-validation, for 1-minute-ahead and
30-minute-ahead forecasts respectively. The authors are also
able to quantify the effects of a shock in the system, such as
a line segment or station closure.

Zhang et al. [14] collected over 6.5 million records in China
by using crowdsensing over a timespan of five months. Crowd-
sensing is the collection of data through different kinds of
sensing devices by a large mass of users. In contrast to
crowd-sourcing, which was used to collect our data, the col-
lection of this data happens automatically and requires no
human input. They tried to solve two tasks using machine
learning techniques: (i) predict whether a certain passen-
ger will take public transport within a given week and (ii)
forecast the number of passengers on a bus. For the classifi-
cation task, F1 scores of around 0.43 are reported. For the
regression task, an RMSE of around 25 is reported. Two
main contributions were done by this research. First, they
showed that weather and semantic trajectory information
(such as the number of companies within a certain radius of
a station) have a positive impact on the predictive perfor-
mance of the machine learning model. Second, their results
show that the eXtreme Gradient Boosting (XGBoost) al-
gorithm outperforms other prominent algorithms on both
tasks.

10http://www.ns.nl/reisinformatie/
service-verbeteren/drukte-melden-in-de-trein.html

1470

https://apps.getpebble.com/en_US/application/52cf056321e5796173000081
https://apps.getpebble.com/en_US/application/52cf056321e5796173000081
http://opencapacity.co
http://www.ns.nl/reisinformatie/service-verbeteren/drukte-melden-in-de-trein.html
http://www.ns.nl/reisinformatie/service-verbeteren/drukte-melden-in-de-trein.html


While the discussed research attempts provide many inter-
esting insights, there are some fundamental differences with
our research. First, the exact numbers of passengers was
always available and, thus, a regression problem could be
solved. Second, the amount of samples used is several or-
ders of magnitude larger than the amount of samples in
this research, due to smart card and crowdsensing mech-
anisms. Third, real-time information about the trains was
often used. While this information could indeed be very use-
ful in predicting the occupancy, it no longer enables a railway
company to increase or decrease the size of the train, since
the train must have already departed for this information to
be available. Moreover, this information is not available to
predict the occupancy of a train in the future.

3. GATHERING FEEDBACK
First, we ran a questionnaire to retrieve initial trains that
would be structurally occupied. The questionnaire was dis-
seminated by the Belgian railway company (sncb) over Twit-
ter11 and helped us to gather 334 trains that usually have
a high occupancy. With this initial data, the iRail api was
extended with two features. The first is an occupancy indi-
cator, which provides the occupancy on the following levels:

• Low occupancy: there are plenty of seats left.

• Medium occupancy: it is hard to find a seat and it
is difficult to sit together.

• High occupancy: there are no seats left and people
have to stand up.

• Unknown occupancy: the occupancy of the train is
currently not known.

A second feature introduced in the api is the ability to post
feedback. On a specific departure of a train, a user would
then be able to specify the occupancy level. This feature,
launched in August 2016, was picked up by the Railer App
and the iRail.be web app by September, as can be seen in
Figure 2. This led to 3818 feedback entries by the 19th of
December 2016.

4. PREPARING THE DATASET
Of the 3818 collected records up until the time of writing,
256 contained wrong information (such as wrongly format-
ted station and vehicle ids) and could not be parsed, result-
ing in a dataset with a size of 3562 rows. All these records
occur in the start of our dataset, and can probably be ex-
plained by the fact that the occupancy indicator was still
being tested during that time. An occupancy log entry con-
tains the following information:

• Querytime: the time at which the record (or log en-
try) was sent to the system. From this timestamp,
many different features such as the seconds since mid-
night, the day of the week and the month are extracted.
Moreover, two binary variables indicating whether or
not a morning or evening jam is ongoing are used.
These variables are equal to one when it is not a day
in the weekend and the departure time is from 6 to 10
AM or 3 to 7 PM respectively.

