
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

Secure Diagnostics And Forensics With Network
Provenance
Ang Chen
University of Pennsylvania, saxtonac@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2219
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Chen, Ang, "Secure Diagnostics And Forensics With Network Provenance" (2017). Publicly Accessible Penn Dissertations. 2219.
https://repository.upenn.edu/edissertations/2219

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F2219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2219?utm_source=repository.upenn.edu%2Fedissertations%2F2219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2219
mailto:repository@pobox.upenn.edu

Secure Diagnostics And Forensics With Network Provenance

Abstract
In large-scale networks, many things can go wrong: routers can be misconfigured, programs can be buggy, and
computers can be compromised by an attacker. As a result, there is a constant need to perform network
diagnostics and forensics. In this dissertation, we leverage the concept of provenance to build better support
for diagnostic and forensic tasks. At a high level, provenance tracks causality between network states and
events, and produces a detailed explanation of any event of interest, which makes it a good starting point for
investigating network problems.

However, in order to use provenance for network diagnostics and forensics, several challenges need to be
addressed. First, existing provenance systems cannot provide security properties on high-speed network
traffic, because the cryptographic operations would cause enormous overhead when the data rates are high. To
address this challenge, we design secure packet provenance, a system that comes with a novel lightweight
security protocol, to maintain secure provenance with low overhead. Second, in large-scale distributed
systems, the provenance of a network event can be quite complex, so it is still challenging to identify the
problem root cause from the complex provenance. To address this challenge, we design differential
provenance, which can identify a symptom event’s root cause by reasoning about the differences between its
provenance and the provenance of a similar “reference” event. Third, provenance can only explain why a
current network state came into existence, but by itself, it does not reason about changes to the network state
to fix a problem. To provide operators with more diagnostic support, we design causal networks – a
generalization of network provenance – to reason about network repairs that can avoid undesirable side effects
in the network. Causal networks can encode multiple diagnostic goals in the same data structure, and,
therefore, generate repairs that satisfy multiple constraints simultaneously. We have applied these techniques
to Software-Defined Networks, Hadoop MapReduce, as well as the Internet’s data plane. Our evaluation with
real-world traffic traces and network topologies shows that our systems can run with reasonable overhead, and
that they can accurately identify root causes of practical problems and generate repairs without causing
collateral damage.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Andreas Haeberlen

Keywords
Diagnostics, Forensics, Provenance, Root-Cause Analysis, Software-Defined Networks

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2219

https://repository.upenn.edu/edissertations/2219?utm_source=repository.upenn.edu%2Fedissertations%2F2219&utm_medium=PDF&utm_campaign=PDFCoverPages

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2219

https://repository.upenn.edu/edissertations/2219?utm_source=repository.upenn.edu%2Fedissertations%2F2219&utm_medium=PDF&utm_campaign=PDFCoverPages

SECURE DIAGNOSTICS AND FORENSICS WITH
NETWORK PROVENANCE

Ang Chen

A DISSERTATION
in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2017

Andreas Haeberlen, Associate Professor of Computer and Information Science
Supervisor of Dissertation

Lyle Ungar, Professor of Computer and Information Science
Graduate Group Chairperson

Dissertation Committee:
Boon au Loo, Associate Professor of Computer and Information Science (Chair)
Zachary G. Ives, Professor of Computer and Information Science
Vincent Liu, Assistant Professor of Computer and Information Science
Wenchao Zhou, Assistant Professor of Computer Science, Georgetown University

SECURE DIAGNOSTICS AND FORENSICS WITH NETWORK
PROVENANCE

COPYRIGHT

2017

Ang Chen

Licensed under a Creative Commons Attribution 4.0 License.

To view a copy of this license, visit:

http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

Soli Deo Gloria

iii

Acknowledgments

First and foremost, I thank my advisor, Andreas Haeberlen, for taking me under his

wing. Andreas has been a wonderful advisor to me, providing a constant source of

wisdom, guidance, and support over the five years of my Ph.D. journey. Were it not

for his mentorship, I would not be here today.

I also thank my dissertation committee members, Boon au Loo, Zack Ives,

Vincent Liu, and Wenchao Zhou. In addition to providing valuable feedback on

this dissertation, they have also given me much helpful advice over the years.

I am very grateful for Boon’s mentorship on research, life, and beyond. His en-

couragement and support have been instrumental in my journey. Likewise, I thank

Wenchao for being a close mentor and friend to me.

is dissertation would not have been possible without my collaborators, whom

I am fortunate to have worked with, including Andreas Haeberlen, Boon au Loo,

Micah Sherr, Wenchao Zhou, Linh i Xuan Phan, Clay Shields, as well as fellow

students Yang Wu, Hanjun Xiao, Brad Moore, Mingchen Zhao, Yuankai Zhang,

Tavish Vaidya, Chirag Shah, Bob DiMaiolo, Max Demoulin, and Akshay Sriraman.

I have also greatly enjoyed the enlightening discussions with Zack Ives, Val Tannen,

Rajeev Alur, Joe Devietti, Mayur Naik, Ani Nekova, Chris Callison-Burch, Dave

Walker, and Jennifer Rexford. Moreover, I wish to thank my mentors and collabo-

rators before Penn: Rocky Chang, Edmond Chan, Xiapu Luo, Peng Zhou, Weichao

Li, Daoyuan Wu, Ka Pui Mok, Wai Ting Fok, Byron Gao, Zhaohui Cai, Chunwu

Yu, and Jingsong Cui.

e companions at CIS@Penn have made this journey full of fond memories,

for which I thank Yang Wu, Hanjun Xiao, Mingchen Zhao, Antonis Papadimitriou,

Arjun Narayan, Yifei Yuan, Chen Chen, Yang Li, Behnaz Arzani, Meng Xu, Nimit

Singhania, Steven Wu, Nathan Dautenhahn, Kevin Tian, and Wenrui Meng. My

gratitude also goes to my long-time friends, Jihong Qiao and Jinfeng Huang, Huan

Luo, Yue Li, Dongwei Yu, Peng Yi, Yaopeng Ge, and Yunfei Song.

iv

I wish to thank Micah Sherr, Jennifer Rexford, Vincent Liu, and T. S. Eugene

Ng for their support in my job search, as well as many others whom I cannot even

list here exhaustively.

I am extremely grateful to have Tenth Presbyterian Church and Tenth Interna-

tional Fellowship as my spiritual home in Philadelphia, and to walk closely with my

mentors and companions – Rev. Enrique Leal, Rev. Bruce McDowell, Rev. Carroll

Wynne, Rev. Jinan Zhang, Lani and Steve Shade, Joe and Yoon Park, Nasrat Ghat-

tas, Yang He, Yige Zhou, Yi-Lin Chiang, Stephen Russell, Xiaoping Chen, Antonis

Papadimitriou and enia Karavasili, Guiyun Zhang and Biao Zuo, Darryl John,

Saki and Charinet Georganas, Jerry Joyce, Evangeline Sim, Martin and Machiko

Whittaker, Teng Zhang, Yingchun Liu, Ping Wei, Marie Liu, Russ Pfeifer, Candy

Chen, Hung Bui, Qianhui Lin, Robert Johnson, Randall Drain, Nick Lamelza, and

Tom Jackson. I also thank Yongquan Yan and Yingting Jiao for their friendship, and

Sr. Mary Ann McIntyre, M.S.B.T., Rev. Doh Chun Ning, and Fr. Dan Joyce, S.J.,

for their spiritual direction and prayers.

I thank my parents for their love, support, and encouragement. ey have taught

me by example the value of hard work and persistence. Although they are half the

world away, they have always been there for me.

Last but not least, it is my tremendous blessing to have known and married my

wife, Xin, who has made this long journey worthwhile. Words cannot express how

thankful I am to have her always by my side. I am deeply indebted to Xin for her

loving care and unwavering support, and I dedicate this dissertation to her.

v

ABSTRACT

SECURE DIAGNOSTICS AND FORENSICS WITH NETWORK

PROVENANCE

Ang Chen

Andreas Haeberlen

In large-scale networks, many things can go wrong: routers can be misconfig-

ured, programs can be buggy, and computers can be compromised by an attacker.

As a result, there is a constant need to perform network diagnostics and forensics.

In this dissertation, we leverage the concept of provenance to build better support

for diagnostic and forensic tasks. At a high level, provenance tracks causality be-

tween network states and events, and produces a detailed explanation of any event

of interest, which makes it a good starting point for investigating network problems.

However, in order to use provenance for network diagnostics and forensics, sev-

eral challenges need to be addressed. First, existing provenance systems cannot pro-

vide security properties on high-speed network traffic, because the cryptographic

operations would cause enormous overhead when the data rate is high. To address

this challenge, we design secure packet provenance, a system that comes with a novel

lightweight security protocol, to maintain secure provenance with low overhead.

Second, in large-scale distributed systems, the provenance of a network event can be

quite complex, so it is still challenging to identify the root cause of a problem from

the complex provenance. To address this challenge, we design differential prove-

nance, which can identify a symptom event’s root cause by reasoning about the dif-

ferences between its provenance and the provenance of a similar “reference” event.

ird, provenance can only explain why a current network state came into existence,

but by itself, it does not reason about changes to the network state to fix a problem.

vi

To provide operators with more diagnostic support, we design causal networks – a

generalization of provenance – to reason about network repairs that can avoid unde-

sirable side effects in the network. Causal networks can encode multiple diagnostic

goals in the same data structure, and, therefore, generate repairs that satisfy multi-

ple constraints simultaneously. To validate these techniques, we have applied them

to Software-Defined Networks, Hadoop MapReduce, as well as the Internet’s data

plane. Our evaluation with real-world traffic traces and network topologies shows

that our systems can run with reasonable overhead, and that they can accurately iden-

tify root causes of practical problems and generate repairs without causing collateral

damage.

vii

Contents

Acknowledgements v

Abstract vii

List of Tables xii

List of Figures xv

1 Introduction 1

1.1 A provenance-based approach . 3

1.2 esis . 5

1.3 Contributions . 6

2 Background 9

2.1 Network diagnostics and forensics 9

2.2 Provenance . 13

2.3 Network provenance . 14

3 Secure Packet Provenance 18

viii

3.1 Overview . 21

3.2 e provenance graph . 24

3.3 e SPP protocol . 28

3.4 Case studies . 37

3.5 Implementation . 39

3.6 Evaluation . 40

3.7 Deployment . 51

3.8 Related Work . 57

3.9 Conclusion . 58

4 Differential Provenance 59

4.1 Overview . 62

4.2 Differential Provenance . 68

4.3 e DiffProv algorithm . 73

4.4 Implementation . 82

4.5 Evaluation . 83

4.6 Related Work . 95

4.7 Conclusion . 96

5 Causal Networks 97

5.1 Overview . 99

5.2 Intent-based network repair . 104

5.3 e NetGenie algorithm . 113

5.4 Evaluation . 116

5.5 Related Work . 122

5.6 Conclusion . 124

6 Conclusion 125

6.1 e benefits of provenance . 125

6.2 Limitations and future work . 126

ix

7 Appendix 148

x

List of Tables

3.1 Comparison between SPP and some existing diagnostic and forensic

primitives. 34

3.2 Hardware cost for hashing and building MHTs. 43

3.3 Several applications we built with SPP, and the lines of code (LoC)

they required. e code can be found in the appendix. 49

4.1 Number of vertexes returned by five different diagnostic techniques;

for SDN4, the two rounds of DiffProv are shown separately. Diff-

Prov was able to pinpoint the “root causes” with one or two ver-

texes in each case, while the other techniques return more complex

responses. 86

xi

5.1 Repairs generated based on individual intents rarely satisfy the op-

erator’s overall intent, whereas NetGenie can generate effective re-

pairs for all of our scenarios. An X/Y entry means that X repairs

were generated for the intent in that column, and Y of them satis-

fied the entire intent. Scenarios SDN2 and SDN3 only contain two

individual intents. e ‘Naïve’ column shows the probability that

a random combination of repairs for e1–e3 individually will satisfy

the overall intent. 118

xii

List of Figures

1.1 An example network with two routers that run a routing protocol.

A link(@X,Y,C) (route(@X,Y,C)) representation means that there

is a link (route) between X and Y with the cost of C. e routing

protocol computes network routes from links. 3

1.2 An example provenance tree that describes why there is a route be-

tween A and Google with a cost of 2. 4

2.1 Another example network with a shortest-path routing protocol. . 14

2.2 e rules for shortest-path routing. 15

2.3 e provenance tree of the state sroute(@A,B,2). 16

3.1 Data flow in the commitment protocol. 29

3.2 Computation cost of SPP’s commitment protocol, normalized to

the power of one core. e cost of hashing dominates. (e other

bars are too low to see.) . 42

3.3 Computation cost for different packet sizes in the two traces with

the highest costs. 43

xiii

3.4 Bandwidth consumption of SPP’s commitment protocol, as a frac-

tion of the raw link capacity. 45

3.5 Data rates for different auditing rates ϕ 46

3.6 Computation cost for answering queries. 48

3.7 Code for tracing a packet’s traversed path. 50

4.1 Example scenario (SDN debugging). 62

4.2 An example provenance tree . 63

4.3 Provenance trees for P′ (a) and P (b) from Figure 5.1. Each circle

corresponds to a box in Figure 4.2, but the details have been omitted

for clarity. Although the two full trees have some common subtrees

(green), most of their vertexes are different (red). Also shown is the

single vertex in (a) that represents the root cause of the routing error

that affected P′. 63

4.4 Pseudocode of the DiffProv algorithm. e , ,

, and  functions are explained in Sec-

tions 4.3.2, 4.3.4, 4.3.5, and 4.3.6 respectively. e ,

, and  functions are introduced to estab-

lish equivalence between corresponding tuples in TG and TB (Sec-

tion 4.3.3). 72

4.5 A simplified example showing the differential provenance for a one-

step derivation. A(1,2), A(2,2) are the seeds; equivalent fields

are underlined, and differences are boxed. Differential provenance

transforms B(1,2,3) into B(1,2,4) to align this derivation. 74

4.6 Logging rate for different traffic rates. 88

4.7 Logging rate with different packet sizes at 1Gbps. 89

4.8 Turnaround time for answering differential provenance queries

(left), and Y! queries (right). DiffProv’s reasoning time (shown as

“Other”) is too small to be visible. 91

xiv

4.9 Decomposition of DiffProv’s reasoning time. For SDN4, we have

stacked its two rounds together. 92

5.1 An example SDN network. 100

5.2 An example diagnostic intent. 101

5.3 e workflow of intent-based diagnostics. 102

5.4 Algorithms for constructing causal networks, and for finding repairs. 105

5.5 An example causal network constructed from a repair intent. . . . 108

5.6 Pseudocode of the NetGenie algorithm. 113

5.7 Syntax of the Aladdin language. 114

5.8 e size of snapshots grows (mostly) linearly with the number of

flow entries in the network. 120

5.9 e repair generation speed for different scenarios. NetGenie re-

turns an answer within one minute in all cases. 122

5.10 A decomposition of NetGenie’s reasoning latency. 123

7.1 Code for tracing a received packet’s reverse path. 149

7.2 Code for identifying the node that dropped a packet. 149

7.3 Code for attesting to the transmission of a packet. 149

7.4 Code for identifying the link on a path with the highest delay. . . 150

7.5 Code for the average throughput of a link. 150

xv

1
Introduction

Distributed systems have become critical infrastructure in our life. ey enable

many important network services, including online banking, video streaming, and

electronic medical records, and they interconnect a wide range of devices, rang-

ing from desktop computers, mobile phones, to Internet-of-ings devices, such

as networked printers and cameras. Over time, these systems have also grown in

size and complexity – commercial data centers typically consist of tens of thousands

of servers [19], and even campus networks can have hundreds of thousands of ac-

cess control list rules and forwarding entries [101]. Moreover, due to the advent

of Software-Defined Networks (SDN), today’s distributed systems are also highly

dynamic, as their configurations can be constantly changed by software controllers.

