666 research outputs found

    An identity based routing path verification scheme for wireless sensor networks

    Get PDF

    Extending the Exposure Score of Web Browsers by Incorporating CVSS

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Yet its content differs from one browser to another. Despite the privacy and security risks of User-Agent strings, very few works have tackled this problem. Our previous work proposed giving Internet browsers exposure relative scores to aid users to choose less intrusive ones. Thus, the objective of this work is to extend our previous work through: first, conducting a user study to identify its limitations. Second, extending the exposure score via incorporating data from the NVD. Third, providing a full implementation, instead of a limited prototype. The proposed system: assigns scores to users’ browsers upon visiting our website. It also suggests alternative safe browsers, and finally it allows updating the back-end database with a click of a button. We applied our method to a data set of more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available here [4].</p

    Secure Time-Aware Provenance for Distributed Systems

    Get PDF
    Operators of distributed systems often find themselves needing to answer forensic questions, to perform a variety of managerial tasks including fault detection, system debugging, accountability enforcement, and attack analysis. In this dissertation, we present Secure Time-Aware Provenance (STAP), a novel approach that provides the fundamental functionality required to answer such forensic questions – the capability to “explain” the existence (or change) of a certain distributed system state at a given time in a potentially adversarial environment. This dissertation makes the following contributions. First, we propose the STAP model, to explicitly represent time and state changes. The STAP model allows consistent and complete explanations of system state (and changes) in dynamic environments. Second, we show that it is both possible and practical to efficiently and scalably maintain and query provenance in a distributed fashion, where provenance maintenance and querying are modeled as recursive continuous queries over distributed relations. Third, we present security extensions that allow operators to reliably query provenance information in adversarial environments. Our extensions incorporate tamper-evident properties that guarantee eventual detection of compromised nodes that lie or falsely implicate correct nodes. Finally, the proposed research results in a proof-of-concept prototype, which includes a declarative query language for specifying a range of useful provenance queries, an interactive exploration tool, and a distributed provenance engine for operators to conduct analysis of their distributed systems. We discuss the applicability of this tool in several use cases, including Internet routing, overlay routing, and cloud data processing

    Inter-domain traffic management in and evolving Internet peering eco-system

    Get PDF
    Operators of the Autonomous Systems (ASes) composing the Internet must deal with constant traffic growth, while striving to reduce the overall cost-per-bit and keep an acceptable quality of service. These challenges have motivated ASes to evolve their infrastructure from basic interconnectivity strategies, using a couple transit providers and a few settlement-free peers, to employ geographical scoped transit services (e.g. partial transit) and multiplying their peering efforts. Internet Exchange Points (IXPs), facilities allowing the establishment of sessions to multiple networks using the same infrastructure, have hence become central entities of the Internet. Although the benefits of a diverse interconnection strategy are manifold, it also encumbers the inter-domain Traffic Engineering process and potentially increases the effects of incompatible interests with neighboring ASes. To efficiently manage the inter-domain traffic under such challenges, operators should rely on monitoring systems and computer supported decisions. This thesis explores the IXP-centric inter-domain environment, the managing obstacles arising from it, and proposes mechanisms for operators to tackle them. The thesis is divided in two parts. The first part examines and measures the global characteristics of the inter-domain ecosystem. We characterize several IXPs around the world, comparing them in terms of their number of members and the properties of the traffic they exchange. After highlighting the problems arising from the member overlapping among IXPs, we introduce remote peering, an interconnection service that facilitates the connection to multiple IXPs. We describe this service and measure its adoption in the Internet. In the second part of the thesis, we take the position of the network operators. We detail the challenges surrounding the control of inter-domain traffic, and introduce an operational framework aimed at facilitating its management. Subsequently, we examine methods that peering coordinators and network engineers can use to plan their infrastructure investments, by quantifying the benefits of new interconnections. Finally, we delve into the effects of conflicting business objectives among ASes. These conflicts can result in traffic distributions that violate the (business) interests of one or more ASes. We describe these interest violations, differentiating their impact on the ingress and egress traffic of a single AS. Furthermore, we develop a warning system that operators can use to detect and rank them. We test our warning system using data from two real networks, where we discover a large number of interest violations. We thus stress the need for operators to identify the ones having a larger impact on their network.This work has been supported by IMDEA Networks Institute.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Jordi Domingo-Pascual.- Secretario: Francisco Valera Pintor.- Vocal: Víctor Lópe