11https://twitter.com/NMBS/status/
758572996617465856

Figure 2: Screenshots of the feedback feature in
Railer (left) and iRail (right)

• Vehicle: a structured identifier of the train the user
is taking. This identifier is composed of three compo-
nents: the vehicle type, the line number (line category)
and the hour of the departure time from the first sta-
tion on the line. The departure hour is added to the
line number and the vehicle type is prepended. As an
example, the IC500 line are the intercity trains going
from Oostende to Eupen, while the IC507 train is the
train going from Oostende to Eupen at 07:40 AM.

• From & To: an identifier of the station from which
the user departs or where the user wants to go. It is
important to note that it is the departure and arrival
location of the user, not the train.

• Connection: a uri that links to connection informa-
tion of that train, such as delay time and the stations
where it stops.

• Occupancy: the reported occupancy level (low, medium
or high). This is the target variable.

All categorical variables are one-hot encoded, which is de-
fined as a mapping of a variable to a binary vector of length
equal to the number of categories. All elements in the vector
are equal to zero except at the index corresponding to the
category of that sample. The from- and to-station identi-
fiers could be one-hot encoded as well but this leads to an
explosion of the dimensionality of the features and deteriora-
tion of the predictive performance of the model. Therefore,
information from two external sources was used. First, a
file from iRail with the name, the identifier and the coordi-
nates for each station in Belgium. Second, a static file pub-
lished by the Société Nationale des Chemins de fer Belges
(Belgian railway company, i.e. sncb) containing the num-
ber of passengers visiting a station on a weekday, Saturday
or Sunday. This number of visitors and the coordinates for
the from- and to-station were used as features. Moreover,
by using these coordinates, we requested different weather

1471

https://twitter.com/NMBS/status/758572996617465856
https://twitter.com/NMBS/status/758572996617465856


parameters, such as the weather type (which required one-
hot encoding), the temperature and the humidity, through
an api. A calendar api was used to provide a holiday type
feature.

To gather additional data, the connection URI –provided in
the feedback data– was used. For each sample, we extracted
the delay of the train on that departure time and created a
vector, with a length equal to the total number of stations
in our dataset. For every sample in our dataset and every
station in Belgium, we calculated the following function f :

f(v, c, s) =


0, if v does not stop in s

k, if v will stop in s in k stations from c

−k, if v stopped in s, k stations ago from c

With v the vehicle identifier, c the current station identifier
and s the station for which we want to calculate whether
or not v stops there. As an example, the first three sta-
tions of the IC507 from Oostende to Eupen are Oostende,
Brugge and Gent-Sint-Pieters. If the log entry is created
from Brugge (i.e. the second station on the line), then the
indices corresponding to Oostende, Brugge and Gent-Sint-
Pieters contain a -2, -1 and 1 respectively. This procedure
applied to each sample in the dataset results in a very sparse
matrix. Again, to avoid an explosion in dimensionality, and
thus a deterioration of the generalization capability of the
model, these vectors are not directly used as features. For
each station –which are the columns in this sparse matrix–
we count its frequency or the number of times it occurs in
the matrix, which is equal to the number of elements not
equal to zero in the corresponding column in the matrix.
Then for each train-ride (or row in the matrix), the sum of
frequencies and a weighted sum of frequencies are calculated
and used as features. For the weighted sum of frequencies,
we multiply the frequency by the inverse of its element in
the matrix. The intuition behind this is that in the morning,
a lot of commuters get on the train at smaller stations and
alight the train in a larger station. Close to these larger sta-
tions, this value becomes large. Since the size of our dataset
is still rather small compared to the total number of different
lines in Belgium, these features were also calculated with the
reported visitors per station from SNCB in 2015 instead of
their frequencies in our dataset in order to get a less biased
view on the crowdedness of a station.