In such large-scale, complex systems, many things can go wrong. As the many

incident reports on Outages [15] and NANOG [25] mailing lists can attest, even

well-maintained networks can experience a variety of problems – links can fail [70],

nodes can be misconfigured [167], and software controllers can have bugs [168]. In

the infamous AS7007 incident [6], for instance, a domain accidentally announced

1

routes to a large portion of the Internet and caused disconnectivity for two hours. In

a more recent case, Amazon’s S3 storage service went down for more than four hours

simply due to a mistyped command, bringing down 150,000 websites with it [3].

ese outages are very costly – major data centers can lose half a million dollars in

a five-minute outage [1], and Amazon’s typo command alone was estimated to have

caused an overall economic loss of $150 million [2].

To respond to these problems, network operators need to perform diagnostics –

understanding why a symptom event came about, e.g., why a packet was misrouted,

identifying the problem root cause, e.g., a certain misconfigured flow entry, and

rolling out a fix to bring the network back to a good state. Unfortunately, this can

be quite challenging due to the complexity of today’s distributed systems. Blindly

digging through system logs and configurations is no easier than finding needles in

a haystack. Operators’ jobs would be easier if there is a way to understand the causal

relations between network events. However, this is not straightforward in a com-

plex network, because it requires reasoning about the interplay between a myriad

of factors in the network, and problems can happen due to seemingly “off-path”

causes [162]. e difficulty in reasoning about causality also complicates the net-

work repair process, because pushing out a configuration change has network-wide

effects and may accidentally cause damage. In fact, there is no shortage of “death-

by-recovery” incidents from major data centers [62, 72, 129].

Adding to this complexity, problems can also happen due to adversarial attacks,

ranging from brute-force Denial-of-Service (DoS) attacks [26] to vulnerability ex-

ploits [61] to subtle side channel [164] or covert channel attacks [49]. Handling

attacks is even trickier, because attackers may lie about their actions and plant false

data to cover their tracks [10]. erefore, we also need the ability to perform net-

work forensics to track down attackers. Forensic techniques need to be robust even in

an adversarial environment, because unreliable forensics can lead to false accusations

or even send innocent people to jail [160, 16, 22].

2

A" B"

link(@B,"Google,"1)"link(@A,"B,"1)"
link(@B,"A,"1)"

route(@X,"Y,"cost)":9"link(@X,"Y,"cost)"

route(@B,"Google,"1)"
route(@B,"A,"1)"

route(@A,"B,"1)"
route(@A,"Google,"2)"

route(@X,"Y,"cost)":9"route(@X,"Z,"cost1),"link(@Z,"Y,"cost2),"cost=cost1+cost2"

Rou$ng'protocol:'

Figure 1.1: An example network with two routers that run a routing protocol. A
link(@X,Y,C) (route(@X,Y,C)) representation means that there is a link (route) be-
tween X and Y with the cost of C. e routing protocol computes network routes
from links.

1.1 A provenance-based approach

Over the years, researchers have proposed many systems to implement different diag-

nostic and forensic tasks [118, 110, 37, 157, 113, 41, 98, 99, 162, 64, 80, 119, 135],

but they tend to be point solutions that address specific problems. For instance, IC-

ING [135] proposes to extend the Internet architecture so that users can validate

network paths that packets have taken, NetReview [80] proposes to allow network

domains to audit each other, detect BGP problems, and attribute the problems to

misbehaving domains, Paris-traceroute [41] aims to uncover load-balanced paths in

the Internet, and Netdiff [119] aims to measure and compare performance differ-

ences of ISPs. Each of these tasks represents an important goal. However, many

of the existing solutions tend to be problem-specific – solutions developed for one

task rarely help with other tasks. As a result, in order to address all identified prob-

lems, it is necessary to deploy all solutions, which can be cumbersome and costly.

Moreover, sometimes, the proposed solutions may require extensions that are in-

compatible with each other.

In this dissertation, we propose to build better support for diagnostics and foren-

sics in a more systematic fashion using a technique called network provenance [183].

3

link(@B,)Google,)1))

link(@A,)B,)1)) route(@B,)Google,)1))

route(@A,)Google,)2))

Provenance)tree)root)

Basic)states)

Figure 1.2: An example provenance tree that describes why there is a route between
A and Google with a cost of 2.

At a high level, provenance tracks causality between network states and events in

the form of a directed graph, where vertexes represent network states and events,

and edges represent causality. Consider the network in Figure 1.1 as a simplified

example, which consists of two routers (each with its local routing table), two links,

and a server. When applied to this scenario, provenance would track the causality

between routes and links, based on how the routing protocol executes.

Such tracked causality can be helpful for diagnostics and forensics, because it

can explain why a certain network state or event came about – for instance, how

a particular route was computed. A user can ask provenance queries, e.g., about a

certain route, and the provenance system would return its provenance tree, where the

root represents the event of interest, its children represent the direct causes, until we

arrive at the leaves in the tree, which represent basic states and events in the network.

Figure 1.2 shows an example provenance tree for route(@A,Google,2), or the route

between A and Google with a cost of 2, in the example network in Figure 1.1. Since

network provenance only tracks the relevant factors for a particular diagnostic task,

operators can safely leave out any irrelevant factors. For instance, to understand

why the route was computed, an operator can narrow down her focus to the nodes

present in the route’s provenance tree.

ere has been existing work on networking provenance, including ExSPAN [183]

and DTaP [182] that maintain provenance for distributed systems, SNP [180] that

cryptographically signs the provenance data to provide security, and Y! [169] that

4

explains why a certain expected network event failed to happen. However, there are

at least three challenges that have not been addressed in previous work. First, basic

provenance does not provide the security and privacy properties needed for Internet

diagnostics and forensics, where networks span multiple domains, carry high-speed

data, and could even be compromised. SNP [180] is a useful starting point for secur-

ing provenance data, but it does not scale to high-speed traffic on the Internet’s data

plane, nor does it provide the privacy properties needed in multi-domain setting.

Second, existing work has mostly focused on maintaining network provenance, but

not how to leverage it for root-cause analysis. In a large-scale distributed system, the

provenance of an event of interest can be quite complex [169]. erefore, having

the provenance data is not enough, as operators still face the challenge of identifying

a concise “root cause” from the complex provenance. Last but not least, provenance

by itself only explains how a current network state came into existence, but it does

not reason about potential ways of changing the network state to fix a problem while

avoiding undesirable side effects caused by the change.

1.2 Thesis

In this dissertation, we argue that network provenance can be a powerful tool that en-

ables better support for network diagnostics and forensics, and we demonstrate this

by developing novel techniques and systems that address the identified challenges.

First and foremost, in order to use provenance for Internet diagnostic and forensic

tasks, we need to capture secure provenance data in high-speed networks. is requires

addressing two challenges: a) overhead, and b) privacy. Since the Internet’s data

plane has very high data rates, capturing secure provenance on the data plane can

lead to substantial computation and storage overheads. Moreover, since there is often

a need to perform diagnostics and forensics across domains, the diagnostic process

also needs to preserve the privacy of users and ISPs. erefore, we need to design

a practical provenance system that can operate on high-speed data and provide the

5

necessary security and privacy properties.

Second, although having a practical provenance system can be helpful, the abil-

ity to capture provenance is only a starting point. In large-scale distributed systems,

the provenance of an event of interest can also be quite complex: in many SDN

scenarios, for instance, typical provenance trees can contain hundreds or even thou-

sands of tuples [169]. Operators still need additional help in digesting the collected

provenance when performing diagnostics. erefore, we need to develop techniques

to process the provenance data and identify the root cause of a network problem.

Ultimately, network operators need to find a repair to fix network problems.

Provenance by itself merely explains why the current network state came into exis-

tence, but it does not offer support to reason about repairs, or changes, to the current

state. is step is challenging because the repair process can have network-wide ef-

fects – it is necessary to ensure that a repair not only just fixes the symptom at hand,

but also does not cause undesirable side effects elsewhere in the network. erefore,

we need to develop techniques that generate high-quality network repairs that avoid

collateral damage to the network.

1.3 Contributions

In Chapter 2, we start by discussing related work on network diagnostics and foren-

sics, and introduce more background on network provenance. We then address the

challenges identified above and make the following contributions:

1. In Chapter 3, we present secure packet-level provenance, a system that can pro-

vide security and privacy properties on high-speed Internet traffic.

Our key insight is that many identified diagnostic and forensic tasks share a

common functional core, and that provenance is a good primitive for support-

ing this core. We design a provenance system called SPP that can maintain and

query secure provenance at line rate in the presence of Byzantine adversaries.

6

We show that SPP can support a wide range of diagnostic and forensic tasks

in the Internet. Using software and hardware prototypes, we also demonstrate

that SPP has low computation, storage and bandwidth overheads.

2. In Chapter 4, we present differential provenance, a technique to identify the

root causes of network problems from complex provenance data.

Our key insight is that network problems are often anomalies rather than the

norm, so we typically have “working” and “non-working” instances ready avail-

able – for instance, a packet that was misrouted, and a similar packet that was

routed correctly. When such “reference” events exist, it is often effective to

reason about the differences between the provenance of the symptom event

and of the reference event to identify the root causes.

We present an algorithm that can generate differential provenance, and a sys-

tem called DiffProv that implements the algorithm. Our evaluation in the

context of SDNs and Hadoop MapReduce demonstrates that DiffProv can

identify problem root causes very accurately.

3. In Chapter 5, we propose causal networks – a generalization of provenance –

that can generate network repairs while avoiding undesirable side effects.

Our observation is that network operators often expect a successful repair to

satisfy multiple constraints – for instance, the repair should make a server re-

ceive DNS traffic, and another server to receive HTTP traffic. Existing prove-

nance systems only reason about individual events, not complex goals that in-

volve multiple events. We add support for this capability by generalizing net-

work provenance to causal networks, which can encode multiple constraints

in a single data structure, and be used to generate network repairs that satisfy

complex diagnostic goals simultaneously.

We present an algorithm that leverages causal networks to perform network

repair, and a prototype debugger called NetGenie that implements the algo-

7

rithm. Our evaluation shows that NetGenie can generate repairs for SDNs

without causing collateral damage.

Finally, in Chapter 6, we conclude the dissertation with potential future work.

8

2
Background

In this chapter, we discuss related work on network diagnostics and forensics in

Section 2.1, and we then provide more background on provenance in Section 2.2,

as well as its applications in distributed systems in Section 2.3.

2.1 Network diagnostics and forensics

Over the years, many researchers have considered the problem of network diagnostics

and forensics, and addressed a variety of challenges in this space.

2.1.1 Network diagnostics

Many debuggers have been proposed for diagnosing distributed systems. Like tra-

ditional debuggers, they can produce a form of “backtrace” to help operators un-

derstand what happened in a distributed system. For instance, ndb [86] and Net-

Sight [87] are two example systems that can produce “packet histories” in SDNs.

As packets traverse SDN switches, the switches can assemble “postcards” about the

9

packets and send them to centralized NetSight servers. e servers can then answer

diagnostic queries on what happened to a particular packet. SDN traceroute [28]

considers the problem of performing traceroutes without causing the network state

to change upon the probe traffic. CherryPick [161] also traces packets in SDNs,

and it aims to reduce the tracing overhead by only recording a small number of

traversed links that can represent an end-to-end path. OFRewind [171] provides a

record-and-replay technique in SDNs that can generate traces that are temporally

consistent in split forwarding architectures such as OpenFlow. X-Trace [66] is a

tracing framework that can tag network operations with task identifiers, and trace

the requests across different layers of a distributed system.

Debugging can also be done by dynamic testing, such as in ATPG [174],

BUZZ [63], DEMi [150], and MCS [151]. ATPG [174] can generate a mini-

mal set of test packets that can exercise all rules in a network for testing purposes.

BUZZ [63] can generate test cases for stateful networks with context-dependent

policies, and help uncover policy violations. MCS [151] can identify a minimal

sequence of inputs in SDNs that triggers a certain bug. DEMi [150] uses delta

debugging to minimize faulty execution traces in distributed systems.

Statistical learning can also be an effective approach to diagnostics. NetMedic [97]

uses an inference-based approach to find likely root causes based on historical be-

haviors of system components. PeerPressure [167] applies Bayesian estimation to

configurations collected from a large number of machines in order to diagnose

misconfigured machines. NetPoirot [39] uses machine learning on TCP statistics

to identify responsible entities for an observed network problem. NetPrints [29]

accumulates and retrieves shared knowledge of home PCs and uses decision trees to

perform configuration mutations, or fixes.

10

2.1.2 Network forensics

Researchers have also worked on different aspects of network forensics. Source

authentication and path validation systems are one class of forensic techniques.

AIP [34] uses self-certifying addresses to detect and prevent spoofed network traf-

fic. Passport [113] can verify whether a certain packet originated from a particular

source domain. SPIE [157] can trace a packet’s traversed path and determine the

source of spoofed traffic. HAL [82] can attest to the transmission of a particular

packet. ICING [135] not only authenticates the source addresses of network traffic,

but also validates its traversed paths.

Performance accountability systems can help verify the SLA of service providers.

Argyraki et al. [36] propose that, whenever a packet is dropped, the corresponding

network component generates a feedback report (a “packet obituary”) that is sent

back to the source; previous hops remember each packet for a short while and add

some path information when they see an obituary pass by. A later system, AudIt [37],

adds the security features but drops the per-packet granularity in favor of aggregate

delay and loss rates. Network Confessional [38] provides similar properties, but

allows individual domains to tune the amount of statistics reporting.

Researchers have also proposed solutions to address specific kinds of network mis-

behaviors. For instance, Liberatore et al. [111] investigate the problem of child porn

trafficking and propose to enhance the evidence of child porn possession by tagging

application-level data with forensic tags, Glasnost [58] and NetPolice [178] perform

end-to-end measurements to detect traffic differentiation, and Web Tripwires [145]

introduces self-checks into web pages to detect in-flight modifications.