    Vehicular Networks and Outdoor Pedestrian Localization

    Get PDF
    This thesis focuses on vehicular networks and outdoor pedestrian localization. In particular, it targets secure positioning in vehicular networks and pedestrian localization for safety services in outdoor environments. The former research topic must cope with three major challenges, concerning users’ privacy, computational costs of security and the system trust on user correctness. This thesis addresses those issues by proposing a new lightweight privacy-preserving framework for continuous tracking of vehicles. The proposed solution is evaluated in both dense and sparse vehicular settings through simulation and experiments in real-world testbeds. In addition, this thesis explores the benefit given by the use of low frequency bands for the transmission of control messages in vehicular networks. The latter topic is motivated by a significant number of traffic accidents with pedestrians distracted by their smartphones. This thesis proposes two different localization solutions specifically for pedestrian safety: a GPS-based approach and a shoe-mounted inertial sensor method. The GPS-based solution is more suitable for rural and suburban areas while it is not applicable in dense urban environments, due to large positioning errors. Instead the inertial sensor approach overcomes the limitations of previous technique in urban environments. Indeed, by exploiting accelerometer data, this architecture is able to precisely detect the transitions from safe to potentially unsafe walking locations without the need of any absolute positioning systems

    Revised reference model

    Get PDF
    This document contains an update of the HIDENETS Reference Model, whose preliminary version was introduced in D1.1. The Reference Model contains the overall approach to development and assessment of end-to-end resilience solutions. As such, it presents a framework, which due to its abstraction level is not only restricted to the HIDENETS car-to-car and car-to-infrastructure applications and use-cases. Starting from a condensed summary of the used dependability terminology, the network architecture containing the ad hoc and infrastructure domain and the definition of the main networking elements together with the software architecture of the mobile nodes is presented. The concept of architectural hybridization and its inclusion in HIDENETS-like dependability solutions is described subsequently. A set of communication and middleware level services following the architecture hybridization concept and motivated by the dependability and resilience challenges raised by HIDENETS-like scenarios is then described. Besides architecture solutions, the reference model addresses the assessment of dependability solutions in HIDENETS-like scenarios using quantitative evaluations, realized by a combination of top-down and bottom-up modelling, as well as verification via test scenarios. In order to allow for fault prevention in the software development phase of HIDENETS-like applications, generic UML-based modelling approaches with focus on dependability related aspects are described. The HIDENETS reference model provides the framework in which the detailed solution in the HIDENETS project are being developed, while at the same time facilitating the same task for non-vehicular scenarios and application

    Towards Automated Network Configuration Management

    Get PDF
    Modern networks are designed to satisfy a wide variety of competing goals related to network operation requirements such as reachability, security, performance, reliability and availability. These high level goals are realized through a complex chain of low level configuration commands performed on network devices. As networks become larger, more complex and more heterogeneous, human errors become the most significant threat to network operation and the main cause of network outage. In addition, the gap between high-level requirements and low-level configuration data is continuously increasing and difficult to close. Although many solutions have been introduced to reduce the complexity of configuration management, network changes, in most cases, are still manually performed via low--level command line interfaces (CLIs). The Internet Engineering Task Force (IETF) has introduced NETwork CONFiguration (NETCONF) protocol along with its associated data--modeling language, YANG, that significantly reduce network configuration complexity. However, NETCONF is limited to the interaction between managers and agents, and it has weak support for compliance to high-level management functionalities. We design and develop a network configuration management system called AutoConf that addresses the aforementioned problems. AutoConf is a distributed system that manages, validates, and automates the configuration of IP networks. We propose a new framework to augment NETCONF/YANG framework. This framework includes a Configuration Semantic Model (CSM), which provides a formal representation of domain knowledge needed to deploy a successful management system. Along with CSM, we develop a domain--specific language called Structured Configuration language to specify configuration tasks as well as high--level requirements. CSM/SCL together with NETCONF/YANG makes a powerful management system that supports network--wide configuration. AutoConf supports two levels of verifications: consistency verification and behavioral verification. We apply a set of logical formalizations to verifying the consistency and dependency of configuration parameters. In behavioral verification, we present a set of formal models and algorithms based on Binary Decision Diagram (BDD) to capture the behaviors of forwarding control lists that are deployed in firewalls, routers, and NAT devices. We also adopt an enhanced version of Dyna-Q algorithm to support dynamic adaptation of network configuration in response to changes occurred during network operation. This adaptation approach maintains a coherent relationship between high level requirements and low level device configuration. We evaluate AutoConf by running several configuration scenarios such as interface configuration, RIP configuration, OSPF configuration and MPLS configuration. We also evaluate AutoConf by running several simulation models to demonstrate the effectiveness and the scalability of handling large-scale networks

