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Abstract—Power electronics arewidely used in the transport and
energy sectors. Hence, the reliability of these power electronic com-
ponents is critical to reducing the maintenance cost of these assets.
It is vital that the health of these components is monitored for in-
creasing the safety and availability of a system. The aim of this
paper is to develop a prognostic technique for estimating the re-
maining useful life (RUL) of power electronic components. There
is a need for an efficient prognostic algorithm that is embeddable
and able to support on-board real-time decision-making. A time
delay neural network (TDNN) is used in the development of failure
modes for an insulated gate bipolar transistor (IGBT). Initially,
the time delay neural network is constructed from training IGBTs'
ageing samples. A stochastic process is performed for the estima-
tion results to compute the probability of the health state during
the degradation process. The proposed TDNN fusion with a sta-
tistical approach benefits the probability distribution function by
improving the accuracy of the results of the TDDN in RUL predic-
tion. TheRUL (i.e., mean and confidence bounds) is then calculated
from the simulation of the estimated degradation states. The prog-
nostic results are evaluated using root mean square error (RMSE)
and relative accuracy (RA) prognostic evaluation metrics.

Index Terms—Insulated gate bipolar transistor (IGBT), power
electronics, prognostics, probability distribution function, re-
maining useful life (RUL), time-delay neural network.

I. INTRODUCTION

A N insulated gate bipolar transistor (IGBT) that is a
voltage-controlled bipolar device used in switching

applications is one of the most challenging power electronics
components in terms of reliability. Improving efficiency, reli-
ability and life time of such a device require intensive efforts
on developing diagnostics and prognostics models. Prognostic
that is technique to predict feature state of system which is
predominantly used for estimating of life cycle usage of the de-
vice in real time operating. This is usually known as remaining
useful life (RUL) in the field of asset management. In this
context, reliability of power electronics plays an increasingly
critical role in the energy and transport sectors. For example,
IGBTs uses in Railway Applications are considered to be
leading edge critical device whose failure rate increases the
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overall probability of malfunction in railway traction chains.
In this regard, prognostic evaluation of IGBT can be extremely
useful for train-line maintenance crews who need to assess
which modules can be deferred for repair and which must be
replaced within the maintenance window. Once prognostic
results are used to address and predict the particular failure
mode, the component whose repair cannot be deferred can be
classified in term of severity and the availability of the parts
can be scheduled, thereby avoiding delay due to unscheduled
maintenance.
Therefore, the reliability of power electronics is a vital issue

for the commercial success of industrial applications. Initially,
in such applications, IGBT module life cycle expectancy is
estimated at several thousands of hours. However, their lifetime
under excessive temperatures or in other harsh environments
will be much shorter, also depending on application, i.e., pulsed
power. As a solution, diagnostic and prognostic approaches
are the two principal aspects of condition-based maintenance
(CBM) that are developed to increase the useful life time of
IGBTs by monitoring critical parameters such as [1].
As systems mainly work in critical harsh and noisy environ-

ments, sensory data is highly polluted with noise. Hence, ro-
bust prognostic models that mitigate uncertainty are necessary
However, a wide range of numerical and statistical methods
as well as well-known machine learning approaches have been
employed for the development of prognostic models. The im-
ponderables of the associated uncertainties surrounding future
health estimation have not been taken into account in which
have been introduced by incomplete failure model. The aim of
this paper is to improve the RUL estimation by fusing a prob-
abilistic function with a TDNN failure model which uses less
computational power and in comparison to all neural networks
is very fast. Furthermore, it progressively allows uncertainty
bounds indicate true value, thus it provides benefit of confidence
bounds for the decision makers [2].
This paper bases its study on a failure data sets derived from

a power cycling test rig wherein IGBTs were exposed to cyclic
temperatures similar to those encountered in railway traction ap-
plications. We introduce an approach for the development of
a time delay neural network for failure modelling using health
state classification fused with probabilistic Monte Carlo RUL
simulation, thus enabling us a significant reduction of the un-
certainty occurring from an incomplete failure model and en-
hancing the clear indication of the current health state as well as
improvement the RUL calculation. This has been successfully
employed in the accurate and robust prediction of the current
degradation of the device and allows better decisions to be made
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Fig. 1. Algorithm to develop prognostics model.

regarding scheduling of maintenance policies in integrated ve-
hicle health management (IVHM).
This paper is organized as follows. Section II summarizes

the steps in the prognostic approach, including data-driven and
hybrid models. The next section describes ageing experiments
and summarizes failure mechanisms. It also discusses the
accelerated ageing test setup and the degradation profile of
IGBTs. Section IV discuses degradation models, problem for-
mulation and the time-delay neural network (TDNN) approach.
Section V discusses the prognostic approach using the max-
imum likelihood method for IGBT model optimization. It also
discusses the Monte Carlo simulation for calculating the area
under the curve of the estimated IGBT degradation model and
presents the proposed RUL algorithm. Section VI discusses the
prognostic results using root mean square error (RMSE). Con-
cluding remarks and future work are discussed in Section VII.