2.1.3 Verification and synthesis

Recently, there has been an active line of research that uses verification and synthesis

techniques to ensure the correctness of networks before deployment, in contrast to

diagnosing problems after they happen.

11

Verification can eliminate bugs for certain types of networks. Anteater [120],

Header Space Analysis [101], NetPlumber [100], VeriFlow [102], and Libra [175]

can perform static analysis on data planes and detect violation of a high-level specifi-

cation. Batfish [65] can derive data planes that would emerge from a set of configu-

rations, and check whether desirable properties hold on these data planes. Con-

figChecker [31] and FlowChecker [30] convert network rules into Boolean for-

mulas and check network invariants on them. Flowlog [137], NetKAT [35], and

Kinect [104] are new domain-specific languages for programming SDNs.

Although verification can be a powerful technique, a full verification of complex

networks is still hard to achieve, and most existing verification efforts are restricted

to stateless networks [101, 100, 102, 35]. Diagnostics and forensics, however, is a

less ambitious goal – it does not aim to prevent problems from happening, and in

return, these techniques are oftentimes applicable to more complex networks, even

distributed systems in general. Moreover, verification does not obsolete diagnostics,

as they are orthogonal problems – if the verification process finds a violation, one

still needs to (manually) identify the root cause and roll out a fix.

e goal of synthesis is to produce a network that satisfies a high-level specifica-

tion. For instance, NetEgg [173] can synthesize SDN policies from from example

scenarios, Condor [149] can synthesize network topologies that satisfy high-level

requirements expressed in a Topology Description Language, [123] can synthesize

network updates and their correct ordering. Like network verification, synthesis is

also restricted to relatively simple types of networks, and it requires a human oper-

ator to explicitly write down her specification. Network diagnostics, on the other

hand, does not aim to synthesize a network from scratch; rather, it aims to find a

small change to an existing network to fix observed problems.

12

2.2 Provenance

Now that we have provided a high-level overview on the literature on network diag-

nostics and forensics, we turn to introduce more background on provenance in this

section.

e concept of provenance was first developed in the database community [47]

to describe the origin and history of data. Over time, several notions of provenance

have been proposed [52], including why-provenance, where-provenance, and how-

provenance, and they capture different aspects of the data lineage. Why-provenance

associates a query result with a set of database tuples that it has been computed

with. One of its applications is to address the “view deletion” problem – finding a

set of input data items to delete, so that a result tuple in a particular view can be

deleted [48]. How-provenance is a further generalization, as it also captures how

the result tuple came about following the query execution steps. It has been used,

for instance, in data sharing systems to assign trust to tuples according to how they

have been computed [75]. Different than why-provenance and how-provenance,

where-provenance does not describe how a result tuple was computed, but rather

where a particular data field has been copied from. One example application of

where-provenance is to propagate annotations from source data items to a particular

view [44].

Over the years, provenance has become a rich problem domain in the database

community. Green et al. [74] lay the theoretical foundation of provenance as a

semiring algebraic structure, and Amsterdamer et al. [32] further extend the struc-

ture to semimodules to capture aggregate queries. Meliou et al. [125, 124, 126] use

provenance to analyze how to make a particular query answer appear or disappear,

which can help diagnose wrong database queries or problematic source data. Ives et

al. [91] apply random walk algorithms to provenance graphs for ranking and rec-

ommending data items. Davidson et al. [55] consider the problem of answering

provenance queries when the privacy of data items or of the workflow is a concern.

13

A" B"

link(@A,"C,"1)"
route(@A,"B,"3)"
route(@A,"B,"2)"

C"

link(@A,"B,"3)"

sroute(@A,"B,"2)" LinkCost=1+

LinkCost=1+

LinkCost=3+

Figure 2.1: Another example network with a shortest-path routing protocol.

In fact, provenance has found its use in many other application domains beyond

databases. In an operating systems context, LPM [43] maintains provenance in the

Linux kernel and uses it for data loss prevention. For storage systems, PASS [132]

leverages provenance to detect system changes and to perform intrusion detection,

and Muniswamy-Reddy et al. [133] further extend PASS for cloud storage systems.

On mobile platforms, Quire [57] tracks provenance on Android to defend against

confused deputy attacks. For distributed systems, SPADE [69] is a middleware for

cross-platform provenance collection, and ExSPAN [183] uses network provenance

to explain why a certain network state came into existence.

2.3 Network provenance

is dissertation is particularly related to network provenance [183], which uses a

declarative networking model [115] that views networks and distributed systems as

databases, and network events and states as database tuples. Here, a distributed

system consists of a set of nodes that are interconnected by a network, and they

communicate with each other by sending and receiving messages. Each node has a

set of states, or tuples, that are stored in a database. For instance, BGP routers would

have a route relation, and an entry route(@X,Y,C) in the relation would mean that

router X has a path to router Y with cost C. e symbol @ describes the distributed

nature of the system–it specifies the location where a particular relation is hosted;

in the above example, the entry is hosted on router X. ere is a set of intensional

tuples that represent basic facts about the system; for instance, the fact that there

14

r1: route(@S,D,C) :- link(@S,D,C)
r2: route(@S,X,C) :- route(@S,X,C1), link(@X,D,C2), C=C1+C2
r3: sroute(@S,D,MIN<C>) :- route(@S,D,C)

Figure 2.2: e rules for shortest-path routing.

exists a link with a cost of C between two routers can be represented by a tuple

link(@X1,X2,C). ere is also a set of extensional tuples that are derived from the

intensional tuples; for instance, a one-hop route route(@X1,X2,C) can be derived

from a direct link link(@X1,X2,C). In Figure 2.1, we show an example network that

is slightly more complex than our earlier example in Figure 1.1.

e nodes run a distributed protocol that specifies how tuples should be derived

when and where; derived tuples can also be sent and received via the network as mes-

sages. e distributed protocol can be written as a set of declarative rules in Network

Datalog (NDlog) [115], which is a Datalog variant with an extension that specifies

tuple locations with the @ symbol. NDlog rules are of the form q:-p1,p2,· · ·,pk,

which means that the head tuple q (i.e., the conclusion) should be derived whenever

the body tuples p1 through pk (i.e., the predicates) are all present.

For instance, consider the shortest-path routing protocol shown in Figure 2.2

with three rules. e first rule, r1: route(@S,D,C) :- link(@S,D,C), describes

that whenever there is a link from S to D with the cost C, a one-hop route from S to

D with the same cost should be derived. e second rule, r2: route(@S,D,C) :-

route(@S,X,C1),link(@X,D,C2), C=C1+C2, describes that a route from S to D with

a cost of C can be derived by a route from S to an intermediate hop X with a cost of

C1, together with a direct link from X to D with a cost of C2, where C=C1+C2. e

final rule, r3: sroute(@S,D,MIN<C>) :- route(@S,D,C), describes that the shortest

distance from S to D is obtained by aggregating all routes between them and picking

the minimum cost.

Under this model, a network execution can be viewed as a series of tuple inser-

15

link(@A,)C,)1))

link(@A,)B,)3))

route(@A,)B,)2))

sroute(@A,)B,)2))

Derived'by'r3'

Derived'by'r1'

route(@A,)B,)3))

route(@A,)C,)1)) link(@C,)B,)1))

Derived'by'r2'Derived'by'r1'

Figure 2.3: e provenance tree of the state sroute(@A,B,2).

tions and deletions. An execution is always triggered by the insertion or deletion of

base tuples, which are entries in the intensional relations, or external events, e.g., a

network operator installs a new configuration, a packet arrives at a border router,

etc. ey will then trigger a set of NDlog rules, and generate additional derived tu-

ples in the extensional relations, e.g., a new configuration results in a routing table

update, a received packet gets forwarded to the next hop, etc. NDlog programs are

executed using pipelined semi-naïve evaluation [115], where each received tuple can

be immediately processed. We also assume that, after a set of updates, the system

eventually stabilizes and converges to a fixedpoint.

is declarative model makes provenance very easy to see. For instance, Fig-

ure 2.3 shows the provenance tree of the routing state sroute(@A,B,2) on the node A

in Figure 2.1. It can be interpreted as follows. e shortest-path routing protocol has

derived a routing state sroute(@A,B,2) from route(@A,B,2) and route(@A,B,3)

using the rule r3. erefore, the provenance of sroute(@A,B,2) is simply the ex-

istence of the states route(@A,B,2) and route(@A,B,3), as well as the execution of

the rule r3. In turn, the provenance of the state route(@A,B,2) is the application of

rule r2 on the states route(@A,C,1) and link(@C,B,1), where node C is the inter-

mediate hop between A and B. Finally, the provenance of the states route(@A,B,3)

and route(@A,C,1) is the application of r1 on the basic states link(@A,B,3) and

link(@A,C,1), respectively.

Using the above system model, ExSPAN [183] has opened up a line of work

16

on network provenance by tackling a set of challenges in maintaining and querying

provenance in a distributed setting, and showing that network provenance is prac-

tical for a range of distributed protocols, such as BGP and Chord. DTaP [182]

further adds a temporal dimension in the provenance data, because network states

– unlike traditional database tuples – tend to be short-lived. SNP [180] addresses

challenges that arise due to adversaries in distributed systems that may corrupt or

fabricate provenance data. Y! [169] uses counterfactual reasoning to explain why

a missing event in a distributed system failed to happen. Meta provenance [168]

generalizes the notion of provenance to capture both data and program code to re-

pair SDN controller software. Chen et al. [51] propose a technique to compress

distributed provenance data for storage savings. is dissertation is related to these

work on network provenance, and indeed, builds on some of the above projects; but

it addresses several open challenges in network provenance, as we have explained in

Section 1.2.

17

3
Secure Packet Provenance

Diagnostics and forensics were not among the top priorities for the original design of

the Internet [53], and as a result, the architecture offers relatively little direct support

for them. At the interdomain level, the only features that are likely to be available

are ICMP and a few IP header options, and even these are often disabled [81] or

implemented inconsistently [153]. us, when an operator encounters a problem

that is not limited to her own network (such as bad performance on a given path),

there is relatively little tool support; the best option is still often to post a message

to a mailing list like NANOG, or to call other operators on the phone.

Over the years, a variety of diagnostic and forensic challenges have been iden-

tified. ese include diagnosing high delay, reordering, or loss [118, 110, 37],

identifying the source of attack traffic [157, 113], localizing failures [41, 98, 99],

detecting prefix hijacking [179], testing for traffic differentiation [178], topology

mapping [153], finding the root cause of routing problems [162, 64], collecting ev-

idence of cybercrimes [111], and verifying SLAs between ISPs [80, 119, 135], and

so on. Each of these challenges involves a specific problem deep within the network,

18

which is difficult to diagnose without network-level support.

In the absence of direct support from the network, most existing work takes one

of the following two approaches. e first is to approximate the missing functional-

ity by creatively “abusing” a feature that exists for some other purpose (such as cer-

tain header options [153] or ICMP responses [41]). is is often surprisingly effec-

tive, but it typically relies on underspecified behavior and/or idiosyncrasies of certain

router implementations, which can diminish data quality and require an enormous

amount of ingenuity to work around (e.g., [153, 98]). e second approach is to

extend the architecture with a new feature of some kind (e.g., [135, 34]), such as

a new protocol, header field, etc. Such extensions provide a “clean” solution for

the problem at hand, but deploying new features in the entire network is extremely

difficult – so difficult, in fact, that hardly any of the proposed solutions have been

widely deployed so far. To make matters worse, existing proposals typically focus on

solving one particular problem and do not help with any of the other diagnostic and

forensic problems that have been identified; thus, a comprehensive solution would

require deploying all of the proposed extensions in combination. Given the ISPs’

reluctance to make major changes to the network, this seems unrealistic.

In this chapter, we ask the following question: If ISPs were willing to deploy

only one new primitive in the network to help with diagnostics and forensics, what

should that primitive be? Our key observation is that, while the existing solutions

seem very different at first glance, they all essentially answer variants of the same ques-

tion: “What were the causes and/or effects of a given past event in the network?”. If

the network could remember recent events (such as packet transmissions) and the

corresponding causes and effects, even for a short amount of time, many forensic

problems would be easy to solve. For instance, reverse traceroute [98] could locate

the source of packet drops simply by following packets on their way from the sender

to the receiver (and potentially back), and note the point at which they no longer

made progress. Other forensic problems would require some post-processing: for

19

instance, WhyHigh [110] could find the source of high latencies by inspecting the

differences between packet transmission and arrival times, and Netdiff [119] could

calculate the throughput on each path segment to find the bottleneck. However,

this processing could be done at the edge without further changes to the core.

ere is one additional feature that some forensic systems require: the ability to

prove the correctness of a given answer [80, 180, 113, 34, 135]. is is necessary

because attackers may falsify evidence to cover their tracks [109]. Although the

strength of proofs and the properties being proven sometimes vary, in essence they are

all concerned with the presence or absence of particular entries in our hypothetical

ledger: for instance, the PoPs in ICING [135] essentially correspond to a chain of

entries that connects a packet to a particular sender, the signatures in Passport [113]

and AIP [34] correspond to the beginning of this chain, and the logs in SNP [180]

correspond to causal connections along the chain.

is commonality suggests that it may be possible to deploy a single primitive in

the network, once and for all, and then re-implement the previously proposed diag-

nostic and forensic systems as “applications” on top of it, without further changes

to the network core. In this chapter, we propose one specific candidate for such a

primitive that we call secure packet provenance (SPP). SPP is based on the concept

of data provenance from the database literature [47], which has already been used

for diagnostics and forensics in other contexts, such as operating systems [89] and

distributed systems [180, 183, 170]. However, as we show experimentally in Sec-

tion 4.5, existing solutions would be completely overwhelmed with the high data

rates at the network data plane. SPP solves this problem by avoiding cryptographic

operations on the fast path and by relying mostly on ephemeral state; as a result, it

outperforms the state-of-the-art secure provenance system by several orders of mag-

nitude.

While the key insights of this chapter are architectural (that there can be a single

shared primitive, and that SPP is a good candidate), we have also designed and im-

20

plemented a concrete protocol that could provide SPP in the Internet. Other than

a small link-layer header, our protocol does not require any changes to the current

data plane and can be implemented efficiently in hardware. (We demonstrate this

with a NetFPGA prototype that runs at 10 Gbps.) We also used SPP to approxi-

mate six different diagnostic primitives from the literature, and we show that with

SPP, each primitive can be implemented with just a few lines of code. Our main

contributions are:

• Two architectural insights: that a single shared primitive can support a wide

variety of diagnostic and forensic tasks, and that provenance is a good candidate

for such a primitive (Section 5.1);

• the definition of a secure provenance model for the Internet’s data plane (Sec-

tion 3.2);

• SPP, a concrete protocol for maintaining secure provenance (Section 5.3);

• case studies showing that SPP can approximate a number of existing diagnostic

systems (Section 3.4);

• software and hardware prototypes (Section 4.4); and

• an experimental evaluation, as well as proof-of-concept implementations of six

diagnostic primitives on SPP (Section 4.5).

We discuss deployment strategies and their implications in Section 3.7, and we

present related work in Section 4.6.

