9,652 research outputs found

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    A Review of Landcover Classification with Very-High Resolution Remotely Sensed Optical Images—Analysis Unit, Model Scalability and Transferability

    Get PDF
    As an important application in remote sensing, landcover classification remains one of the most challenging tasks in very-high-resolution (VHR) image analysis. As the rapidly increasing number of Deep Learning (DL) based landcover methods and training strategies are claimed to be the state-of-the-art, the already fragmented technical landscape of landcover mapping methods has been further complicated. Although there exists a plethora of literature review work attempting to guide researchers in making an informed choice of landcover mapping methods, the articles either focus on the review of applications in a specific area or revolve around general deep learning models, which lack a systematic view of the ever advancing landcover mapping methods. In addition, issues related to training samples and model transferability have become more critical than ever in an era dominated by data-driven approaches, but these issues were addressed to a lesser extent in previous review articles regarding remote sensing classification. Therefore, in this paper, we present a systematic overview of existing methods by starting from learning methods and varying basic analysis units for landcover mapping tasks, to challenges and solutions on three aspects of scalability and transferability with a remote sensing classification focus including (1) sparsity and imbalance of data; (2) domain gaps across different geographical regions; and (3) multi-source and multi-view fusion. We discuss in detail each of these categorical methods and draw concluding remarks in these developments and recommend potential directions for the continued endeavor

    A Review of Landcover Classification with Very-High Resolution Remotely Sensed Optical Images—Analysis Unit, Model Scalability and Transferability

    Get PDF
    As an important application in remote sensing, landcover classification remains one of the most challenging tasks in very-high-resolution (VHR) image analysis. As the rapidly increasing number of Deep Learning (DL) based landcover methods and training strategies are claimed to be the state-of-the-art, the already fragmented technical landscape of landcover mapping methods has been further complicated. Although there exists a plethora of literature review work attempting to guide researchers in making an informed choice of landcover mapping methods, the articles either focus on the review of applications in a specific area or revolve around general deep learning models, which lack a systematic view of the ever advancing landcover mapping methods. In addition, issues related to training samples and model transferability have become more critical than ever in an era dominated by data-driven approaches, but these issues were addressed to a lesser extent in previous review articles regarding remote sensing classification. Therefore, in this paper, we present a systematic overview of existing methods by starting from learning methods and varying basic analysis units for landcover mapping tasks, to challenges and solutions on three aspects of scalability and transferability with a remote sensing classification focus including (1) sparsity and imbalance of data; (2) domain gaps across different geographical regions; and (3) multi-source and multi-view fusion. We discuss in detail each of these categorical methods and draw concluding remarks in these developments and recommend potential directions for the continued endeavor

    Tile2Vec: Unsupervised representation learning for spatially distributed data

    Full text link
    Geospatial analysis lacks methods like the word vector representations and pre-trained networks that significantly boost performance across a wide range of natural language and computer vision tasks. To fill this gap, we introduce Tile2Vec, an unsupervised representation learning algorithm that extends the distributional hypothesis from natural language -- words appearing in similar contexts tend to have similar meanings -- to spatially distributed data. We demonstrate empirically that Tile2Vec learns semantically meaningful representations on three datasets. Our learned representations significantly improve performance in downstream classification tasks and, similar to word vectors, visual analogies can be obtained via simple arithmetic in the latent space.Comment: 8 pages, 4 figures in main text; 9 pages, 11 figures in appendi

    Learning to Map the Visual and Auditory World

    Get PDF
    The appearance of the world varies dramatically not only from place to place but also from hour to hour and month to month. Billions of images that capture this complex relationship are uploaded to social-media websites every day and often are associated with precise time and location metadata. This rich source of data can be beneficial to improve our understanding of the globe. In this work, we propose a general framework that uses these publicly available images for constructing dense maps of different ground-level attributes from overhead imagery. In particular, we use well-defined probabilistic models and a weakly-supervised, multi-task training strategy to provide an estimate of the expected visual and auditory ground-level attributes consisting of the type of scenes, objects, and sounds a person can experience at a location. Through a large-scale evaluation on real data, we show that our learned models can be used for applications including mapping, image localization, image retrieval, and metadata verification

    A Review on Deep Learning in UAV Remote Sensing

    Full text link
    Deep Neural Networks (DNNs) learn representation from data with an impressive capability, and brought important breakthroughs for processing images, time-series, natural language, audio, video, and many others. In the remote sensing field, surveys and literature revisions specifically involving DNNs algorithms' applications have been conducted in an attempt to summarize the amount of information produced in its subfields. Recently, Unmanned Aerial Vehicles (UAV) based applications have dominated aerial sensing research. However, a literature revision that combines both "deep learning" and "UAV remote sensing" thematics has not yet been conducted. The motivation for our work was to present a comprehensive review of the fundamentals of Deep Learning (DL) applied in UAV-based imagery. We focused mainly on describing classification and regression techniques used in recent applications with UAV-acquired data. For that, a total of 232 papers published in international scientific journal databases was examined. We gathered the published material and evaluated their characteristics regarding application, sensor, and technique used. We relate how DL presents promising results and has the potential for processing tasks associated with UAV-based image data. Lastly, we project future perspectives, commentating on prominent DL paths to be explored in the UAV remote sensing field. Our revision consists of a friendly-approach to introduce, commentate, and summarize the state-of-the-art in UAV-based image applications with DNNs algorithms in diverse subfields of remote sensing, grouping it in the environmental, urban, and agricultural contexts.Comment: 38 pages, 10 figure
    • …
    corecore