II. CONVENTIONAL PROGNOSTICS MODELS

The current prognostic approaches for power electronics can
be classified into three methods: 1) a data-driven approach; 2)
the physics-of-failure (POF); and 3) fusion methods or hybrid
models which integrate the data-driven and POF approaches.
Fig. 1 summarizes the basic knowledge needed to develop
data driven based and model-based prognostics. As shown in
this figure, the development of prognostic models is generally
started with the definition of a model for model-based prog-
nostics that requires understanding the physics-of-failure of
the IGBT component. It is often a difficult task to establish
an accurate physical model. On the other hand, data-driven
approaches start with accelerating aging tests followed with
pre-processing (filtering) and classification for eliminating
noise from collected data, and damage model formulation
followed by RUL estimation. There is also an important initial
step (known as feature extraction step) to investigate what
signals should be monitored that would allow prognostics to be
successfully developed based on features extracted from those
signals [3], [4].
The collection of data requires accelerated ageing tests which

are used to fail devices parts at high temperatures in a shorter
time frame under various working conditions such as high
baseplate temperature (60 C to 100 C) and large temperature
swings (60 C to 120 C), these values are depending on
system applications. In an accelerated ageing test, the particular

wear-out mechanisms which are of interest accelerate to cause
failure. The part/device is monitored throughout the test, noting
the critical parameters for the particular device. Accelerated
ageing tests which are used to obtain a detailed understanding
of IGBT failure modes, and in turn, determine parameters are
indicative of the various failure mechanisms. Employing these
precursor parameters are prerequisite to develop a forecasting
model for observing significant changes in the current health
of the device and predicted failure [5]. However, precursor
parameter identification for power electronics prognostics is
challenging due to the representation of the uncertainties in the
degradation profile for the precursor parameter. The precursor
also uses to monitor direct or indirect failure mechanisms
trend in order enables the prognostic model estimates the
longest possible RUL to facilitate the maintenance of the power
electronics. Hence, an advanced approach to the development
of a prognostic tool for IGBTs is required. This could then
be used to forecast failures, improve system life, and reduce
unnecessary maintenance [6].
Following the identification of parameters which are a pre-

cursor to failure, the feature extraction (i.e., mean, median) and
clustering of the collected data (i.e., finding the number of states
for the degradation profile) are carried out to provide informa-
tion for training a prognostic model. The trained model is given
a predefined threshold value which is used in the prognostic al-
gorithm. Data-driven methods are subjected to two different ap-
proaches. The first approach is known as a direct estimation of
RUL in which the model learns directly from the damage data
set. In contrast, the second indirect approach initially needs to
estimate a damage progression model and then propagates the
expected data through the model until a predefined threshold
for the RUL is reached. The difficulty with the second method
is that obtaining a reliable failure data set is often challenging
due to various between devices and complete knowledge of the
component is often unavailable [7].
Following the classification/clustering step, a damage model

is created using data-mining techniques that ultimately model
the failure mechanisms of the IGBT. Although there are a
number of popular conventional numerical methods (such as
Kalman filters, particle filters, machine-learning approaches,
and support vector machines [8]) used for developing degra-
dation models in a wide range of different applications, only a
few of them have been employed so far for the modelling of
degradation of IGBTs. A Kalman filter (KF) tunes and updates
the parameters of the model on stream noisy input test data for
linear systems. In contrast, a particle filter updates the param-
eters of the model with the most weighted samples generated
from probability distribution of the system which mitigates the
degeneracy of particles by a number of iterations.
In general, developing versatile physical model for both

Kalman and particle filter is necessary to present a degradation
model that avoids the main disadvantage of both techniques.
The KF can be a good estimator if it is given a precise
state-space model which constructs from all interpretable unob-
servable dynamic parameters of component. Overall, imprecise
knowledge of the model parameter and inaccurate initialization
of the filter lead to inconsistence with true component failure
model [9]. Our proposed prognostics approach overcomes the
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complexity of developing the PoF, learns the degradation pat-
tern online, and adapts itself with the dynamic of the parameter
trend which will create a robust failure model.
In [10], Patil et al. proposed early anomaly detection

implementing Mahalanobis distance (MD) using on-state col-
lector-emitter voltage and collector-emitter current
as precursor parameters and a particle filter approach to calcu-
late RUL before catastrophic failure occurs. Patil et al. present
an anomaly detection parameter which is used as a diagnostic
parameter. However, in term of prognostic technique, they
have introduced the mean time to failure estimation relatively
has considerable divergent from parametric failure. The RUL
evaluation metric also just carried out from anomaly detection
till the failure threshold thus, the result will expect highly
greater than 21% prediction error and less precision.
Celaya et al. develop a prognostic algorithm technique using

an extended KF for MOSFET component [11]. The algorithm
claims to be a versatile candidate for component level RUL cal-
culation. The on-state resistance of the device is chosen as a pre-
cursor parameter which has increased due to die attached degra-
dation process. The accuracy of the prognostics results has been
challenged using evaluation metric relative error (RA).
In [12], Saha et al. implement a particle filter to calculate