3.1 Overview

Diagnostics and forensics were not among the top priorities for the original Inter-

net [53], as it was small in scale and experimental in nature. But today’s Internet,

with its broad range of applications, has attracted problems of all kinds [144, 110,

88, 95, 21, 109], which sometimes cause losses of millions of dollars [76]. But

the available tools are far from adequate: packet traces, IP addresses [22], and even

21

thumbnail images [16] are serving as evidence; due to the lack of reliable forensics,

innocent users have been falsely accused of wrongdoings [160, 16, 22]. We believe

that it is time to add better support for diagnostics and forensics.

3.1.1 Goal: A single primitive

ere is a rich body of work on diagnostic and forensic systems that solve specific

variants of this problem, typically by extending the Internet in one way or an-

other [110, 34, 38, 41, 58, 59, 82, 87, 113, 98, 118, 130, 135, 145, 148, 157,

159, 178]. However, the resulting variety of problem-specific, mutually incompati-

ble extensions represents a challenge for widespread deployment. Hence, rather than

trying to improve any individual one of these systems, we ask: Is there a single prim-

itive that could be added to the Internet to solve a wide range of diagnostic and forensic

challenges? Such a primitive would not necessarily match the efficiency of the more

specialized solutions, since a shared primitive would need to provide a strict super-

set of the functionalities of the individual primitives; but it could certainly be more

efficient than deploying all of them together. Moreover, if so many existing diagnos-

tic and forensic systems are based on some variant of this primitive, we have good

reasons to believe that it will be useful for solving future, as-yet-unknown foren-

sic challenges as well – which is a key requirement for any possible addition to the

network architecture.

In this chapter, we propose secure packet provenance as a candidate for such a

primitive. At a high level, provenance [47] tracks how data flows through the net-

work by recording each event, e.g., the transmission of a packet, or the installation

of a new route, and its direct causes and effects. With this information, any event

of interest can be explained by recursively looking up the causes of the event until a

set of “root causes” (such as the transmission of a new packet at an end host, or the

origination of a new route) is reached. Additionally, our proposed primitive collects

cryptographic evidence of network-level events; this can be used to authenticate the

22

provenance even in adversarial settings.

3.1.2 Challenges

Intuitively, maintaining a secure provenance graph for the Internet would be suffi-

cient for diagnostics and forensics, since it contains a complete and accurate descrip-

tion of what happened, why, when, and where. However, two key challenges need

to be solved to make this approach practical.

Challenge #1: Overhead. A complete provenance graph of the entire Internet data

plane would quickly consume any amount of space that could realistically be pro-

vided. We propose to solve this by keeping the full provenance only very briefly,

and by offering a way to save (and later authenticate) any parts of the graph that

are relevant for ongoing diagnostic and forensic tasks. To keep the computational

overhead low, our proposed solution relies mostly on cryptographic primitives that

can work at high speeds, such as hashing, and it applies several optimizations, such

as batching.

Challenge #2: Privacy. Collecting all the provenance in a central location would

be a privacy disaster. Our proposed solution avoids this by distributing the graph,

and by allowing each network-level component to keep the part of the graph that

pertains to itself. Also, we do not allow “global” queries of the form “show me all the

packets that Bob sent” – users can only explore the provenance graph hop by hop,

starting from a vertex they already know about. In effect, users can only query the

provenance of packets they have already seen in their entirety. Moreover, we allow

ISPs to restrict the visibility of their own subgraph; for instance, an ISP might permit

its local admins to see its complete provenance, including routing policies and link

statuses, but it might limit queriers from other domains to only forwarding-related

information, e.g., the path that packets were sent on.

23

3.2 The provenance graph

We begin by defining the data model for the provenance information we wish to

provide. A common way to represent the provenance is as a provenance graph [183] –

a DAG in which each vertex represents an event and edges connect causes to effects.

In this graph, the explanation of an event is simply the tree that is rooted as the

corresponding vertex.

3.2.1 What is the right layer?

For a single provenance model to work for heterogeneous networks, it needs to be

detailed enough to encode useful debugging information, but also general enough

to abstract away hardware-specific features. We observe that this challenge resembles

that of the original Internet, which needed to interconnect a variety of different net-

work types and protocols. e answer in the original design was IP’s “narrow waist”,

which was itself universal but permitted diversity at layers above and below. us, if

our provenance model captures the network’s operation at the IP layer, it will form

a basis that different networks could agree on. As we will show in Section 3.2.4, op-

erations on other layers can still be encoded as extensions to the IP-level provenance

graph.

Network model: We model the network as a graph whose nodes are IP-capable

devices. Each node has a number of ports, which can be connected to ports on other

nodes using links. Nodes can transmit packets on their ports to some or all of the

nodes that are connected to the corresponding (unicast or multicast) link. erefore,

this model not only includes routers and middleboxes, but also end hosts. Packets

can be lost or corrupted in transmission, and nodes can mutate, duplicate, or drop

any packet. Moreover, each node has a set of rules that decide how packets should

be processed, and an increment-only local timer to obtain timestamps.

24

3.2.2 The provenance graph G

For clarity, we define the provenance graph G := (V,E) from the perspective of a hy-

pothetical global observer that can observe every single event in the network – i.e.,

every time a packet is sent or received, a link goes up or down, and a rule is inserted

or deleted. G is a DAG and contains one vertex for each event, as well as a directed

edge (v1,v2) whenever v2 causally depends on v1. Vertexes can have multiple incom-

ing edges; for instance, a node might send a packet on a particular port because a)

it received the packet earlier, b) it had a rule that matched the packet and specified

this port, and c) the link on that port was up. Specifically, we define six vertex types,

using a provenance model similar to the one from DTaP [182]:

• When a link l goes up/down on node N at time t, add a vertex (N,t,l) /

(N,t,l).

• When a node N adds/removes a rule r at time t, add a vertex (N,t,r) /

(N,t,r).

• When a node N receives a packet p on port P at time t, insert a vertex

v:=(N,p,P,t) to V ; also, find the vertex v1:=(N,t,l) for the link l

that is currently connected to P, and add an edge (v1,v) to E.

• When a node N sends a packet p on port P at time t, add a vertex v:=(N,p,P,t)

to V . If p is sent because a packet p′ was previously received by N at time t ′

on port P′ and is forwarded to port P because of a rule r, find the vertexes

v2:=(N,t ′′,r) and v3 :=(N,p′,P′,t ′) in V and add edges (v2,v)

and (v3,v) to E.

G is, in effect, a complete chronicle of everything that happened in the network: in

principle, it is possible to “replay” the entire execution of the network in simulation.

us, if a question can be answered in this very detailed simulation, it must also be

possible to answer it using the information in G. In particular, to explain why an

event e has occurred, we can simply find the corresponding vertex v in G and look

25

at the subtree that is rooted at it, the leaves of which are the “root causes” that, in

conjunction, have caused e to occur. Later, we will describe a distributed algorithm

that maintains a close approximation of G without assuming a central entity. is

is based on the observation that each vertex v ∈G has a natural “home”: the node N

that appears as the first entry will store the vertex v.

3.2.3 Querying and evidence

We allow users to examine the graph G with a query primitive (v) that returns

v’s adjacent vertexes in G. us, users could start with a vertex they know (say,

the transmission or arrival of a packet at their local node) and explore the graph

by invoking  recursively. However, recall that G is distributed, and that each

node stores the vertexes that pertain to it. So a malfunctioning or compromised

node could fabricate or destroy vertexes that it stores locally. To prevent this, nodes

are required to store not only the vertexes themselves, but also evidence to prove

that the adjacent vertexes exist. e evidence ev of a vertex v can be thought of

as a statement that is signed by the “home” node of v saying that v is a part of G.

Conceptually, nodes exchange evidence whenever they add an edge to G between two

of their vertexes. us, each node can use the evidence to prove to any third-party

that the other end of the edge must exist in G.

Hence, we augment the query primitive with evidence. (v,ev) returns two

sets of vertexes: all the predecessors and successors of v in G. Each returned vertex v′

is accompanied with evidence that 1) v′ is in V , and that 2) the relevant edge ((v′,v)

for predecessors and (v,v′) for successors) is in E. As before, users can use 

to explore a larger portion of G by invoking  recursively, starting from some

vertex they know and have evidence for.

26

3.2.4 Extensions

e above data model only captures IP-level provenance. But as we discussed in

Section 3.2.1, operations above and below the IP layer can be encoded as extensions

to this basic provenance graph to support richer diagnostic and forensic capabilities.

Below, we briefly sketch two examples.

Control-plane diagnostics: In the basic provenance model from Section 3.2.2,

changes to link statuses and rules are “root causes” that cannot be explained fur-

ther. However, it would be easy to add more entries to the TELs to further explain

the provenance of these events. For instance, NetReview [80] already records a type

of secure provenance for the BGP control plane; this provenance could be integrated

with the IP-level model to further explain the  vertexes. Provenance tools that

do not understand the new vertex types in the TEL could simply ignore them and

continue to treat the  vertexes as basic events in the provenance graph.

Summarizations: To enable longer-term forensic queries, it could be useful to have

a less detailed but smaller version of the IP-level provenance graph (say, a flow-level

version); thus, the detailed version could be discarded after a few seconds, while the

aggregated version could remain available for hours, or even days. Our basic model

can accommodate such extensions by having routers commit to the basic graph and

its summarizations simultaneously. As long as both endpoints of a link generate the

summarizations in the same way (e.g., by using the same sampling technique), they

can verify correctness exactly as in the basic IP-level version.

Visualization: To help operators to better understand the diagnostic results, the

evidence can be displayed using provenance visualizers such as NetTrails [181].

3.2.5 Does G reveal too much information?

End users might be concerned that  could be used to spy on their traffic.

But our design prevents this: to query a vertex in G, the querier must already have

27

evidence for an adjacent vertex. So, in order to access the provenance of a packet p

that was sent from A to B, the querier must have some evidence of p’s existence –

which is only available at the sender A, the recipient B, and the ASes along the path,

all of whom have already seen p in its entirety. us, there are only two cases: 1) the

querier already knows that p exists, and what exactly it contains; in this case, 

will reveal where p came from, where it went, and what exactly happened along the

way. Or 2) the querier does not yet know that p exists; in this case, the querier learns

nothing from  because the invocation will fail.

ISPs could have similar concerns about the topology and the configuration of

their own infrastructure. But the Internet’s topology can already be learned in great

detail today [153], so G does not reveal much additional information – it merely

reduces the effort that is needed to obtain it. Moreover, networks can protect policy-

related information by hiding certain vertexes: each node can implement its own

policy to decide which vertexes should be hidden. For instance, a network may

want to reveal  and  vertexes only to its own admins, and hide them from

users in other domains. us, each querier is presented with a view of the provenance

graph, and can explore only the parts that are visible to her. To preserve usability,

our provenance model prescribes that the  and  vertexes be included in

any view. erefore, queries with a restricted view, e.g., inter-domain queries, can

only trace packet paths from the returned  and  vertexes; queries with

an admin’s view, e.g., intra-domain queries, can additionally learn why, i.e., from the

 and  vertexes.

3.3 The SPP protocol

We now describe a distributed algorithm called SPP that implements the proposed

provenance graph.

28

Rule	
 table	

epoch	
 buffer	

incoming	
 packets	
 NIC	
 buffer	

H

forwarding	

M	

ac=on	
 buffer	

epoch	
 buffer	

H

MHT	

MHT	

COMMIT	
 COMMIT	

Figure 3.1: Data flow in the commitment protocol.

3.3.1 Assumptions and threat model

We design SPP based on the following assumptions:

• ere is a hash function H(·) that is pre-image resistant and collision resistant.

• Each node i has a key pair πi/σi that can be used to sign messages. A node i’s

signatures cannot be forged without knowing i’s private key σi.

• If a link i→ j exists, then j has a back channel for sending a small number of

messages back to i.

e first assumption could be satisfied, e.g., by SHA-256. e second assumption

could be satisfied with a small extension to the RPKI. e third assumption holds

trivially for all bidirectional links; for other links, it could be satisfied by using a

different link for the back channel.

reat model: We assume that nodes can fail or be compromised by a Byzantine

attacker, i.e., we make no special assumptions about the affected nodes, other than

that they cannot break cryptographic keys. In particular, these nodes can drop, alter,

or fabricate packets, they can destroy or tamper with any local state, and/or collude

with each other.

29

3.3.2 Commitment protocol

e purpose of the commitment protocol (illustrated in Figure 3.1) is to generate

evidence for the provenance graph. e protocol runs between the two endpoints

A and B of each link A→ B; bidirectional links run two separate instances of the

protocol, and nodes with multiple ports run separate instances for each local port.

By this protocol, A would be able to prove that the packets it has sent have been

received by B, and B would be able to prove that the packets it has received were

indeed sent by A. is is done as follows.

Sender: A uses its local timer to divide time into epochs of some fixed length, e.g.,

100ms, and both A and B maintain a small number of epoch buffers in which they

record information about the packets they have sent or received. A begins a new

epoch Ei by sending a message (i) to B. After that, whenever A sends a

packet p to B, A appends the hash H(p) to the buffer and then prepends an index j

of packet in the epoch buffer as a small extra header before p. A ends Ei by sending

message (i,n) to B, where n is the total number of packets it has sent to B

in this epoch.

Receiver: B has meanwhile forwarded each packet as usual, but it has also recorded

in its own epoch buffer the hashes of all the packets it has received correctly – i.e.,

without link-layer errors or CRC mismatches – from A; moreover, B has identified

any missing index numbers (by looking for gaps in the sequence of numbers) and

has recorded these in a small separate buffer M, so it can later report them to A.

When A’s  message arrives, B computes a Merkle Hash Tree [127] (MHT)

over the hashes in the epoch buffer, extracts the top-level hash h0, writes an entry

sB := (A→ B, i,h0) to its tamper-evident log (see Section 3.3.3), and

returns a message (i, aB, (aB,sB), M) back to A. aB is an authenticator

(defined in Section 3.3.3), and (aB,sB) is a hash chain that connects aB to

sB. (is is used to enable audits later on.) By sending this message, B commits to

having received the packets in its epoch buffer.

30

Agreement: While B is working on its commitments, A continues to forward pack-

ets, and it records the corresponding hashes in other epoch buffers to avoid being

stalled. However, once the  message arrives, A locates the corresponding

buffer, removes the packets with sequence numbers in M, and then computes a

MHT over it in the same way as B, which should yield the same top-level hash

h0. A then records an entry sA := (A→ B, i,h0,aB,(aB,sB)) in its

local tamper-evident log and returns a (i, aA, (aA,sA)) message to B,

which records a (i,aA, (aA,sA)) entry in its log. At this point, A and B

have agreed on the set of packets that have been sent over the link in this epoch, and

they both hold evidence of this fact (the authenticators and hash chains) in their re-

spective logs. Note that this does not attempt to make packet transmissions reliable,

but merely enables the endpoints to agree on the set of correctly transmitted packets.