In total, 1270 features are used in the model, including all
binary variables due to one-hot encoding. To measure the
quality of a feature, we calculated the feature importances
using XGBoost [3], which is also used to create our pre-
dictive model. XGBoost calculates the feature importance
by counting in how many trees of the constructed forest
a certain feature occurs, taking into account the depth of
the nodes where the features occur. A bar plot of the 40
most important features and their corresponding value can
be found in Figure 3. Here we can clearly see that the num-
ber of seconds since midnight of a train departure (i.e. the
departure time expressed in seconds) is the most important
feature, followed by the calculated frequency features, the
number of visitors per day and the humidity in the depar-
ture and arrival station. The delay features, which are real-
time information and can thus not be used to predict the
occupancy of future trains, do not have a significant impact

Figure 3: Feature importances of the extracted fea-
tures.

on the model and can therefore be discarded. We tried to
apply two prominent feature selection techniques, Boruta [6]
and LASSO [5], but it did not increase the predictive per-
formance of our model.

5. MACHINE LEARNING AND RESULTS
The designed machine learning approach is composed out
of multiple steps, depicted in Figure 4. In a first phase,
logs that have the same vehicle identifier and from-station
identifier on the same day are grouped together. The equal-
ity of these three parameters also implies a similar query
time, since the departure hour is incorporated in the vehicle
identifier. Then, the mode of the labels is calculated. This
enables a simplistic form of anomaly detection, as a wrong
label can get corrected if more correct labels are given for
that train on that day. Moreover, the labels are mapped
to an integer where low is equal to 1, medium equal to
3 and high equal to 5 in order to calculate a mean score.
Of the 3562 records collected from 1 September 2016 until
19 December 2016, 506 duplicate logs were combined with
others, resulting in 3056 samples. For each of these sam-
ples, a feature vector was calculated, as explained in Section
4. The feature extraction failed for 25 records, because of
external api errors, resulting in a 3032 × 1270 matrix to
train our predictive model on. The predictive model con-
sists of two components. In the first component, a neural
network is trained for a regression task using the feature
vectors and the calculated mean score. The neural network
consists of three inner layers with 750, 250 and 100 neurons
and dropouts of 0.33, 0.25 and 0.1 after each layer respec-
tively. Then, the out-of-sample predictions, which are pre-
dictions of samples where the model is not trained on, of
this neural network are used as an extra feature for our final
XGBoost model. Since the XGBoost algorithm contains a
lot of different hyper-parameters that can have values in a
large range, the search space becomes too large in order to
feasibly optimize these hyper-parameters with a brute-force
GridSearch technique. Therefore, a Bayesian optimization
library, BayesOpt [8], was used, which also supports the
optimization of hyper-parameters. Moreover, to deal with
the imbalance in our dataset (41% low, 28.6% medium and
30.4% high), more weight was given to medium and high

1472



Mode & score
calculation

feature extraction

weather info

iRail connection
info

SNCB & iRail
station info

Neural Network

<feature_vector, score>

XGBoost

<feature_vector, nn_pred, label>

BayesOpt

occupancy
logs

Figure 4: Schematic overview of our machine learn-
ing approach.

Folds Accuracy Precision Recall

3 0.52660 ± 0.005
L: 0.621 ± 0.006
M: 0.404±0.011
H: 0.515 ± 0.01

L: 0.633 ± 0.007
M: 0.417±0.013
H: 0.487 ± 0.01

5 0.53279 ± 0.005
L: 0.626 ± 0.006
M: 0.411±0.008
H: 0.525 ± 0.01

L: 0.631 ± 0.008
M: 0.43 ± 0.012
H: 0.496 ± 0.01

10 0.54012 ± 0.005
L: 0.631 ± 0.006
M: 0.423±0.008
H: 0.532± 0.009

L: 0.635 ± 0.007
M: 0.444±0.012
H: 0.502± 0.008

Table 1: The mean accuracy, precision per class and
recall per class with their corresponding standard
deviations using 20 measurements of 3-fold, 5-fold
and 10-fold cross validation. L, M and H stand for
Low, Medium and High respectively.

samples in our dataset. We also experimented with smote
[2] to balance our dataset, but it did not increase the pre-
cision and recall scores for the lower populated classes that
much, while deteriorating the total predictive performance
significantly.