RUL and Monte Carlo (MC) method for simulation results.
The reliable run-to-failure data set was obtained by conducting
thermal overstress accelerated ageing tests on a IRG4BC30KD
IGBT. Third-order polynomial fit of the tail of the wave-
form was used to create a failure precursor model. In [12] data
manipulation andmodel base learning using regression analyses
were performed while offline. Furthermore, the particle filter
has implemented on a model based approach for just the tail
of the collector emitter current as a precursor parameter which
almost IGBT approaches to catastrophic failure. Saha's model
has not been developed for the entire degradation process and
the strategy of failure model learning close to critical condition
will not be applicable for maintenance decision makers.
In [13], Musallam et al. propose a real-time rain flow al-

gorithm to calculate the full thermal cycle of the load profile
(thermal profile) obtained from an IGBT electro-thermal model.
The Coffin–Manson model is then utilized to estimate the end-
of-life of the IGBT bond wire interconnects and the substrate-
solder joints.
The Center for Advance Life Cycle Engineering (CALCE)

proposes a hybrid prognostic method which fuses the
data-driven and physics-of-failure approaches (PoF) to cal-
culate RUL [14]. The PoF contains the systems components
failure mechanisms, data base and data driven analyses, and
the degradation level of the system to feed the PoF model for
estimation of the future health state of the system.

III. AGEING EXPERIMENT

A review of IGBT failures and wear-out mechanisms is ben-
eficial for this research. This information could then be used
to identify precursor parameters that are indicative of prevalent
failures. Subsequently, they will be used in the development of
the diagnostic and prognostic algorithm to predict failure. This
section provides details of the failure mode mechanisms and

effects of power electronics, specifically IGBTs, based on the
life-cycle loading condition [15].

A. Failure Mechanisms
The intrinsic failure mechanisms in power electronics include

hot carrier injection and dielectric breakdown and electro-mi-
gration, while extrinsic faults consist of latch up, wire lift off,
die solder delamination, and substrate solder degradation [16].
These are summarized in Table I [17]. Power electronics mod-
ules are subject to two potential failure mode stresses: the first
is associated with high electric fields and the second is due to
high temperatures. One of the most common defects which is
relevant to electric fields is dielectric breakdown [18], [19].

B. Power Cycling Experiment Setup
IGBTs are designed to work below the nominal character-

istic temperature (i.e., 150 C). However, in a railway traction
and automotive application, they could experience increased
thermal cycling (rise and fall of temperature) which leads to
thermo-mechanical stress on the weakened part of the IGBTs
packaging interconnections [20]. To simulate this environment
in a laboratory set-up, accelerated ageing techniques, such as
power cycling, are used. This type of reliability testing can be
used to characterize failure mechanisms more accurately than
traditional thermal cycling inside an environmental chamber
due to the flow of current through the IGBT, and heat dissipation
which is similar to what is experienced in application. The in-
duced failure mechanisms depend on the testing conditions and
have various levels of degradation similar to real industry appli-
cations. Power cycling tests are used to define failure modes and
estimate the reliability of standard power electronics module
IGBTs [21].
In power cycling tests, the IGBT actively heats up due to the

amount of power dissipated at the junction during a constant
load cycle. The load cycle also depends on the pull time and
change in junction temperature. This results in strain and stress
between the aluminium wire and Silicon die, as well as between
the die and insulation substrate, where the differences in CTEs
(coefficient thermal expansion) initiates cracks at the bonding
surface, and creep in the solder joint and substrate layer.
Finally, peel progression of the copper metallization and

crack propagation in solder joint lead to the aluminium nitride
substrate (AlN) failure mode and wire bond lift off respectively.
Highly-accelerated ageing tests use rapid thermal cycling and
electrical overstress to speed up prevalent failure mechanisms
of the IGBTs in an experiment environment [22]. During ageing
tests, electrical parameters and junction temperatures can be
simultaneously monitored as precursor parameters for the use
of developing IGBT health monitoring capability [23], [24].
The Power Electronic Research Centre in Nottingham Uni-

versity carried out power cycling tests on IGBTs. The test rig
used a switched current supplied by a constant current power
supply to heat and cool a set of sample “coupons.” Each coupon
consists of an IGBT die and Bond wires which were attached to
a substrate tile (see Fig. 2).
An infrared (IR) sensor is used to monitor the temperature

of each die; when the temperature reaches below or above
some specified threshold, then the heating current will be
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TABLE I
IDENTIFYING IGBT FAILURE MECHANISMS

Fig. 2. Test coupon and approximate dimensions.

automatically removed. The temperature is constantly recorded
and the collector emitter voltage is measured as a precursor
and recorded during each heating cycle. Each of the test beds is
controlled independently and they are allowed to heat up until
the IR sensor indicates the temperature has reached the upper
limit of 120 C. The bypass switch diverts the heating current

Fig. 3. Temperature cyclic.

away from the test bed so it starts to cool until the IR sensor
indicates that the temperature has fallen to the lower limit of
60 C, and the bypass switch stops and this power cycling is
repeated. The typical temperature waveform during cycling is
shown in Fig. 3.
The IGBT accelerated ageing experiment (power cycling)

platform is shown in Fig. 4. It was noticed during tests that wire
lift off occurred because of thermal expansion mismatches be-
tween the wire bond and solder contact points after short-circuit
failure.