Actions: Nodes not only have to remember each packet they received, but also

what happened to it, so that it can be tracked down a path. SPP represents this

information as 1) a time offset to the beginning of the epoch to indicate the time

when the packet was received; 2) a set of links to which the packet was forwarded

(i.e., to capture both unicast and multicast protocols), if any; and 3) for each such

link, a list of rule identifiers and mutations that were applied. Such information is

collected in action buffers that are “parallel” to the epoch buffers. e nodes commit

to their actions by building an MHT over the action buffer, just as it does for the

epoch buffers; and the top-level hash ha
0 is recorded in an entry (A→ B, i,ha

0)

in its tamper-evident log, just after the  entry.

SPP uses the action buffers to produce the  vertexes that link a (p)

vertex to its (p′i) vertex. is is crucial because some nodes can apply mutations

to packets in transit: for instance, a NAT will change the port numbers and IP

addresses in the header, and many routers will decrement the TTL field. In these

cases, the hash H(p′i) of the forwarded packet will differ from the hash H(p) of the

packet that was received. But given the recorded actions, an auditor whose view

31

includes the  vertexes can reapply them to p and verify whether H(p′i) is the

correct hash.

Epoch faults: If any of the required messages does not arrive, or if A and B compute

different top-level hashes, they report this as an epoch fault to their local administra-

tor, e.g., by incrementing an SNMP counter. Absent link failures and attacks, epoch

faults can only occur due to undetected packet corruption that has not been handled

at the MAC layer, or due to loss of control packets (which could be avoided with

extra FEC on these packets, or by sending control packets multiple times.) ere-

fore, a non-trivial number of epoch faults suggests either a link failure or an attack,

and should be investigated immediately by an administrator.

3.3.3 Tamper-evident log

To prevent nodes from “changing history” and from presenting different views of

their history to different auditors, each node maintains an append-only tamper-

evident log (TEL) [84]. e TEL consists of entries of the form si := (t,hi,E ,c),

where t is a timestamp, E is an entry type, c is the content of the entry, and hi :=

H(hi−1 || t ||E ||H(c)) forms a hash chain of the entries. SPP has nine entry types:

• (r,R) / (r): A rule R with rule ID r was added or deleted;

• (l) / (l): Link l went up or down;

• (l,E,h0) / (l,E,h0,a,c): e top-level hash of the

local/remote MHT for an epoch E on link l was h0. a and c are the remote

node’s authenticator and hash chain.

• (l,E,a,c): e final authenticator and hash chain for epoch E on link l

were a and c, respectively.

• (l,E,ha
0): e top-level hash of the action buffer for an epoch E on link

l was ha
0.

• (C): C contains a snapshot of the node’s current link statuses and

rules.

32

e TEL can be used to authenticate past entries as follows. Recall from Sec-

tion 3.3.2, any node A can commit to the contents of its TEL up to some entry

sk by sending an authenticator ak := (k,hk, σA(k ||hk)) to another node. If A ever tam-

pers with a previously recorded entry s j, j ≤ k, this change will invalidate the hash

values of all subsequent entries and be inconsistent with ak, as well as any other au-

thenticators that the node has sent since s j. erefore, suppose that A wants to prove

to B that an entry s j was part of the log that was authenticated by ak, k ≥ j. en A

can provide a hash chain (ak,s j) that consists of (tx,Ex,H(sx)), j < x≤ k; using

this information, B can recompute h j,h j+1, . . . ,hk; if hk matches the value in ak and

ak is properly signed with A’s secret key, B can be sure that the claim is valid [84].

e TEL has two other uses. First, it can be used to reconstruct previous states,

e.g., a rule that was used in some past epoch, by loading the most recent checkpoint

before that epoch and replaying all the subsequent actions until the epoch of interest

has been reached. Second, SPP does not require synchronized clocks across the

network; the  and  entries in the TEL provide a form

of timeline entanglement [121], which limits how much a compromised node can

distort the timing of events to the length of a single epoch.

Notice that the data in the TEL is needed to respond to queries; if a node’s

TEL is lost or corrupted, that node will no longer be able to respond and thus will

(appropriately) register as faulty. However, the loss of the TEL will also prevent a

more detailed diagnosis. If this is undesirable, the system can maintain replicas of

the TEL.

3.3.4 Query processing protocol

We now describe how to query the evidence in the TELs.

Querier: A can query the fate of some packet p it has previously sent to B as follows.

A scans its epoch buffers for the hash H(p) and identifies 1) the epoch i in which p

was sent, 2) its index j, and 3) the commitment c := σB(A→ B || i ||h0) with which B

33

System Goal Information offered
Capabilities

Secure Supports Covers entire Fine-grained Fine-grained
evidence forensics Internet entities traces

Tulip [118] Fault localization Loss, delay, reordering × × ✓ ✓(Routers) ✓(Packets)
NetPolice [178] Traffic differentiation detection Loss × × ✓ × (ISPs) × (Flows)

SPIE [157] IP traceback Backward routes × ✓ ✓ ✓(Routers) ✓(Packets)
NetSight [87] Network debugging Packet histories × ✓ × ✓(Routers) ✓(Packets)
Netdiff [119] ISP performance benchmarking Delay × × ✓ × (ISPs) ✓(Packets)

Paris-traceroute [41] Load-balancer detection Load-balanced routes × × ✓ ✓(Routers) ✓(Packets)
HAL [82] Packet attestation Packet transmissions ✓ ✓ × ✓(Links) ✓(Packets)
AudIt [37] Performance accountability Loss, delay × × ✓ × (ISPs) ✓(Both)

SPP Single network-level primitive All of the above ✓ ✓ ✓ ✓(Routers) ✓(Packets)

Table 3.1: Comparison between SPP and some existing diagnostic and forensic
primitives.

has acknowledged p’s receipt. A then constructs a containment proof (c,H(p)),

which shows that H(p) is a leaf node in the MHT rooted at h0, and invokes (p)

on B with the tuple u := (c,(c,H(p)).

Responder: When B receives the query, it first verifies that the provided com-

mitment is genuine. If so, it uses the epoch number and the link identifier in

c to locate the corresponding action buffer, which will tell B the rule that it has

applied to p, and which link(s) p was forwarded to. Finally, B provides the fol-

lowing response: 1) for each link B→ C to which p was forwarded, the commit-

ment cC := σC(B → C || j ||hC, j
0); 2) the new hash H(p′); 3) a containment proof

(cC,H(p′)); 4) the relevant entry sp in the action buffer, and 5) a contain-

ment proof (cC,H(sp)). 1)–3) give A all it needs to invoke  on the next

hop C (or, if the packet was cloned, on each next hop), and to generate the  and

 vertexes for the next-hop link(s); 4) and 5) allow A to apply the mutations

in sp and verify that p′ is the same packet as p.

3.3.5 Retroactive freezing protocol

So far, we have explained SPP as if each node kept all of its epoch buffers forever.

In practice, SPP allows each node to expire old epoch buffers after some time TE ,

while ensuring that malicious nodes cannot discard their buffers freely to cover their

tracks, and that normal queries are given enough time to complete.

SPP uses a retroactive freezing protocol, where a node A can request that the

34

evidence for a packet p be frozen into stable storage, so that it can be inspected on

human timescales. A does so by sending a special freeze packet p′ = (H(p)) on

the same port as p before TE elapses. p′ and p maintain the same header so that they

will likely take the same path. But if path divergence happens or p′ gets dropped, SPP

can be recursively applied to p′ to investigate such instances. Moreover, the freeze

packet is sent retroactively, up to several seconds after the packet was originally sent,

so that a compromised node cannot predict which packets will be frozen, and then

treat these packets differently to avoid detection; by the time the freeze packet arrive,

the nodes will have forwarded the packets and committed to their actions. e end

users can choose which packets to freeze according to their needs, or randomly freeze

a subset of their traffic. To prevent the freeze primitive from being abused (e.g., for

DoS attacks), nodes can limit the rate at which they are willing to freeze packets: if

a node receives too many freeze requests from a neighbor, it can record the requests

and the corresponding commitment, and then deny the excess request. If that node

is challenged later because it did not respond to a request, it can show the saved

requests to prove its innocence.

3.3.6 Properties

Next, we discuss the properties of SPP. In the presence of Byzantine nodes, the

provenance graph Ge constructed from the collected evidence e is only an approxi-

mation of the “actual” provenance graph G; for example, a faulty node may refuse

to provide an explanation consistent to e in response to a  request. However,

Ge is a close enough approximation of G, providing the following guarantees:

• Ge is accurate. Ge faithfully reproduces all the vertexes on correct nodes, that

is, 1) if a vertex v on a correct node exists in Ge, then v must also exist in G,

with the same predecessors and successors; and 2) a correct node will never be

accused as faulty.

• Ge is complete. Given evidence e from correct nodes, 1) each vertex in G on

35

a correct node also appears in Ge, and 2) when some node is detectably faulty,

recursive  invocations will identify at least one faulty node.

In other words, although we cannot force faulty nodes to cooperate, SPP will always

generate provenance that reflects the actual execution of all correct nodes, and SPP

can correctly expose at least one faulty node with non-repudiable evidence.

In terms of privacy guarantees, a node is not allowed to audit or otherwise learn

about packets it has not processed:

• Ge is private. Given an evidence e collected through recursive , Ge con-

structed by node v contains only  and  vertexes for packets that

are visible to v. We say a packet p is visible to a node v, if 1) p is received or

sent by v, 2) p is mutated and forwarded as p′ that is visible to v, or 3) a visible

packet p′ is mutated and forwarded as p.

3.3.7 Limitations

SPP is designed for diagnostics and forensics on the Internet’s data plane, and there

are at least three classes of problems that SPP cannot diagnose directly: a) faults of

a remote node that do not affect any external messages, such as CPU overload; b)

faults that happen outside of the Internet data plane, such as BGP prefix hijacking;

and c) faults that need aggregate information about the packets, such as high per-

flow latencies. Next, we explain these categories in more detail, and discuss potential

ways of addressing some of them.

Non-observable faults: Not all problems on a node can be detected from only its

externally visible inputs and outputs. For instance, if a bit flips in a node’s memory,

its CPU load is high, or its disk has failed, the network packets that the nodes sends

may not be affected initially (or ever). Even if the problem does affect a network

packet, detection may still be impossible if the nodes that receives the packets is also

faulty. is limitation is inherent [83] and also affects other systems that attempt to

detect or diagnose faults based on network events.

36

Control-plane diagnostics: SPP, as described here, generates an IP-level provenance

graph on the Internet’s data plane; it does not provide visibility into control-plane

events. us, SPP’s  primitive cannot detect faults that manifest entirely on the

control plane, such as BGP prefix hijacking, routing policy violations, and the like.

is limitation is not inherent, and it should be possible to remove it by extending

the provenance model to capture control-plane events, as discussed in Section 3.2.4.

Aggregate information: SPP’s  primitive returns information about individ-

ual packets, so it cannot directly diagnose problems that are related to aggregate

properties of multiple packets or entire flows. For instance, if a flow is experienc-

ing low throughput, this cannot be detected based on what happened to individual

packets in that flow. One way to get around this would be to implement the sum-

marization extension from Section 3.2.4; an even simpler way would be to query

multiple packets and to do the analysis as a post-processing step. e precision of

the second approach would be limited by the accuracy of the nodes’ timestamps

(recall that SPP does not assume synchronized clocks); however, previous work has

shown [38] that useful performance measurements are possible even when the clocks

are only loosely synchronized.

3.4 Case studies

Next, we describe four classes of common diagnostic and forensic tasks for which

specialized solutions already exist. We explain how SPP can approximate these so-

lutions, and how they could be re-implemented on top of SPP. Table 3.1 provides a

summary.

Traceback: Traceback is the process of identifying the sender of a (potentially

spoofed) packet. is is difficult in the current Internet because packets contain

no secure data about their source or the paths they have traversed. Source authen-

tication systems like AIP [34] and Passport [113] aim to prevent spoofing using

cryptographic signatures. Path verification systems aim to reconstruct a packet’s

37

path, e.g., by securely recording it in a header [135], by probabilistically marking

packets [148], or by keeping digests of packets at each router [157]. Both types

of traceback essentially require access to the path a received packet has taken, which

is a part of the packet-level provenance that SPP offers (although SPP does not

proactively prevent spoofing).

Routing and performance problems: A common diagnostic task is to determine

why a particular path has unusually high packet loss, delay, or has become unavail-

able [110, 41, 159]. To overcome the limited visibility deep within the network,

proposals have been made to extract more diagnostic information, e.g., by using

more vantage points [98], adding network extensions [118, 38, 143], or using his-

torical data [59, 157]. NetSight [87] even remembers packet “histories” that are

similar to the provenance in SPP (though in an intra-domain setting). In essence,

those systems want to know the path a transmitted packet has taken, along with some

timing information for each hop. SPP exposes a superset of the information needed:

packet-level properties are visible directly; flow-level properties can be extracted by

some post-processing on a set of frozen packets.

Intrusions and misbehavior: Internet-related evidence is appearing in many court

cases, but forged packets and IP addresses can lead to judicial errors [82] and bogus

actions [142]. One possible solution is to enable the use of packet traces as secure

evidence using source or packet authentication. AIP [34] and Passport [113] pro-

vide the former, and HAL [82] provides the latter; ICING [135], Clue [27], and

DRKey [105] support both. In some cases, the ISPs themselves have an incentive to

manipulate unwanted traffic [58] or to inject advertisements [145]. Systems to de-

tect such misbehaviors include, e.g., Glasnost [58] and NetPolice [178] that detect

traffic differentiation, and Web Tripwires [145] that detects in-flight packet mod-

ifications. However, to ultimately resolve such situations, one also needs evidence:

since the recipient of the packet (the victim) is usually different from the entity that

takes action (e.g., a judge), it is necessary to verify that a particular evidence is au-

38

thentic. SPP’s authenticators are designed for this purpose.

Topology discovery: Topology mapping is useful for latency prediction and mod-

eling [153]. However, in the absence of direct support, people must generally rely

on low-quality data, e.g., from traceroutes or IP record-route options, which require

great ingenuity to collect and clean up. It would be much easier if the network

provided explicit and unambiguous information, so that there would be no need for

“guesswork” based on subtle idiosyncrasies of network hardware.

3.5 Implementation

We have implemented two prototypes of SPP: a software-only implementation of

the entire system, and a NetFPGA prototype of the parts that would need to run at

line speed.

Software prototype: Our software prototype is written in C/C++. It can be con-

figured to run 1) as a Click router module [107], or 2) as a standalone program.

In Click mode, SPP runs with live traffic forwarding; we performed functionality

checks and prototyped six common diagnostic routines in this mode. In standalone

mode, SPP still runs the entire protocol but disables traffic forwarding; we used this

mode to evaluate SPP’s protocol overhead as a very conservative lower-bound. Both

modes are trace-based, so they are not limited by the speed of our physical NICs. We

used SHA-1 for the hash function1 and RSA-2048 for the cryptographic signatures,

as implemented in the OpenSSL library v1.0.1.f. Our Click mode implementation

is based on Click v2.1.