In order to evaluate the predictive performance of our model,
we measured the mean and standard deviation of the accu-
racies together with the mean and standard deviation of
the precision and recall for each class using the result of
twenty trials of 3-fold, 5-fold and 10-cross validation on the
3032 × 1270 data matrix. The results can be found in Ta-
ble 1. For completeness, a confusion matrix averaged over
these twenty trials is plotted for 10-fold cross-validation in
Figure 5. As expected, the predictive performance increases
slightly when the number of folds are increased. When we
use 10-fold cross validation, we achieve an average accuracy
of 54.012%, which is quite low but already better than ran-
dom guessing or always predicting low occupancy. More-
over, there is a big difference between the precision and re-
calls of the three classes, even with higher weights for the
medium and high occupancy class. The low recall and pre-
cision scores for the medium occupancy class could perhaps
be explained by the fact that people do not know the defini-
tion of the medium occupancy class well and tend to classify
the occupancy of a medium-filled train as low or high.

Although the results are not yet what we expected, we are
convinced that given more data, these results will improve.
This is confirmed by the increasing trend of the learning
curve of our model, which can be seen in Figure 6.

Figure 5: Confusion matrix generated by taking the
sum over the 10 folds and then averaging these sums
over the 20 measurements.

Figure 6: Learning curve using Logistic Regression
with optimized hyper-parameters through Grid-
Search and 10-fold cross-validation.

5.1 Benchmarking
A first effort to create a public benchmark with this data
is done by launching a Kaggle competition. A Kaggle com-
petition is a machine learning competition wherein every
contestant has to use the same data as any other contestant
to create and test their machine learning model. Data from
July 2016 till October 2016 serves as the training set and
data from the end of October 2016 till the end of December
2016 serves as testing set. The Kaggle competition provides
a leaderboard which lists the scores contestants achieved us-
ing their approaches. Very often, these contestants gladly
share their approaches, such that we can extract all inter-
esting insights and implement them in our system.

5.2 Architecture and Web resources
In order for the predictions generated by our model to be
available for everyone and to enable data re-use, an api was
set up that allows users to query the occupancy for a certain

1473



train from a station on a certain day. It continuously polls
the iRail api to check for new occupancy records. When
such a record is found, it is automatically processed and
added to our NoSQL MongoDB. Every night, two processes
are run. On the one hand our predictive model is re-trained
with the newly collected data. On the other hand, the hyper-
parameters are tuned using Bayesian optimization. The api
is accessible through the following ip: 193.190.127.247

6. CONCLUSION AND FUTURE WORK
In this paper, the first steps towards a system that can pre-
dict the occupancy level of a train in the nearby future based
on query logs are presented. Such a system can have a sig-
nificant positive impact on the quality of service while de-
creasing the operational costs. We discussed the different
phases of constructing such a system: (i) adding a function-
ality to a widely used application in Belgium in order to
collect data through crowd-sourcing; (ii) extracting numer-
ical features from these raw JSON logs and (iii) creating a
predictive model on this extracted data. Moreover, an API
was created in order to expose the predictions of our model
and a Kaggle competition was set up to enable collaborative
benchmarking.

We conclude that, in this early phase, our predictive model,
which is trained on a limited amount of data, is good at
predicting trains with a low occupancy. This comes at no
surprise, as the low occupancy of trains outside peak hours is
easy to predict and as it is the largest populated class (cur-
rently, around 41% of all samples have the low occupancy
label). When more samples are collected, we are convinced
that the system’s predictive performance will increase. The
strength of the approach in this paper is that the data used
can be gathered for any public transport system. At this mo-
ment, data has only been collected over a limited timespan.
The current dataset thus contains only a limited amount of
samples, but is growing steadily with more than 1000 query
logs per month.