C. Ageing Data

During the prevalent power cycling accelerated ageing
process, emitter wire bonds were lifted off and damaged, the
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Fig. 4. IGBT power cycling test rig.

Fig. 5. Normal distribution best fit to IGBT samples.

TABLE II
CHI-SQUARED HYPOTHESIS TESTING

collector emitter voltage on state tracks the degradation and
presented as the precursor parameter for developing IGBT
prognostics in this paper. During the duration of the degrada-
tion process, the (on) measurement shows an increase in
non-monotone fashion in discrete steps with noise until the
failure of the IGBT. The indicate failure as a quick rise at
the end of the ageing process. Data collection successfully has
carried out for 22 IGBT samples which can be used promising
data mining tool. The raw sensory of time series data trend in-
dicate useful and meaningful pattern to be used for the statistic
judgment. The histogram of all samples indicates the Normal
distribution is the most appropriate statistical distribution which
is shown in Fig. 5; the chi-squared has been used to validate
the goodness of fit test in this light, and results are recorded in
Table II [25].
It is noted, the null hypothesis

will

Fig. 6. Four IGBT run-to-failure data set samples.

Fig. 7. First IGBT data set after filtering.

be accepted if the value is zero and is greater
than the default value of significance level . To this
end, amongst all data sets, the four IGBT raw data sets for
simplicity of computation and testing have been chosen, and
are shown in Fig. 6; the -axis represents the (voltage)
value, while the -axis represents the number of cycles (time),
and cycle duration lasts for 6 s.
The first IGBT sample has shown obvious peak, this is due

to initial value setting of the PID controller which is input value
of the PWM generator. This spike is been eliminated after the
first control loop iteration where PID sets its output according
to the reference input. The (on) is obtained from a standard
power cycling experiment to failure and this will be formatted
into a Dimension to be used in data-mining analysis. Initially,
the (on) which represents the degradation profile can be fil-
tered using a 1-pole low-pass filter in MATLABwith initial cor-
respond setup according to the data set properties where the time
between samples ( 1 s) and the filter time constant (
200 s). As shown in Fig. 7, data filtered by a low-pass filter suf-
fers from delay at the cycles 0 to 1000 due to initial RC delay
of 1000 time units. As a solution, a symmetrical low-pass filter
(i.e., moving averages filter) is applied to the data set that gives
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Fig. 8. Outline of the proposed data-mining prognostic approach.

Fig. 9. All IGBT run-to-failure data sets after filtering.

the optimum observation to be employed in a data-mining algo-
rithm [26].

IV. DEVELOPING THE DEGRADATION MODEL

Fig. 8 depicts the overall process of the data-mining algo-
rithm development for the IGBT data sets collected from power
cycling experiments. Initially, a model is structured from the
training data set using artificial neural networks (e.g., TDNN
or neural fuzzy network). Subsequently, the trained model is
used with the test data to estimate the current health of the com-
ponent, this process which continuously tracks the degradation
health state of the component and uses as a performance degra-
dation assessment [27]. This is then used with a trapezoidal rule
for calculating the area under the estimated curve to predict the
remaining useful life of the IGBT (discussed in more detail in
the next section). The outline of the algorithm is described in
Fig. 8.

A. Discretization of Ageing Data
Fig. 9 shows the filtered for four different IGBTs utilized

in this paper. From this figure, it is noted that the data set is
comparatively clear and separated into several discrete states
possess different deterioration of the IGBT health states which
the following initial life durations are recognized.
1) A flat region where a more and less the ageing process

began at a signal amplitude of approximately 2 V repre-
senting the IGBT's healthy condition for duration of 2500
cycles.

2) A monotonic region where the region was characterized
by a monotonic increasing trend until reaches discrete
manner.

3) An early degradation sign where the degradation process
has clearly progressed in increasing discrete steps until
IGBT failure has occurred at about 2.4 V.

4) Failedwhere the IGBT failure life cycle (4500 cycles). The
life of the IGBT decreases when the abrupt increase in am-
plitude of the beyond the initially defined amplitude
level corresponding to the healthy normal condition. The
degradation process is discretized using a uniform quan-
tization process [28] and each degradation state increases
about 0.054 V in a discrete manner which corresponds to
one bond wire lift off and is due to one bond wire cut off
[47].

