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ABSTRACT 

Physics-based and data-driven models are the two major 

prognostic approaches in the literature with their own 

advantages and disadvantages. This paper presents a 

similarity-based data-driven prognostic methodology and 

efficiency analysis study on remaining useful life estimation 

results. A similarity-based prognostic model is modified to 

employ the most similar training samples for RUL 

estimations on each time instance. The presented model is 

tested on; Virkler’s fatigue crack growth dataset, a drilling 

process degradation dataset, and a sliding chair degradation 

of a turnout system dataset. Prediction performances are 

compared utilizing an evaluation metric. Efficiency analysis 

of optimization results show that the modified similarity-

based model performs better than the original definition. 

1. INTRODUCTION 

Prognostics is an essential part of condition-based 

maintenance, described as forecasting the remaining useful 

life of a system. There are two major prognostics 

approaches in the literature 1. Physics-based 2. Data-driven 

models. They both have their own advantages and 

disadvantages. Data-driven models employ routinely 

collected condition monitoring data and/or historical event 

data instead of building a mathematical model based on 

system physics or human expertise. They attempt to track 

the degradation of an asset using forecasting or projection 

techniques (e.g. regression, exponential smoothing, and 

neural networks), also rely on the past patterns of 

deterioration to forecast the future degradation. Since data-

driven prognostics have no elaborate information related to 

asset or system, it has been considered as a black-box 

operation (Zhang et al., 2009). A detailed literature review 

on data-driven prognostics was conducted by Si et al., 

(2011) . Artificial Neural Networks (ANN) (Gebraeel and 

Lawley, 2008), Hidden Markov Models (HMM) and 

derivations (Camci and Chinnam, 2010), regression models 

(Guclu et al., 2010), Bayesian & Gaussian Processes (Saha 

et al., 2010) are employed in order to estimate the remaining 

useful of a component or system. Similarity-based 

prognostic approaches can also be categorized in data-

driven prognostics. Details of the similarity-based 

prognostic models are discussed in section 2.4. 

Physics-Based Models typically involve describing the 

physics of the equipment and failure mechanism. 

Mathematical models are usually employed which is 

directly tied to health degradation. In order to provide 

knowledge rich prognostics output; physics-based models 

attempt to combine defect growth formulas, system specific 

mechanistic knowledge and condition monitoring data. They 

assume that an accurate mathematical model for component 

degradation can be constructed from the first principles. 

Several examples of degradation modelling and physics-

based prognostics, specific to the component or system, are 

found in the literature (Kacprzynski et al., 2002; Byington et 

al., 2004; Qiu et al., 2002).  

This paper presents a data-driven prognostic methodology. 

Contribution of the paper is to modify a similarity-based 

prognostic approach which performs better prognostic 

results compared to its original definition. Comparison and 

the efficiency of the remaining useful life estimation results 

are discussed in the paper. The rest of the paper is organized 

as follows. In section 2, the details of the used datasets and 

the methodology are given. The prognostic and optimization 

results are discussed in section 3. Following that are 

conclusion and future works. 

2. METHODOLOGY 

This section provides the datasets used in prognostic 

modelling, the similarity-based prognostic approach 

methodology, and the modified version of it.  
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2.1. Virkler’s Fatigue Crack Growth Dataset 

In the structural health management (SHM) field, fatigue 

cracks are defined as one of the primary structural damage 

mechanisms caused by cyclic loadings. Cracks at the 

structure surface grow gradually. Therefore prediction of 

fatigue life or fatigue crack growth in structures is 

necessary. 

The Virkler fatigue crack growth dataset (Virkler et al., 

1979) contains 68 run-to-failure specimens. Each specimen 

used for the experiments is a center cracked aluminum sheet 

of 2024-T3. Specimens had a notch of 9mm initial crack and 

the experiments were stopped once the crack lengths 

reached around 50mm. Each specimen has 164 crack length 

observation points. Degradation for all specimens is shown 

in Figure 1. 

 

Figure 1. Crack length propagation samples under the same 

loading conditions 

2.2. Drill-bit Dataset 

Drilling processes are considered to be one of the most 

commonly used machining processes in industry (Lianyu Fu 

and Ling, 2002). For instance, up to 50% of all machining 

operations in the U.S. involve drilling (Furness et al., 1999). 

Drill bit breakage, excessive wear during the drilling 

process may cause fatal defects in the product. Drilled 

surface quality may affect the quality of the product. 60% of 

rejected parts are often granted to poor surface quality 

(Ertunc et al., 2001). Therefore, it is important to predict the 

failure of drill bit for obtaining good products.  

The failure prediction for drill bits has been reported in 

(Camci and Chinnam, 2010; Baruah and Chinnam, 2005). 

Hidden Markov (HMM) based methods have been used for 

failure prediction in their methods. The dataset was 

collected by Chinnam et al., (2003). 

Figure 2, shows the data acquisition system for drilling 

process. The dataset was collected from a HAAS VF-1 CNC 

machine. They used thin drill-bits to accelerate the aging 

process. The drill-bit dataset have twelve run-to-failure 

samples. The failure for each case is the breakage of the thin 

drill bit during the penetrating into work piece. Thrust-force 

and torque signals are collected during the actual drilling 

process. Concatenated thrust and torque signals, collected 

during the life of a drill bit, are displayed in Figure 3. In this 

figure, the degradation of a drill bit from brand new state to 

the failure state can be observed. This dataset will be used 

for comparison of the modified data-driven prognostic 

approach. 