7. ACKNOWLEDGMENTS
Gilles Vandewiele is funded by a PhD SB fellow scholarship
of FWO (1S31417N). Thank you to iRail, TreinTramBus
and Metro Time, and crowd-funding supporters for their
time and financial effort in the Spitsgids campaign. Thank
you to SNCB for the support to gather first data. Thank
you Serkan Yildiz, Stan Callewaert and Arne Nys for their
enthusiasm implementing the features in the apps during
open Summer of code. Thank you Kris Peeters, Nathan
Bijnens and other Twitter users who helped discussing the
data publicly.

8. REFERENCES
[1] M. Cantwell, B. Caulfield, and M. OâĂŹMahony.

Examining the factors that impact public transport
commuting satisfaction. Journal of Public
Transportation, 12(2):1, 2009.

[2] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. Smote: synthetic minority over-sampling
technique. Journal of artificial intelligence research,
16:321–357, 2002.

[3] T. Chen and C. Guestrin. Xgboost: A scalable tree
boosting system. In Proceedings of the 22Nd ACM

SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 785–794. ACM,
2016.

[4] P. Colpaert, A. Chua, R. Verborgh, E. Mannens,
R. Van de Walle, and A. Vande Moere. What public
transit api logs tell us about travel flows. In
Proceedings of the 25th International Conference
Companion on World Wide Web, pages 873–878.
International World Wide Web Conferences Steering
Committee, 2016.

[5] Y. Kim and J. Kim. Gradient lasso for feature
selection. In Proceedings of the twenty-first
international conference on Machine learning,
page 60. ACM, 2004.

[6] M. B. Kursa, A. Jankowski, and W. R. Rudnicki.
Boruta–a system for feature selection. Fundamenta
Informaticae, 101(4):271–285, 2010.

[7] U. Lundberg. Urban commuting: Crowdedness and
catecholamine excretion. Journal of Human Stress,
2(3):26–32, 1976.

[8] R. Martinez-Cantin. Bayesopt: a bayesian
optimization library for nonlinear optimization,
experimental design and bandits. Journal of Machine
Learning Research, 15(1):3735–3739, 2014.

[9] M. Milkovits. Modeling the factors affecting bus stop
dwell time: use of automatic passenger counting,
automatic fare counting, and automatic vehicle
location data. Transportation Research Record:
Journal of the Transportation Research Board,
(2072):125–130, 2008.

[10] A. Nuzzolo, U. Crisalli, L. Rosati, and A. Ibeas. Stop:
a short term transit occupancy prediction tool for
aptis and real time transit management systems. In
Intelligent Transportation Systems-(ITSC), 2013 16th
International IEEE Conference on, pages 1894–1899.
IEEE, 2013.

[11] A. Puong. Dwell time model and analysis for the mbta
red line. Massachusetts Institute of Technology
Research Memo, 2000.

[12] R. Silva, S. M. Kang, and E. M. Airoldi. Predicting
traffic volumes and estimating the effects of shocks in
massive transportation systems. Proceedings of the
National Academy of Sciences, 112(18):5643–5648,
2015.

[13] A. Tirachini, D. A. Hensher, and J. M. Rose.
Crowding in public transport systems: effects on
users, operation and implications for the estimation of
demand. Transportation research part A: policy and
practice, 53:36–52, 2013.

[14] N. Zhang, H. Chen, X. Chen, and J. Chen. Forecasting
public transit use by crowdsensing and semantic
trajectory mining: Case studies. ISPRS International
Journal of Geo-Information, 5(10):180, 2016.

1474


	Introduction
	Related Work
	Gathering feedback
	Preparing the dataset
	Machine learning and results
	Benchmarking
	Architecture and Web resources

	Conclusion and future work
	Acknowledgments
	References