The degradation process is characterized by increasing dis-
crete steps of the (from noise-free data) where the step of
each degradation phase is uncorrelated to the subsequent phase.
Using a quantized cluster validity index, the phase durations
of the run-to-failure of four IGBT samples are obtained and
recorded as given in Table III. The best number of the failure
progression occurs at the tenth health state. Thus, degradation
undergoes 10 degradation phases using uniform quantization
process for all four IGBT samples which each phase lasts for
a period of time before the degradation progresses further to
the next phase. And, the genetic algorithm base clustering used
to fix 10 cluster centres which has used
the sum of the Euclidean distance of the each cluster centres.
For optimization of the natural evolutionary process

will be mini-
mized of to address the appropriate cluster centre to validate
validity index as 10 cluster data sets as shown in Fig. 10 [29].

B. Problem Formulation
ATDNNmodel is used in this paper because the IGBT degra-

dation curve of has followed a nonhomogenous sequen-
tial dynamic process data which renders the occurrence of a
random event, and this can be efficiently modelled into each
individual defective voltage. TDNN is well defined for pred-
ication of model with having insight dynamic functions. The
dynamic of the model is stored using time delayed tap and the
nodes updated by using recursive feedback from output to the
input at the nodal levels for each iteration. As an advantage, the
nonlinear relationship feature of the prediction model that incor-
porates the input parameters and the output parameters can be
eased off efficiently. The TDNN is then adapted to associate the
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Fig. 10. Degradation phase after optimization process.

TABLE III
IGBT DEGRADATION PHASE DURATION

prediction model with the complex relationship between multi-
variate inputs and outputs. This is one of the main advantages
of the neural network in general is that the physical phenomena
of the complex system with nonlinearity dynamics behavior can
be neglected and effectively recognize model between multi-di-
mensional inputs and outputs with unsupervised training. Al-
though, this can be drawback for this technique as the model is
unable to interpret the backbone of physical performance of the
system [30].
To include dynamic features of degradation processes and

failure mechanisms into the model, the drift voltage of
the degradation is considered to be an index of health states,
which if not equal to zero, can be presented as wire bond lift off
process. The duration of each degradation process is used as an
associated failure time for the input of the TDNN model
[31]. The topology of the proposed TDNN model (see Fig. 11)
is comprised from one layer for each input and output and one
hidden layer with four number of delayed of inputs signals ,
and are introduced to the input layers where the layers are
connected with appropriate weights [32].
The proposed TDNN model directly uses (on state) mea-

surement values and the rate of the measurement changed, i.e.,

dynamic of the actual measurement at current inspection and
previous inspection points
assigned as the inputs time delay. The model takes into account
all of these measurement points and changes of the measure-
ment points, all at the same time and at three previous measure-
ment points in order to develop a precise model for prediction of
the future health state of the IGBT component in real time. In-
creasing the number of input nodes would add on more weights
and be time-consuming for optimization of the weights. Conse-
quently, model training which has more inspection points would
not improve the model's estimation capability.
The neurons' functions are set as , where

is the neuron's activation function as sigmoid and
is the synapses' weight associated with the th input of the

neuron in general. Hence, the neuron's output at the hidden layer
is constructed in [33]

(1)

as where is the layer's number ( for
hidden, and 2 for output layer); is the neuron
number at the hidden layer. The synapses' weight between
th input neuron and the th neuron at the
hidden layer is presented as . Considering two sets of
delayed inputs from and , the neuron's output at the hidden
layer is given by (1), where , and time delay with

[34], [35], and is a two dimension matrix
constructed from all synapses' weights between inputs and the
hidden layer's neurons

...
. . .

...
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Fig. 11. Structure of the proposed TDNN model.

Similarly, the outputs of neurons, , are obtained from (2)
where is neuron's number at the output layer,
and is the synapses' weight between the pth neuron at the
hidden layer and the nth neuron at the output layer. The
forms the output model of the TDNN which describes the esti-
mation and dynamic of the process using the initial constructed
model [36].

(2)

where is a two dimension matrix constructed from all
synapses' weights between the hidden layer's neurons and the
neurons of the output layer:

...

A TDNN topology including all of the synapses weights and pa-
rameters of the neurons' activation functions are predefined to
fit in the condition monitoring failure measurement. Then the
four IGBTs' ageing data set samples are used for training the
model using cross validation techniques. During the training
process through a number of iterations, the model is adjusted
with the weights and biases to converge the output to the de-
sired model and optimization is performed to minimise the error
as much as possible to render the best fit prognostic model. To
that end, the mean square error (MSE) is used to evaluate the

performance of the desired model to computed output values.
Themodel is trained by 150 iteration times, and theMSE incred-
ibly becomes increasingly lower where the final estimation error
reaches 0.0333 and the gradients of the output model with re-
spect to weights obtained by is optimised with
Levenberg–Marquardt. The details of the LM for optimization
of the TDNN can be found in [37].