 

Figure 2. Experimental setup for data collection during 

drilling process (Camci, 2005).  

 

Figure 3. Trust-force and torque data from a drill bit 

2.3. Turnout Dataset 

Turnout systems are remote controlled electro-mechanical 

systems enabling trains to change their tracks as displayed 

in Figure 4. They are considered to be one of the most 

important components of the railway structure. The standard 

railway turnout system is a complex device with many 

potential failure modes. The dataset consist of five different 

sensors showing the degradation profile of ten different run-

to-failure turnout mechanisms (Eker et al., 2011). We 

utilized the force sensor data among the other sensory 

information provided since they claimed the force sensor is 

capable of representing degradation process better than the 

rest of the sensors (Camci et al., 2014). They employed an 

exponential degradation model to organize the samples 
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collected from different discrete health states since there 

was no prior information about railway turnout degradation. 

They selected ‘dry slide chair’ as a failure mode for the 

turnout system. The dataset will be used for prognostic 

modelling and comparison. The dataset was collected under 

the project number ‘108M275(1001)’ supported by 

TUBITAK (The Scientific and Technological Research 

Council of Turkey) in Turkey. The dataset is open to public 

and can be downloaded from their research group website 

(Camci et al., 2010). 

 

 

Figure 4. Electro-mechanical turnout system 

2.4. Similarity-Based Prognostics (SBP) 

Zio and Di Maio, (2010) developed a novel similarity-based 

prognostics methodology for estimating the remaining 

useful life components of nuclear systems. Estimations of 

RUL requires evaluating the similarity between the test 

sample (i.e. ‘ ’) and the training samples (i.e. ‘     ’) as 

shown in Eq. (2). This is done by calculating the point wise 

Euclidean distances in between ‘      ’ sequences of 

observations. Distance score calculation in between training 

sample and the test sample at the     time point shown in Eq. 

(1). Final RUL estimation of a test sample at a time instance 

(i.e. ‘ ’) is achieved by taking the similarity weighted sum 

of training samples’ remaining useful life values recorded 

on the same time instances as shown in Eq. (3). 
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‘ ’ is the arbitrary parameter can be set to shape the desired 

interpretation of similarity whereas ‘ ’ defines the number 

of latest observations involved in similarity calculations. 

The smaller is the  , indicates the stronger the definition of 

similarity. 

2.5. Modified SBP 

This subsection discusses in detail the modifications made 

on the similarity-based prognostic model. The modifications 

have been made in the RUL estimation (i.e. Eq. (3)), in 

which the most similar K percent number of the training 

samples are utilized rather than using whole training set. 

The most similar K percent of training samples varies for 

every test sample and even it might vary for every time 

instance in a test sample. The best number K is required to 

be optimized by checking an error function, evaluating the 

prognostics efficiency. We calculated root mean squared 

error (RMSE) of RUL estimation results for performance 

evaluation. A genetic algorithm is employed to find the best 

number ‘K’ in terms of minimizing the RMSE values out of 

RUL estimations, shown in Eq. (4). Each K value provides 

its minimum RMSE value with the optimized ‘ ’ and ‘ ’ 

parameters.  

 

                   
    (4) 

 

Comparison of different ‘K’ percentage values is discussed 

in the next section. 

3. RESULTS 

The optimization of K percentage values for their best ‘ ’ 

and ‘ ’ parameters is shown in Table 1. By looking at the 

table, the lower RMSE from the RUL estimations for the 

Virkler dataset can be obtained when the most similar 18 

numbers of training samples (38%) are utilized whereas this 

can be achieved in 44% and 100% for Drill-bit and Turnout 

datasets respectively. RMSE values of different percentage 

levels are shown in Figure 5. In the figure, K = 100% means 

all training samples are utilized in RUL calculation where it 

represents the original definition of the approach in the 

literature. Improvement in the estimation errors is 

anticipated as the percentages of training samples involved 

more in the RUL predictions. However as shown in 

Virkler’s and drill-bit dataset plots in Figure 5 errors start to 

build up when K is around 40%. Drill-bit and Virkler 
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datasets show similar profile where the minimum RMSE 

values are obtained when 40% of the training samples are 

utilized in similarity weighted sum calculation of RUL 

values. However, the lowest error for the turnout dataset 

obtained at 25% and 100% levels.  

 

Table 1. Optimization results for different datasets 

Dataset     

# of 

training 

samples 

Best # 

of 

training 

samples 

K 

(%) 

Virkler 1.8e4 13.03 47 18 38 

Drill-bit 6 0.013 9 4 44 

Turnout 5 0.39 8 8 100 

 

Figure 5. Optimization of the K percentage for different 

datasets 

4. CONCLUSION & FUTURE WORK 

This paper presents a modification on a pure data-driven 

similarity-based prognostic approach. The original model 

modified so that the most similar training samples to the test 

sample are involved in RUL estimation. Genetic algorithm 

is applied to optimize the parameters involved in similarity 

and RUL estimations. Results show that the modifications 

lessen the root mean squared error of the RUL estimations 

in two out of three datasets. Future studies will be on 

integration of a physics-based model with the modified 

similarity-based approach to achieve improved prediction of 

remaining useful life. And also the modified model 

prognostic performance will be compared with other 

prognostic approaches. 
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