    Secure Diagnostics And Forensics With Network Provenance

    Get PDF
    In large-scale networks, many things can go wrong: routers can be misconfigured, programs can be buggy, and computers can be compromised by an attacker. As a result, there is a constant need to perform network diagnostics and forensics. In this dissertation, we leverage the concept of provenance to build better support for diagnostic and forensic tasks. At a high level, provenance tracks causality between network states and events, and produces a detailed explanation of any event of interest, which makes it a good starting point for investigating network problems. However, in order to use provenance for network diagnostics and forensics, several challenges need to be addressed. First, existing provenance systems cannot provide security properties on high-speed network traffic, because the cryptographic operations would cause enormous overhead when the data rates are high. To address this challenge, we design secure packet provenance, a system that comes with a novel lightweight security protocol, to maintain secure provenance with low overhead. Second, in large-scale distributed systems, the provenance of a network event can be quite complex, so it is still challenging to identify the problem root cause from the complex provenance. To address this challenge, we design differential provenance, which can identify a symptom event’s root cause by reasoning about the differences between its provenance and the provenance of a similar “reference” event. Third, provenance can only explain why a current network state came into existence, but by itself, it does not reason about changes to the network state to fix a problem. To provide operators with more diagnostic support, we design causal networks – a generalization of network provenance – to reason about network repairs that can avoid undesirable side effects in the network. Causal networks can encode multiple diagnostic goals in the same data structure, and, therefore, generate repairs that satisfy multiple constraints simultaneously. We have applied these techniques to Software-Defined Networks, Hadoop MapReduce, as well as the Internet’s data plane. Our evaluation with real-world traffic traces and network topologies shows that our systems can run with reasonable overhead, and that they can accurately identify root causes of practical problems and generate repairs without causing collateral damage

    From Understanding Telephone Scams to Implementing Authenticated Caller ID Transmission

    Get PDF
    abstract: The telephone network is used by almost every person in the modern world. With the rise of Internet access to the PSTN, the telephone network today is rife with telephone spam and scams. Spam calls are significant annoyances for telephone users, unlike email spam, spam calls demand immediate attention. They are not only significant annoyances but also result in significant financial losses in the economy. According to complaint data from the FTC, complaints on illegal calls have made record numbers in recent years. Americans lose billions to fraud due to malicious telephone communication, despite various efforts to subdue telephone spam, scam, and robocalls. In this dissertation, a study of what causes the users to fall victim to telephone scams is presented, and it demonstrates that impersonation is at the heart of the problem. Most solutions today primarily rely on gathering offending caller IDs, however, they do not work effectively when the caller ID has been spoofed. Due to a lack of authentication in the PSTN caller ID transmission scheme, fraudsters can manipulate the caller ID to impersonate a trusted entity and further a variety of scams. To provide a solution to this fundamental problem, a novel architecture and method to authenticate the transmission of the caller ID is proposed. The solution enables the possibility of a security indicator which can provide an early warning to help users stay vigilant against telephone impersonation scams, as well as provide a foundation for existing and future defenses to stop unwanted telephone communication based on the caller ID information.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    • …
    corecore