NetFPGA prototype: As we will show in Section 4.5, the dominating cost in SPP

comes from packet hashing and MHT construction. To evaluate its performance in

realistic deployment, we have built an additional implementation of those two com-

ponents in hardware, on a NetFPGA-10G [46] platform. Our platform contains
1After the recent discovery of a collision [158], SHA-1 is no longer considered secure. Future

implementations should use a more recent hash function, such as SHA-256.

39

a Xilinx Virtex 5 (65nm) FPGA (xc5vtx240tffg1759-2 [90]), as well as four SFP+

modules that can each support 10 Gbps traffic. We have implemented SPP as part

of the Output Port Lookup module (somewhat analogous to the design in [134]),

so that it can run in parallel with the traffic forwarding path. Our logic is divided

into 13 fully pipelined stages. e first stage contains a state machine that parses

packets from NetFPGA’s AXI4-Stream interconnects; the second stage computes

per-packet hashes; and the remaining 11 stages construct the MHTs. Our imple-

mentation builds on NetFPGA and open-source hashing libraries, and consists of

2,588 lines of Verilog code.

e first stage routes 64 bits of packet data per cycle from the AXI4-Stream in-

terconnects, so it can send a minimum-sized packet to the hashing stage every eight

cycles. Our hasher also accepts 64 bits per cycle, but it incurs a 14-cycle delay after

the packet’s last-bit signal is asserted. To nevertheless keep up with the incoming

data rate, the hashing stage contains four separate instances of the hasher and uses

them in a round-robin fashion. Each of the MHT stages consists of a buffering phase

and a hashing phase: the buffering phase uses a fallthrough FIFO in SRAM to hold

the hashes produced by the previous stage, and the hashing phase dequeues hashes

from its FIFO, hashes them in pairs, and then enqueues the new hash at the next

FIFO. e last stage’s hasher produces the MHT roots. Since the data rate decreases

as hashes pass through the MHT stages, we are able to do rate matching using 15

hashers: four for the first MHT stage, two for the second MHT stage, and one per

each of the remaining stages. We have used SHA-3 (Keccak) in the hardware imple-

mentation for its good performance; to make the results comparable to those from

the software prototype, we use only the last 160 bits to match the length of SHA-1.

3.6 Evaluation

In this section, we evaluate SPP’s performance overhead and demonstrate how com-

mon diagnostic functionalities can easily be built with it. We first evaluate SPP’s

40

protocol overhead with our software prototype, including storage, bandwidth, and

computation costs, both with real high-speed traffic, and in worst-case scenarios; in ad-

dition, we report our hardware microbenchmarks to show that the seemingly high

computation cost in software could be easily handled by off-the-shelf hardware tech-

nology. (Note that the storage and bandwidth overheads, unlike the computation

cost, would not differ across hardware and software platforms.)

We obtained our real traffic from CAIDA’s live capture on a 10 Gbps OC-192

link on Jan. 19, 2012, in which 4.6 million packets were sent with an average rate of

2.46 Gbps. For the worst-case scenarios, we synthesized traffic at 100 Mbps, 1 Gbps,

and 10 Gbps in which all packets have the minimum size, and thus the traffic has

the maximum packet rate (which is unlikely to occur with real traffic). We also

used an epoch length of T = 100ms, and 10-bit sequence numbers in the link-layer

headers, allowing the numbers in the header to wrap: the full sequence number can

be reconstructed as long as loss bursts are below 210. Our software experiments were

run on a Dell OptiPlex 9020 workstation, which has a 3.40 GHz Intel i7-4770 CPU

(with 8 cores), 16 GB of RAM, and a 500 GB hard disk. e OS was Ubuntu 14.04

with kernel version 3.8.0.

3.6.1 Recording: Computation cost

SPP requires each network component to regularly generate commitments for the

traffic it sends and receives, and to verify its neighbors’ commitments. We first used

our software prototype to quantify this cost. We generated synthetic traces that con-

sisted entirely of 40-byte packets (the smallest valid TCP packet, 84 bytes on the

wire [96], and thus the worst case for SPP) with rates of 100 Mbps, 1 Gbps, and

10 Gbps. We then ran all four traces through our software prototype, measured the

computation time to generate and verify the commitments, and normalized the cost

to the performance of an individual core. For instance, if one core took 2 seconds

to process the commitments for packets sent in 1 second, we report this as 2 cores.

41

 0.1

 1

 10

100Mbps 1Gbps 10Gbps OC-192
C

o
re

s

Link speed

Others
Verification
Signing
Hashing

Figure 3.2: Computation cost of SPP’s commitment protocol, normalized to the
power of one core. e cost of hashing dominates. (e other bars are too low to
see.)

(SPP trivially scales to multiple cores, as the cores can work on different epochs inde-

pendently.) We report a decomposition of the cost of hashing, signature generation,

and signature verification.

Figure 3.2 shows that the dominant computational cost of SPP is hashing, es-

pecially at higher link speeds. is is good news because hashing is easy to do in

hardware [68, 136], and it is also the reason why our NetFPGA prototype focuses

on hashing: the remaining computations have a moderate cost, so routers should

be able to perform them in software. Figure 3.3 shows results from a similar ex-

periment where the two highest-cost traces still maintain the same rates, but have

different packet sizes (and 14-byte Ethernet headers). e figure shows that the

overhead drops quickly as the packet size increases. is is because the number of

internal hashes in the MHT depends only on the number of packets, but not on

their size. At a more typical packet size of 300 bytes [156], the cost is 54% lower.

Hardware prototype: For our NetFPGA prototype, computation cost is not a good

metric; instead, we quantify the maximum supported bitrate and the number of

hardware elements that it requires. Our NetFPGA prototype can be synthesized

to run at 200 MHz (5 ns per clock cycle), which achieves a theoretical through-

put of 12.8 Gbps, and an effective throughput of 10 Gbps with the existing SFP+

modules. We note that these results are consistent with other benchmarking ef-

42

 0.1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400
C

o
re

s

Packet size

10 Gbps
1 Gbps

Figure 3.3: Computation cost for different packet sizes in the two traces with the
highest costs.

Resource Used Total available Utilization
Slice registers 53,964 149,760 36%
Slice LUTs 109,040 149,760 72%

Block RAMs 28 324 8%

Table 3.2: Hardware cost for hashing and building MHTs.

forts [67, 122, 42]. We have listed the hardware utilization in Table 3.2, in terms

of LUTs (LookUp Tables), registers, and Block RAMs used. ey are well within

the resources available on Virtex-5 FPGAs, and would be only a fraction if mapped

on more recent FPGAs: for instance, NetFPGA-SUME’s Virtex-7 has nearly three

times as many logical elements [185]. We also note that 10 Gbps is not the limit:

for 100 Gbps routers, there are optimized hashers that could achieve 34.27 Gbps

per hasher on Virtex-5 FPGAs [128], which is about ten times faster than the hash

module we have used. e performance of our hardware prototype represents a lower

bound on the performance that a hardware implementation of SPP can achieve; in

a real-world deployment, the packet processing would be performed on ASICs in

high-speed routers, which are much faster than FPGAs.

43

3.6.2 Recording: Bandwidth cost

Since SPP’s bandwidth and storage overheads do not vary with the underlying hard-

ware or software platforms - unlike the computation speed - we evaluated them on

our software prototype. SPP requires an extra link-layer header, as well as some new

control messages for exchanging commitments. Both consume some fraction of the

raw link capacity that is no longer available for sending traffic. To quantify this ef-

fect, we measured the fraction of the raw link capacity that was used by SPP. We sent

R = 3 replicas of each control message, to conservatively account for message loss,

and we assumed a link-level packet loss rate of 1%, which is orders of magnitude

above typical rates today [20, 14]. We show results for 40-byte packets (the worst

case) and a more typical packet size of 300 bytes.

Figure 3.4 shows our results. For the 100 Mbps trace with 40-byte packets, SPP

only consumes about 2.06% of the available link capacity. Moreover, the overhead

drops with increasing link speeds and increasing packet size. is is because the

overhead has two components: one consists of three fixed-size messages (,

, and ) that are sent once per epoch, regardless of the link speed

and the number of messages, and the other consists of the link-layer headers and

the entries in the missing packet list (), which are both proportional to the

number of packets. At 1 Gbps and with the more typical 300-byte packets, the

overhead is only 0.42%. For the most realistic case of the OC-192 link, the overhead

is only 0.16%.

3.6.3 Recording: Memory

SPP requires a certain amount of RAM for epoch buffers, action buffers, and the list

of lost packets. Next, we quantify how much memory these data structures require.

In our implementation, an entry in the epoch buffer requires 20 bytes (the size of

a hash value), an entry in the action buffer requires 30 bytes (the size of a timestamp,

a destination port number, and up to 3 mutation records), and an entry in the loss

44

0 %

0.5 %

1 %

1.5 %

2 %

2.5 %

3 %

100M 1G
40-byte packets

10G 100M 1G
300-byte packets

10G OC-192
B

a
n
d
w

id
th

 c
o
s
t

Control messages
Headers

Figure 3.4: Bandwidth consumption of SPP’s commitment protocol, as a fraction
of the raw link capacity.

buffer requires 10 bits (the size of a sequence number). For each received packet,

SPP adds one entry to each of the first two buffers, and for each missing sequence

number, it adds an entry to the third buffer. We also dimension the buffers for

the worst case. If we assume a 1 Gbps link, an epoch length of T = 100ms, and a

minimum packet size of 40 bytes (i.e., up to 312,500 packets per epoch), the epoch

and action buffers would require 6.25MB and 9.38MB of memory, respectively;

with a link-level loss rate of 1%, the loss buffer would require 3.91 kB. Since all sizes

are proportional to the link speed, a 10 Gbps link would require ten times as much.

e number of buffers depends on the number of ports the node has, and on

the latency that is needed to finish the commitment protocol, which depends on the

link’s RTT. (Recall that the sender must retain the hashes until the receivers’ 

message arrives.) If we conservatively assume a per-link RTT of up to 100ms, 2 ∗

(100/T) = 2 buffers would be needed per port, so a node with twenty 1 Gbps ports

would need 625 MB of RAM. Note that the hashes are written at much lower rates

than the links’ bitrates, so expensive SRAM is not required – commodity DRAM

is enough, e.g., NetFPGA-SUME has 8 GB of DDR3 synchronous DRAM with a

238.8 Gbps peak memory throughput [185].

45

 0.1

 1

 10

 100

 1000

5% 10% 15% 20% 25% 30%
M

B
/s

Audit rate

10G

1G

OC-192

100M

Figure 3.5: Data rates for different auditing rates ϕ .

3.6.4 Recording: Disk space

SPP requires disk space to store the packet-level evidence that has been “frozen” by

queriers, as described in Section 3.3.5. To quantify how much storage is needed, we

ran the traces through SPP and randomly froze a certain fraction ϕ of the packets.

Figure 3.5 shows the amount of data written to disk due to audits. It is expected

that the amount of frozen evidence increases with ϕ . However, the increase is not

linear: for small ϕ , SPP must store not only the hash of each frozen packet but

also the hashes of internal nodes along the path to the root. But, as ϕ increases,

there is more and more overlap between the paths, which reduces the number of

additional hashes that need to be stored for each new frozen packet. Note that the

next-hop authenticator needs to be stored only once per epoch, so the necessary

space is comparatively small. From the figure we can see that, an auditing rate of

ϕ = 1% can be well supported by the throughput of a hard disk, and ϕ = 15% with

a commodity SSD.

Summarizations: Summarizations (Section 3.2.4) can further reduce the stor-

age consumption. To demonstrate this, we have designed a flow-level summariza-

tion that contains less detail but can be retained longer. Analogous to NetFlow, this

summarization describes the flows the router has seen, the number of packets in each

flow, and the size of each flow (but not per-packet information, such as the content

46

hashes). We note that naïvely extracting flow-level information by examining every

packet in the epoch buffers would be prohibitive. erefore, we design an approxi-

mate yet efficient summarization method by exploiting the heavy-tail distribution of

Internet flow sizes: a flow-level summarization will only achieve a high compression

ratio on large, “elephant” flows, but not on small “mice”. So our approach attempts

to recognize “elephant” flows and summarize their packets only, leaving packets in

“mouse” flows as is. Elephants could be efficiently identified with an algorithm such

as ElephantTrap [117], or simply by sampling a small fraction of the packets; if both

endpoints of a link use the same method for summarization, they will arrive at the

same result, and can thus use the commitment protocol to agree on it.

We have implemented a simple, sampling-based flow-level summarization in our

SPP prototype, and demonstrated that this is indeed practical. We make two passes

over each epoch to summarize the packets. In the first pass, we randomly sampled

20% of its packets and record their flow identifiers as summarization targets. In the

second pass, we summarize target flows into flow-level summaries that only include

i) number of packets in a flow, ii) size of a flow, and iii) the flow identifier itself.

We then write i) the flow-level summaries for the target flows, and ii) packet-level

evidence for the unsummarized flows into disk. e computation cost for summa-

rization is 0.23 cores. e data rate is only 8.8 MBps for the OC-192 link; therefore,

a 100 GB disk would be able to store the flow-level summaries for 25.3 hours, or

more than a day.

3.6.5 Querying

Computation: Upon a query, SPP must freeze and retrieve the evidence that is

needed to answer it. e evidence can be constructed by building a MHT with

packets in the queried epoch, and tracing the relevant paths from the root to the

queried packets. Querying multiple packets in the same epoch only costs marginally

more than querying only one packet from that epoch, because queries for packets in

47

 0.01

 0.1

 1

 10

100Mbps 1Gbps 10Gbps OC-192
C

o
re

s

Link speed

Figure 3.6: Computation cost for answering queries.

the same epoch can be buffered until the end of the epoch and answered altogether.

erefore, the worst-case cost is when MHTs for all epochs need to be reconstructed.

Note that this is a simple repetition of the MHT construction at recording time

(Section 3.6.1), only this time we do not need to hash the packets again. We show the

computation cost for different link speeds in Figure 3.6, and note that our NetFPGA

prototype could achieve this at a 10 Gbps rate.

Bandwidth: e bandwidth needed for freezing is low (a single 40-byte packet),

so we focus on the bandwidth for retrieving the evidence. Recall that to query the

provenance of a packet p on a node n, the querier provide n with p’s hash, the number

of the epoch p was sent in and the corresponding authenticator, p’s index in the epoch

buffer, and a containment proof that links the authenticator to the hash; the response

contains the same information for the next hop, along with the relevant entry from

the action buffer. For a given choice of hash function and signature algorithm, the

size of all fields is fixed, except for the containment proof, which grows with the

height of the per-epoch MHT. For a 1Gbps link with T = 100ms, the size of a single

query in our implementation is 680 bytes; for a 10Gbps link, the MHT grows by

four levels, and thus the size of a query grows to 760 bytes. Responses are 30 bytes

larger because of the additional action buffer entry. Both queries and responses are

small enough to fit into a single packet.