C. Procedure of the Proposed TDNN Method
The procedure of the proposed TDNN method is shown in

Fig. 12. The explanation of the flowchart of the proposed algo-
rithm is provided below [38], [39]. The flowchart is executed
with the three following steps: 1) data manipulation; 2) model
training; and 3) propagation.
Step 1: We start from the available run-to-failure IGBTs' his-

torical data, which includes the degradation process values from
the precursor parameter at inspection points for the power
cycling ageing measurement. The low-pass filter is used to filter
the noises that are populated inside the data set. The duration of
the degradation phase for all data sets is optimized using max-
imum likelihood estimation, the results of which will be used
for the classification using K-mean clustering on the data set.
The threshold value is generally set based on expert knowledge
in this case at three times greater than the standard deviation of
the flat region where the degradation exponentially starts to rise
with a rapid gradient. This almost % deviates from its orig-
inal value [46]. In this data set, we attempted to set the threshold
at 7 which is almost the critical discrete level which represents
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Fig. 12. Algorithm of the proposed TDNN method.

the catastrophic degradation profile in order to validate the prog-
nostic model and algorithm. The classified data for a failure his-
tory is used for the development of a TDNN to estimate the fu-
ture health state of the IGBTs in real time. The model starts to
build up with two input parameters and in conjunc-
tion with two hidden layers, where the first hidden layer includes
fiveneurons and the second layer contains two neurons. The two
input parameters are assisted with three tapped delay lines as
embedding local memory into both the input and hidden layers
which provides the dynamic ability to the model structure. The
first data set is peaked up for training the TDNNmodel
and the second data set is chosen as a test data for model
validation [40].

Step 2: Training the TDNN model is a stochatic process and
depends on the initial weights and is adjusted using the LM
method which also requires the training data set and the testing
data set. The training of the model is conducted using time se-
ries data and the difference in time related to the pattern, to es-
timate the number of the sequence of states that corresponds to
the current observed health state for 150 iterations. The training
process is completed using cross-validation techniques surely
to overcome dissatisfaction of availability of a lower number
of data sets; therefore, all datasets are partitioned for use for
both training and testing which limits the overfitting model with
the training data set. Before the data set reaches the last data
set (Cross Number) for testing and the last training sample is
checked, then, if the Cross Number is remaining, the learning
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Fig. 13. TDNN training and testing modelining for IGBTs failure data set.

algorithm continues to simply run both the training and the
testing sample increment by one. This process repeats until four
failure histories to construct the TDNN training model and val-
idation of the model are completed (see Fig. 13 for the cross
validation; . Four failure history data sets are
divided into three training sets and one testing set; the model
learns from three samples and validated with one sample and
the learning model will replicate once the first sample becomes
the last sample/last cross in the algorithm for validation. The
model learns to estimate the failure degradation phase, but, if
the current health state based on the measurement point needs
to be identified, then the mean of the RUL results from each of
validation represents the final results.
Step 3: The end-of-life (EO4L) of the IGBTs can be calcu-

lated by peaking up the first particle from the selected data set as
the measurement value at the current state which will be prop-
agated through the degradation model until the threshold value.
The availability of the new inspection particle will be checked
out once the estimation value reaches the predefined threshold
value if the new inspection particle is available. Therefore, the
number of particles will be incremented by one until the last
particle. The propagation process continues when the measure-
ment point is greater than the length of the last particle and it
then moves to calculate the RUL and then the prognostic eval-
uation metric, such as RMSE, RS, and MAD. If the expected

value or estimated value has not reached the threshold value,
then the current inspection particle will be updated by an es-
timated value in the measurement parameter as the recursive
algorithm progressing the degradation phase until it reaches a
significant promising threshold state. The LM algorithm for the
TDNN training is run four times, and the trained TDNN cor-
responding to the lowest prediction performance mean square
error (MSE) after 626 epochs is 3.9805e–06. The prediction per-
formance is shown in Fig. 14, which almost is mapping the test
data (e.g., input measurement data) to the train TDNN model.
The degradation duration for the estimation model is quite

random for each testing model and the number of degradation
phases varies slightly. The estimation degradation is assumed
to have followed a nonhomogenous probability distribution
process which renders the occurrence of random events. There
are two major types of probability distributions: distribu-
tion with mean and standard deviation , i.e., normal,
Gaussian, exponential, Weibull distributions; and distributions
with solely , i.e., Poisson, binomial distributions. As this
paper is limited to only four data set; it cannot be confirmed
which distribution suits to the IGBT failure data set. In [26],
two candidates distribution (e.g., Gamma and Poisson) have
been used against data set from each types. Given the fact that
all samples are comparatevily continuous time series dataset,
therefore as a solution for instance, normal from first type
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TABLE IV
MLE PARAMETERS OF ESTIMATED DURATION

Fig. 14. Performance of the proposed TDNN.

is selected. Results using Gamma and Poisson distributions
are presented in [26]. In this paper, we present results from
normal distribution and compare it with Gamma and Poisson
distributions, and their validity is evaluated in Section VI. In
a normal distribution, mean and variance parameters [cf.
(3)] are estimated in order to obtain the best fit probability
distribution function for each degradation phase.