We now estimate the worst-case bandwidth cost of querying. e cost for a sin-

48

Core functionality LoC
Trace a transmitted packet’s path [92] 8
Trace a received packet’s traversed path [157] 8
Identify node on path that drops a packet [118] 8
Attest to the transmission of a packet [82] 9
Identify link on path with highest delay [110] 24
Compute a link’s average throughput [119] 26

Table 3.3: Several applications we built with SPP, and the lines of code (LoC) they
required. e code can be found in the appendix.

gle query (with freeze packet and headers for request and response) is 40+680+

710+2×28=1486 bytes, or 4.95 times the average packet size of 300 bytes. us,

if a node allows up to 1% of its traffic to be queried, query-related packets would

account for 4.7% of its traffic.

3.6.6 Comparison with SNP

We next compare SPP with SNP [180], the state-of-the-art system for secure prove-

nance. SNP has been applied to BGP, Chord, and Hadoop, but it is not designed

to handle the high data rates on the network data plane. To demonstrate this, we

ran SNP and SPP side by side, and we streamed packets through both of them; we

report the results we have obtained on the 1Gbps trace with 40B packets.

Disk space: At an auditing rate of 1%, SPP wrote 65% less evidence on disk than

SNP. is is because SPP’s evidence mostly consists of 20-byte hashes and not the

longer RSA signatures that SNP requires.

Bandwidth: SPP consumes 98.2% less bandwidth than SNP. is is because SPP’s

can commit to a batch of packets using a single root hash, whereas SNP has to

commit to each packet one by one.

Computation: On the same trace, SPP runs 1378.5 times faster than SNP. is is

because SPP only performs two hashes per packet and one RSA signature per batch,

whereas SNP needs to sign every single packet. At this speed, SNP would require

the equivalent of more than a thousand CPU cores to process 1 Gbps of traffic in

49

void tracert(Packet *p, Evidence *e) {
IP *nextHop = gatewayIP;
Packet *p0 = p;
do {

query(&p, &e, nextHop);
print(nextHop+" "+(e.time-p0.time));

} while (nextHop != END_OF_PATH);
}

Figure 3.7: Code for tracing a packet’s traversed path.

software, whereas SPP can do the same with a single core.

3.6.7 Building applications with SPP

To determine whether SPP can fulfill its key promise of supporting a wide variety

of diagnostic and forensic tasks, we implemented the core functionalities of six di-

agnostic and forensic systems from the literature on top of the  primitive that

SPP provides. Table 3.3 shows a list of the six systems, along with the lines of code

(LoC) in our implementations. e LoC numbers are very low: our most com-

plex application consists of 26 LoC, and four of the six applications have less than

10 LoC. For concreteness, Figure 3.7 shows the slightly simplified code for tracing

the path a transmitted packet p has traversed; the code simply iterates through the

sequence of hops, starting with the evidence it received when p was originally sent,

and outputs the IPs and latencies it encountered along the way.

e low number of LoC may seem surprising, but the reason is that most of the

complexity in the original applications was in the special-purpose network primi-

tives they proposed, or in smart techniques for leveraging and working around ex-

isting primitives (such as ICMP TTL Exceeded) that were originally introduced for

some other purpose. With SPP in place, the applications we tried reduce mostly

to gathering the relevant evidence and/or performing some simple post-processing.

erefore, SPP does deliver its key benefit: a single primitive that can handle most

existing – and hopefully future – diagnostic and forensic tasks.

50

3.7 Deployment

As with most extensions to the Internet architecture, getting SPP deployed at scale

would not be easy, so it would be unrealistic to expect that all ASes would imme-

diately install SPP on all their switches, routers and middleboxes. However, SPP

has a number of properties that could help facilitate its deployment. Below, we

discuss possible strategies for deploying SPP partially and the guarantees a partial

deployment would provide, ways of using SPP with existing router hardware, and

incentives for ISPs to deploy SPP.

3.7.1 Partial deployment

SPP can be usefully deployed at an individual ISP to diagnose ISP-local problems, so

there is no need for a global “flag day”. Its benefits increase gradually with the size of

the deployment: the more ISPs have support for SPP, the more coverage SPP would

have, and the higher the chances that a problem will occur on a path segment that

is SPP-enabled (and can thus be diagnosed with SPP). is is very different from a

protocol like S-BGP, which must be deployed almost universally to be useful.

For a strategic first deployment, one possible approach would be to first secure

cross-domain links with SPP-enabled NICs, and retain legacy NICs for internal

links. Similar to the strategy in NetReview [80], an AS can periodically disseminate

the authenticators its border routers have received to its neighboring ASes. In such

a partial deployment model, we would lose the capability of tracing a packet all the

way down its path, as a recursive invocation of  would terminate at the first

hop without an SPP deployment. Nevertheless, we still gain useful guarantees with

regard to neighboring ASes with cross-domain SPP links. e generated evidence

at border routers can be used to detect problems and resolve dispute as to which

AS misbehaved. More concretely, this would be sufficient to localize problems to

a particular AS (or, from the perspective of adjacent ASes, sufficient to show that

51

the problem was not caused by them). It would not help with AS-local diagnostics,

but this capability could be added gradually by enabling SPP on additional devices

within the AS.

Impact on guarantees: If a path contains both SPP-enabled and SPP-agnostic de-

vices, provenance information is only available for the segments of the path that are

SPP-enabled. In other words, the provenance graph has “holes”. Vertexes at the rim

of a “hole”—say, a  from an SPP-enabled switch to an SPP-agnostic one—are

not verifiable because SPP-agnostic devices do not provide evidence. We call such

vertexes rim vertexes. However, all other vertexes are verifiable as before.

Within a contiguous SPP-enabled path segment,  can be used as previously

described. However, in a sparse deployment, there could be multiple short segments,

so it would be useful for queriers to continue their query across the rim vertexes and

onto the next segment. is is possible, though it would require some additional

mechanism. e two key challenges are 1) finding the next SPP-enabled node on

the path, and 2) handling packet mutations, such as decremented TTL values or

other header option changes. One possible way to handle this, at least within a

single AS, would be to use tunneling; it should also be possible to guess a small set

of possible next-hop nodes based on the packet’s destination IP, and to try all of these

to find the one that the packet actually went through. Simple mutations could be

handled by excluding the relevant fields from the packet hash, as, e.g., in SPIE [157],

In terms of the accuracy, completeness, and privacy guarantees discussed in Sec-

tion 3.3.6, the accuracy and privacy guarantees would still hold, but we would lose

the completeness guarantee on SPP-agnostic nodes because the evidence pertaining

to them cannot be collected in a verifiable manner.

More concretely, the provenance graph Ge is still accurate, as the integrity of

evidence is protected by the cryptographic signatures in the commitment scheme:

correct nodes can still be trusted to generate evidence pertaining to them, while faulty

nodes still cannot implicate correct nodes by generating false evidence on their own.

52

e provenance graph is still private because queriers still cannot use SPP’s 

interface to learn information about packets that are not already visible to them –

queriers cannot correctly guess the authenticator that is required to initiate a query.

However, the completeness guarantee only holds for links on which both end-

points implement SPP. Recall that the first condition in the completeness guarantee

says that each vertex in G will also appear in Ge, the graph generated by the collected

evidence. Clearly, in a partial deployment, Ge is restricted to capturing only those

events that are secured by SPP. e second condition says that detectably faulty

nodes will be exposed by a recursive invocation of . But since nodes that do

not support SPP would break the capability of recursively invoking  through

them, queries will have to stop at the first hop without SPP support. As a result,

there might exist faulty nodes that “hide” beyond the “broken” SPP chain that can

otherwise be detected by a full SPP deployment.

erefore, in a partial deployment where SPP is only enabled on the border

routers, we would have the following properties. Any events that happen on those

border nodes will retain the desirable properties of completeness, accuracy, and pri-

vacy. However, if faults happen deep within a network (where SPP has not been

deployed yet), or recursive tracing is necessary to trace faults down a path, fault

detection would be more difficult. We note that this still seems to be a useful guar-

antee, given that a) events within the same domain fall under the administration of

a single trust root, so they can be examined relatively easily by an operator; and b)

events that cross neighboring trust domains (where most of the peering contracts

take place) can still be verified and attributed by the use of the SPP protocol.

3.7.2 Using existing routers

Deploying SPP does not necessarily require new equipment. Consider a cross-

domain link on which neither side has implemented SPP in their routers, but they

would still like to use SPP. is is still achievable by attaching a separate machine

53

or FPGA, i.e., an SPP proxy, to each endpoint of the link, and mirroring all traf-

fic to them. e proxies can make commitments and enable audits according to the

SPP protocol, while the routers themselves forward traffic as they would with today’s

routing fabric. Similarly, if a cross-domain link has one SPP-enabled router on one

side and one conventional router on the other, a similar standalone proxy could be

used to pair with the SPP-enabled node.

is approximation may cause some inaccuracy when the traffic mirroring pro-

cess causes packets to be dropped or garbled. For instance, for a link A→ B where

A’s mirroring has caused packet loss or corruption that is not visible by B, the SPP

proxies could generate commitments mismatch when in fact no fault has happened.

But we could handle this ‘false alarm’ by allowing a certain fraction of commitment

mismatches on links with a box-facilitated SPP deployment.

Impact on guarantees: We now discuss the guarantees that can be provided by links

with SPP proxies. ere are two cases: a) only one side of the link installs SPP but

the other side uses a proxy, and b) both sides use proxies. Since case b) is essentially

a simple extension of case a), we primarily focus on case a) in the ensuing discussion.

On a link A→B where A is SPP-enabled but B uses a proxy, the accuracy guarantee

holds only if the traffic mirroring process successfully forwards every packet from A

to its proxy. In this case, effectively, the commitment protocol between A’s proxy

and B will work as if both sides had deployed SPP.

However, if routers A and B work correctly but the traffic mirroring process could

drop or garble some packets from A to its proxy, the accuracy guarantee will be

weakened. In this case, since the SPP module on A’s side works on a separate proxy,

the packets that have been dropped or garbled during traffic mirroring will not be

committed on A’s side (though the packets arrived at B without error). So when A’s

proxy and B try to establish agreement, it may appear as if B had generated some extra

packets in the epoch but as a matter of fact this is due to the inaccuracy introduced

by the proxy.

54

is translates into the following accuracy guarantee: in the epochs where A and

B are able to establish agreement, SPP’s accuracy holds as with the case without a

proxy; in the epochs where the traffic mirroring malfunctions, SPP will lose accuracy

for those epochs only. Since the traffic mirroring malfunction is expected to be rare,

links with proxies could allow a small number of commitment mismatch to happen,

and record these epochs where SPP cannot provide guarantees.

e analysis for completeness guarantee is similar: Completeness still holds when

agreement can be established; but for the epochs where agreement cannot be estab-

lished, the completeness guarantee will be weakened since SPP cannot distinguish

between the case where A’s proxy dropped packets and the case where B injected

extra packets.

Privacy still holds because neither side can query packets from each other if they

have no prior evidence, i.e., the packets have to be visible.

3.7.3 Incentives for deployment

One primitive, many applications: As we have argued, it should be possible to

implement a variety of existing diagnostic and forensic systems on top of SPP. us,

although deploying any new feature in the data plane would not be cheap, at least

this effort would have to be spent only once (rather than once for each specialized

solution), and it would yield a solution for a wide range of problems.

Few changes to the protocol stack: SPP leaves the current protocol stack (almost)

untouched; it mostly “sits on the sidelines” and collects information about the traffic

it observes. (e one change it does require is the additional link-layer header for the

commitment protocol, which is only visible to the routers on that particular link.)

us, SPP requires much fewer changes than a design that introduces a new kind of

addresses [34] or major packet header changes [135].

Given the above reasons, we believe that ISPs can benefit from deploying SPP.

e large ISPs, such as tier-1 ASes, tend to adopt new technologies and best prac-

55

tices early to increase their competitiveness. Given the diagnostic complexities and

security issues in today’s Internet, SPP seems to be an attractive value-added service

to provide to their customers: SPP is designed to support a wide variety of existing

diagnostic and forensic primitives [110, 34, 38, 41, 58, 59, 82, 87, 113, 98, 118,

130, 135, 145, 148, 157, 159, 178], so the rationale for deploying these primitives

should, at least to some extent, apply to SPP as well.

More concretely, since SPP can handle a wide range of diagnostic tasks, it can, in

particular, also handle troubleshooting tasks that are directly useful to an individual

ISP (analogous to NetSight [87]), even without considering the rest of the Internet.

For instance, SPP could serve as a troubleshooting tool, analogous to NetSight [87].

us, each ISP would initially have at least some incentive to deploy SPP in its

own network, independent of what everyone else is doing. SPP is perhaps a bit

heavyweight for any single purpose, and, if this were the only usage scenario the ISP

cared about, it might be better off with a specialized solution, such as the original

NetSight. However, SPP has a variety of other uses (e.g., detecting compromised

routers), so an ISP might be willing to shoulder some additional cost for the extra

flexibility.

Moreover, SPP can help with cross-domain fault localization, which is notori-

ously difficult. For instance, suppose two adjacent ISPs cannot agree whether a

path performance problem lies in one ISP or the other. Today, this situation might

involve long phone calls between the ISP operator teams, and potentially some cus-

tomer dissatisfaction on both sides, even at the ISP who is not at fault. is creates

a triple incentive to deploy SPP: 1) ISPs might prefer to peer with networks that

support SPP, to better diagnose problems in these networks; 2) ISPs might adopt

SPP in their own network to distinguish themselves from competitors and to high-

light their own reliability; and 3) ISPs might adopt SPP to quickly establish that the

problem an angry customer is reporting is not on their side.

Ideally, these incentives would initially lead to the formation of “deployment

56

islands”, which would then slowly grow until they start to merge. In the process,

the fraction of a typical path that would be covered by SPP would slowly increase,

leading to better and better end-to-end diagnostics.

3.8 Related Work

Here, we review existing literature on network diagnostics and forensics that are

particularly related to SPP, and note that related work on network provenance has

been described in Chapter 2.

Specialized primitives: As discussed in Section 5.1, there is a rich literature on

systems that solve a particular diagnostic or forensic problem [110, 34, 38, 41, 58,

59, 82, 87, 113, 98, 118, 130, 135, 145, 148, 157, 159, 178]. To address all of

the underlying problems, it would be necessary to deploy all of these systems in

combination. In contrast, SPP aims to provide a single primitive that can be used

for a broad variety of tasks.

Packet-level diagnostics: SPIE [157], HAL [82], and NetSight [87] resemble SPP

in that they all “remember” every single network packet. However, SPIE cannot

reliably identify a specific packet due to the use of Bloom filters, and HAL only col-

lects per-packet evidence but does not perform diagnosis. NetSight [87] is closest to

SPP: it assembles a “history” of each packet for SDNs. However, NetSight provides

no security guarantees in the presence of compromised nodes, and it is designed

for a data-center setting, where packet traces can be recorded without privacy con-

cerns and data does not need to be shared with other domains. UnivMon [114] and

OpenSketch [172] are recent proposals for flow-level monitoring counters based on

sketches. ese approaches are useful for gathering traffic statistics, but, unlike SPP,

they do not provide packet-level provenance data.