V. PROGNOSTIC APPROACH

A. Degradation Model Estimation Optimization

Maximum likelihood estimation (MLE) is used as an objec-
tive function to maximize the density probability function (i.e.,
normal distribution function). A Normal distribution as shown
in

(3)

is the probability distribution of the IGBT estimated degrada-
tion phase given normal parameter and [41]: The
MLE method is used to estimate the underlying rate parame-
ters' sample mean and the variance for the normal process in
order to generate these counts. The first step is to write the joint
probability mass function; in this case, , because it is a discrete
random variable of the positive integers [42]. Since all discrete
random variables are independent, the product of the individual
density functions can be obtained. The next step is to calculate
the maximum of this probability mass function with respect to

; however, simplifications in [43] make it possible to find

the maximum of the probability mass function from maximum
of in the form of

(4)

(5)

The maximum-likelihood criterion is a fairly general one and
also a fairly powerful to show the true value (the maxima) in
close form algebraically. The true value is the most
probable one that generates maximum likelihood data. Using
the analytical maximum-likelihood estimation (MLE) method
to estimate the best fit of the modelling parameter, the estimator
equals the sample mean and the estimator equals the unad-

justed sample variance for a normal distribution [43]. According
to Table II, the number of health states for each of the four com-
ponents' health estimation is ten nonhomogenous discrete phase
durations. The MLE function is employed for each health state
(HS) of the four components as in

(6)

number of health states
number of IGBTs components

(7)

and the results are presented in Table IV [28].

B. RUL Simulation Algorithm

RUL estimation and its related simulation algorithm are pro-
cessed based on the fact that the maximum estimated life time
of the IGBT is divided into a number of estimated durations.
Failure at each estimated duration is progressed in a different
manner which results in different rates of degradation known
as estimated degradation phases , as discussed in the pre-
vious section, (see Fig. 13. Estimated degradation phases result
from the TDNN model, and presents number of health states
that IGBT may experience in real time. Considering n number
of , the life of a health state is calculated in normalized form
(in respect to summation of ) using the following equation:

(8)

where HSL presents a period that th health state life will last
for a number of cycles between a starting cycle and an
ending cycle ; and is the maximum real life time of the
IGBT that is not necessarily equal to the total , because total
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is accumulation of estimated values. A normal probability dis-
tribution function ( ) is assigned to the each HSL wherein
the center and variance of are the mean of cycles occurring
in the ( ) and the difference of the maximum
and the minimum cycles of the , respectively.
As each HSL has an area of 1 and different variance values, ac-
cordingly, HSLs will have different maximum probabilities. A
per-unit HSL is obtained by the following equation:

(9)

where HSL is the th HSL in per-unit form, is the
normal probability distribution function for the th estimated
degradation duration, and is the operation time at measure-
ment point. The probability of estimated duration for each
inspection time (PDLT) is

(10)

By means of PDLT, RUL calculation for IGBT components
is performed to calculate the probability of each measurement
particle that occurs in each HSL of the component using a
normal probability density function. The area of each HSL
sweeps through as the degradation progresses from the begin-
ning of the IGBT up until the end of life

(11)

The process of the RUL calculation is given in the flowchart
of the proposed algorithm in Fig. 15. The approach depends on
the IGBT failure model estimation and the normal distribution
based on the optimized duration parameter. A time delay neural
network approach for the degradation modeling is constructed
and sweeping the estimation value under the normal distribu-
tion curve for each estimated degradation phase until the
end of the component's life (EOL) or it can be swept up to a
predefined threshold value. Then, the RUL (i.e., mean and con-
fidence levels) is calculated using the distribution of estimated
values based on the area of each estimated degradation phase by
MC simulation.
Fig. 16 shows an example (i.e., IGBT sample number 4) of

results. The results were computed based on a normal
distribution model which shows the area under each curve
equivalent to one unit per duration. The oscillated blue, red
and green curves show the mean of the area per unit, 10%
and 90% deviation confidence bounds of the area per unit,
respectively. The oscillations present the degradation process
and the RUL predictions are also carried out at each moment
of the degradation process. Hence, the RUL prediction occurs
throughout the whole process of the IGBT degradation experi-
ment. For instance, the observation peaks at measurement 1500
cycles (cycle per second) where the black area under the each

Fig. 15. RUL calculation approach algorithm.

oscillation cycle presents the duration life per unit till it reaches
its maximum life which is slightly above 4000 cycles (Fig. 16).

VI. RESULTS

A. RUL Simulation Results
The RUL prognostic results which have been estimated by

the TDNN and fused with the probabilistic approach to reflect
the discrete change in the degradation state are expressed by a
series of polylines. The prognostic simulation is a process from
the beginning of the healthy state condition of the IGBT running
to the threshold value at 7. The as a degradation indicator
is monitored, and the relevant sensor data during the on state
are recorded at each cycle where the degradation related to the
packaging failure mode has caused the IGBT to fail.
Fig. 17 shows four IGBT samples of RUL simulation results.

The RUL result is computed using the statistical approach based
on the estimation results from the TDNN failure model. The re-
sults are promising for early failure findings and improve de-
cision-making based on confidence levels. The straight black,
red and green oscillatory lines are used as the real RUL and its
10 and 90 percentile deviation confidence bounds, respectively.
These three lines present the accuracy of the prognostic estima-
tion during each degradation transient. The blue plot indicates
the mean value of the RUL simulation. At the beginning of the
RUL rendering, all prediction plots diverge from the real RUL
value. As the operating time is rendered toward the end of the
IGBT life, the 10 and 90 percentile confidence bounds signifi-
cantly converge to the real RUL value where the accuracy of the
life estimation is vital rather than at the beginning of the device
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Fig. 16. Normalization of the duration life.

Fig. 17. RUL of TDNN failure model using normalization techniques.

life. The confidence bounds initially offer meaningful informa-
tion as the normal distribution associated with mean and stan-
dard deviation. However, the confidence bounds lie very close
to the mean value as the degradation process reaches the end of
the ageing process.

B. RUL Estimation Error
In this paper, the RMSE and RA are used to assess the preci-

sion of the proposed prognostic performance for all duration of
failure progression, and the results are compare against an ex-
tended KF [11]. Basically, RMSE measures the error between
the real and predicted values while prediction is performed by
a model or an estimator [44]. Due to the nature of degradation
data that may widely differ from one sample point to the next
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TABLE V
RMSE PROGNOSTIC PERFORMANCE METRIC FOR ALL IGBT SAMPLES DEGRADATION PHASE

TABLE VI
RA PROGNOSTIC PERFORMANCE METRIC OF ALL IGBT SAMPLES DEGRADATION PHASE

sample, mainly where wire bonds lifted off, RA might provide
us with a more accurate metric to evaluate the performance of
prognostic model [11], [45].
If the is the estimated RUL, and is the real RUL value,

then the RMSE and RA can be calculated using

(12)

(13)

respectively. The performance of the proposed prognostic
technique is summarized in Tables V and VI using RMSE and
RA metrics for each life duration, respectively. Table VII also
compares the RMSE values of the proposed technique with the
RMSE values from [26] that employ Gamma and Poisson prob-
ability distributions in a Markov chain probabilistic approach.
It is observed from metric that the proposed fusion technique
has considerably improved prediction for all degradation phase
process compare to just stochastic model base approach. In
general, hybrid approach is proved to be a versatile approach
for prediction process and RUL calculation also, presents
better RMSE values. Furthermore, it has significant decision
making because the 90th and 10th percentiles confidence width
bonds are narrow realistically close to the mean during the
whole prediction and do provide meaningful information for
decision-makers due the fact that most of the occurrence of the
estimated failure data is disseminated within standard deviation
According to the RA values based on the proposed approach,
the IGBT test sample number 1 has the largest RA value;
therefore, it presents a more accurate predictive failure model
amongst all four IGBTs, and can be employed as a precise
prognostic model. From [11], extended KF-based prognostics
presents maximum RA as a significant prognostic performansce
is 97.052, it can be noted from Table VI, RA incredibly gives
better results for all four samples, averaging 99.9 based on our
approach.

TABLE VII
PROGNOSTIC PERFORMANCE METRIC

VII. CONCLUSION
The main contribution of this paper is the development and

implementation of a TDNN failure model of IGBT for indi-
cation of the current health state and fuses with the principle
of the area under the curve for RUL calculation. To this end,
the area of the breaking region of the failure model is fitted
with a probabilistic distribution function (i.e., normal distribu-
tion function). In addition, Monte Carlo simulation is utilized
in the algorithm to generate the calculation area up until the
threshold value to approximate the IGBT's RUL. Overall, the
IGBT degenerationmodel is built based on IGBT failure mecha-
nism and degradation characterization. The stochastic approach
and Monte Carlo simulation are used to calculate the area under
the estimated degradation phases and the precursor parameter,
collector emitter voltage , is integrated to develop the prog-
nostic algorithm for predicting the IGBT's RUL. Comparison
with the results of RUL prediction is shown in Tables V and
VI which show all four samples. The first samples present sig-
nificantly small RMSE and large RA values. The implementa-
tion of the developed prognostic framework could be applied to
provide advance warning of failures, thereby preventing costly
power electronic system downtime and failures. The TDNN
failure model can perform much more efficiently when it fuses
with the statistical approach for failure RUL prediction results in
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some IGBTs. The combined model in this paper is only based on
the normal distribution, established and implemented in IGBT
RUL prediction.
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