Accountability: SPP is similar in spirit to previous proposals for network-level ac-

countability, e.g., “packet obituary” [36] that reports packet drops, or AudIt [37]

that provides secure records of delay and loss rates. Network Confessional [38] uses

57

a similar retroactive sampling approach to prevent special treatment of the sampled

packets; however, it focuses on forwarding performance verification, not direct sup-

port for diagnostics or forensics. PAAI [177] also uses retroactive sampling to track

lost packets, but it assumed that end hosts are always honest.

3.9 Conclusion

As the large number of proposed extensions shows, the current Internet architec-

ture does not support diagnostics and forensics very well. However, most existing

proposals are specialized solutions; thus, a comprehensive solution would require de-

ploying several of them concurrently, at a substantial cost – in terms of both overhead

and complexity. In this chapter, we have made a case for a network-level primitive

that can support a variety of different diagnostic and forensic applications, and we

have also presented SPP as a concrete proposal. Our evaluation shows that SPP can

be implemented efficiently in hardware and can approximate a variety of common

diagnostic and forensic tasks.

58

4
Differential Provenance

Distributed systems are not easy to get right. Despite the fact that researchers have

developed a wide range of diagnostic tools [101, 169, 171, 120, 151, 167, 60],

understanding the intricate relations between low-level events, which is needed for

root-cause analysis, is still challenging.

Recent work on data provenance [183] has provided a new approach to under-

standing the details of distributed executions. Intuitively, a provenance system keeps

track of the causal connections between the states and events that a system gener-

ates at runtime; for instance, when applied to a software-defined network (SDN), it

might associate each flow entry with the parts of the controller program that were

used to compute it. en, when the operator asks a diagnostic question – say, why a

certain packet was routed to a particular host – the system returns a comprehensive

explanation that recursively explains each relevant event in terms of its direct causes.

A number of provenance-based diagnostic tools have been developed recently, in-

cluding systems like ExSPAN [183], SNP [180], and Y! [169].

However, while such a comprehensive explanation is useful for diagnosing a prob-

59

lem, it is not the same as finding the actual root causes. We illustrate the difference

with an analogy from everyday life: suppose Bob wants to know why his bus arrived

at 5:05pm, which is five minutes late. If Bob had a provenance-based debugger,

he could submit the query “Why did my bus arrive at 5:05pm?”, and he would get

a comprehensive explanation, such as “e bus was dispatched at the terminal at

4:00pm, and arrived at stop A at 4:13pm; it departed from there at 4:15pm, and

arrived at stop B at 4:21pm; ... Finally, it departed from stop Z at 5:01pm, and

arrived at Bob’s platform at 5:05pm”. is is very different from what Bob really

wanted to know: the actual root cause might be something like “At stop G, the bus

had to wait for five minutes because of a traffic jam”.

But suppose we allow Bob to instead ask about the differences between two events

– perhaps “Why did my bus arrive at 5:05pm today, and not at 5:00pm like yes-

terday?”. e debugger can then omit those parts of the explanation that the two

events have in common, and instead focus on the (hopefully few) parts that caused

the different outcomes. We argue that a similar approach should work for diagnos-

ing distributed systems: reasoning about the differences between the provenance of

a bad event and a good one should lead to far more concise explanations than the

provenance of the bad event by itself. We call this approach differential provenance.

Differential provenance requires some kind of “reference event” that produced

the correct behavior but is otherwise similar to the event that is being investigated.

ere are several situations where such reference events are commonly available, such

as 1) partial failures, where the problem appears in some instances of a service but

not in others (Example: DNS servers A and B are returning stale records, but not C);

2) intermittent failures, where a service is available only some of the time (Example:

a BGP route flaps due to a “disagree gadget” [77]); and 3) sudden failures, where a

network component suddenly stops working (Example: a link goes down immedi-

ately after a network transition). As long as the faulty service has worked correctly

at some point, that point can potentially serve as the needed reference.

60

At first glance, it may seem that that differential provenance merely requires find-

ing the differences between two provenance trees, perhaps with a tree-based edit dis-

tance algorithm [45]. However, this naïve approach would not work well because

small changes in the network can cause the provenance to look wildly different. To

see why, suppose that the operator of an SDN expects two packets P and P′ to be

forwarded along the same path S1-S2-S3-S4-S5, but that a broken flow entry on

S2 causes P′ to be forwarded along S1-S2-S6 instead. Although the root cause (the

broken flow entry) is very simple, the provenance of P and P′ would look very dif-

ferent because the two packets traveled on very different paths. (We elaborate on

this scenario in Section 4.1.) A good debugger should be able to pinpoint just the

broken flow entry and leave out the irrelevant consequences.

In this chapter, we present a concrete algorithm called DiffProv for generating

differential provenance, as well as a prototype debugger that leverages such infor-

mation for root-cause analysis. We report results from two diagnostic scenarios:

software-defined networks and Hadoop MapReduce. Our results show that dif-

ferential provenance can explain network events in far simpler terms than existing

systems: while the latter often return elaborate explanations that contain hundreds

of events, DiffProv can usually pinpoint one critical event which, in our experience,

represents the “root cause” that a human operator would be looking for. We also

show that the cost for the higher precision is small: the run-time overheads are low

enough to be practical, and diagnostic queries can usually be answered in less than

one minute. We make the following contributions:

• e concept of differential provenance (Section 4.2);

• DiffProv, a concrete algorithm for generating differential provenance (Sec-

tion 4.3);

• a DiffProv debugger prototype (Section 4.4); and

• an experimental evaluation in the context of SDNs and Hadoop MapReduce

(Section 4.5).

61

Web server	 #1 DPI	device

Web server	 #2

Overly	specific	 rule

S1 S2 S3 S4 S5

S6
Internet P P’

Figure 4.1: Example scenario (SDN debugging).

We discuss related work in Section 4.6, and conclude the chapter in Section 5.6.

4.1 Overview

Figure 5.1 shows a simple example of the problem we are addressing. e illustrated

network consists of six switches, two HTTP servers, and one DPI device. e oper-

ator wants web server #2 to handle most of the HTTP requests; however, requests

from certain untrusted subnets should be processed by web server #1, because it is

co-located with the DPI device that can detect malicious flows based on the mir-

rored traffic from S6. To achieve this, the operator configures two OpenFlow rules

on switch S2: a) a specific rule R1 that matches traffic from the untrusted subnets

and forwards it to S6; and b) a general rule R2 that matches the rest of the traffic

and forwards it to S3. However, the operator made R1 overly specific by mistake,

writing the untrusted subnet 4.3.2.0/23 as 4.3.2.0/24. As a result, only some of

the requests from this subnet arrive at server #1 (e.g., those from 4.3.2.1), whereas

others arrive at server #2 instead (e.g., those from 4.3.3.1). e operator would

like to use a network debugger to investigate why requests from 4.3.3.1 went to

the wrong server. One example of a suitable reference event would be a request that

arrived at the correct server – e.g., one from 4.3.2.1.

62

EXISTENCE(S6,
packetForward(@S6, Sip=4.3.2.1), t2)

EXISTENCE(S6,
flowEntry(@S6, Pri=High,

Sip=4.3.2.0/24, Act=Output:1), t4)

AND

EXISTENCE(Server #1,
packet(@Server #1, Sip=4.3.2.1), t1)

V1#

EXISTENCE(S6,
packet(@S6, Sip=4.3.2.1), t3)

The packet arrived at web
server #1 because it was
forward by the last-hop
switch.!

When the packet arrived, it
matched a high priority flow

entry that forwards untrusted
packets to web server #1.!

The packet arrived at
the last-hop switch .

...# …

V0#

V2#
V3#

Figure 4.2: An example provenance tree

faulty rule

root

(a) Full provenance of P′ at server #2

root

(b) Full provenance of P at server #1

Figure 4.3: Provenance trees for P′ (a) and P (b) from Figure 5.1. Each circle corre-
sponds to a box in Figure 4.2, but the details have been omitted for clarity. Although
the two full trees have some common subtrees (green), most of their vertexes are dif-
ferent (red). Also shown is the single vertex in (a) that represents the root cause of
the routing error that affected P′.

4.1.1 Background: Provenance

Network provenance [183] is a way to describe the causal relationships between

network events. At a high level, the provenance of an event e is simply a tree of

events that has e at its root, and in which the children of each vertex represent the

direct causes of that vertex. Figure 4.3(a) sketches the provenance of the packet P

63

from Figure 5.1 when it arrives at web server #1. e direct cause of P’s arrival is

that P was sent from a port on switch S6 (vertex V1); this, in turn, was caused by

1) P’s earlier arrival at S6 via some other port (V2), in combination with 2) the fact

that P matched some particular flow entry in S6’s flow table (V3), and so on.

To answer provenance queries, systems use the abstraction of a provenance graph,

which is a DAG that has a vertex for each event and an edge between each cause and

its direct effects. To find the provenance of a specific event e, we can simply locate

e’s vertex in the graph and then project out the tree that is rooted at that vertex. e

leaves of the tree consist of “base events” that cannot be further explained, such as

external inputs or configuration states.

Provenance itself is not a new concept; it has been explored by the database and

networking communities, and there are techniques that can track it efficiently by

maintaining some additional metadata [47, 69, 169].

4.1.2 Why provenance is not enough

Provenance can be helpful for diagnosing a problem, but finding the actual root cause

can require substantial additional work. To illustrate this, we queried the provenance

of the packet P′ in our scenario after it has been (incorrectly) routed to web server

#2. e full provenance tree, shown in Figure 4.3(b), consists of no less than 201

vertexes, which is why we have omitted all the details from the figure. Since this is

a complete explanation of the arrival of P′, the operator can be confident that the

information in the tree is “sufficient” for diagnosis. However, the actual root cause

(the faulty rule; indicated with an arrow) is buried deep within the tree and is quite

far from the root, which corresponds to the packet P′ itself. is is by no means

unusual: in other scenarios that were discussed in the literature, the provenance

often contains tens or even hundreds of vertexes [169]. Hence, extracting a concise

root cause from a complex causal explanation remains challenging.

64

4.1.3 Key idea: Reference events

Our key idea is to use a reference event to improve the diagnosis. A good reference

event is one that a) is as similar as possible to the faulty event that is being diagnosed,

but b) unlike that event, has produced the “correct” outcome. Since the reference

event reflects the operator’s expectations of what the buggy network ought to have

done, we rely on the operator to supply it together with the faulty event.

e purpose of the reference event is to show the debugger which parts of the

provenance are actually relevant to the problem at hand. If the provenance of the

faulty event and the reference event have vertexes in common, these vertexes cannot

be related to the root cause and can therefore be pruned without losing information.

If the reference event is sufficiently similar to the faulty event, it is likely that almost

all of the vertexes in their provenances will be shared, and that only very few will be

different. us, the operator can focus only on those vertexes, which must include

the actual root cause.

For illustration, we show the provenance of the reference packet P from our sce-

nario in Figure 4.3(c). ere are quite a few shared vertexes (shown in green), but

perhaps not as many as one might have expected. is is because of an additional

complication that we discuss in Section 4.1.5.

4.1.4 Are references typically available?

To understand whether reference events are typically available in practical diagnostic

scenarios, we reviewed the posts on the Outages mailing list from 09/2014–12/2014.

ere are 89 posts in total, and 64 of them are related to network diagnosis. (e

others are either irrelevant, such as complaints about a particular iOS version, or are

lacking information that is needed to formulate a diagnosis, such as a news report

saying that a cable was vandalized.) We found that 45 of the 64 diagnostic scenarios

(70.3%) contain both a fault and at least one reference event; however, in ten of

the 45 scenarios, the reference event occurred in another administrative domain, so

65

we cannot be sure that the operator would have had access to the corresponding

diagnostic data. Nevertheless, even if we ignore these ten events, this leaves us with

35 out of 64 scenarios (or slightly more than half) in which a reference event would

have been available.

We further classified the 45 scenarios into three categories: partial failures, sud-

den failures, and intermittent failures. e most prevalent problems were partial

failures, where operators observed functional and failed installations of a service at

the same time. For instance, one thread reported that a batch of DNS servers con-

tained expired entries, while records on other servers were up to date. Another class

of problems were sudden failures, where operators reported the failure of a service

that had been working correctly earlier. For instance, an operator asked why a ser-

vice’s status suddenly changed from “Service OK” to “Internal Server Error”. e

rest were intermittent failures, where a service was experiencing instability but was

not rendered completely useless. For instance, one post said that diagnostic queries

sometimes succeeded, sometimes failed silently, and sometimes took an extremely

long time.

In most of the scenarios we examined, the reference event could have been found

in one of two ways: either a) by taking the malfunctioning system and looking back

in time for an instance where that same system was still working correctly, or b) by

looking for a different system or service that coexists with the malfunctioning system

but has not been affected by the problem. Although our survey is far from universal,

these strategies are quite general and should be applicable in many other scenarios.

4.1.5 Why not compare the trees directly?

Intuitively, it may seem that the differences between two provenance trees could be

found with a conventional tree comparison algorithm – e.g., some variant of tree edit

distance algorithms [45] – or perhaps simply by comparing the trees vertex by vertex

and picking out the different ones. However, there are at least two reasons why this

66

would not work well. e first is that the trees will inevitably differ in some details,

such as timestamps, packet headers, packet payloads, etc. ese details are rarely

relevant for root cause analysis, but a tree comparison algorithm would nevertheless

try to align the trees perfectly, and thus report differences almost everywhere. us,

an equivalence relation is needed to mask small differences that are not likely to be

relevant.

Second, and perhaps more importantly, small differences in the leaves (such as

forwarding a packet to port #1 instead of port #2) can create a “butterfly effect”

that results in wildly different provenances higher up in the tree. For instance, the

packet may now traverse different switches and match different flow entries that in

turn depend on different configuration states, etc. is is the reason why the two

provenances in Figures 4.3a and 4.3b still have considerable differences: the former

has 201 vertexes and the latter 156, but the naïve “diff” has as many as 278 – even

though the root cause is only a single vertex! us, a naïve diff may actually be larger

than the underlying provenances, which completely nullifies the advantage from the

reference events.

4.1.6 Approach: Differential provenance

Differential provenance takes a fundamentally different approach to identifying the

relevant differences between two provenance trees. We exploit the fact that a) each

provenance describes a particular sequence of events in the network, and that b)

given an initial state of the network, the sequence of events that unfolds is largely

deterministic. For instance, if we inject two packets with identical headers into

the network at the same point, and if the state of the switches is the same in each

case, then the packets will (typically) travel along the same path and cause the same

sequence of events in the network. is allows us to predict what the rest of the

provenance would have been if some vertex in the provenance tree had been different

in some particular way.

67

is enables the following three-step approach for comparing provenance trees:

First, we locate a pair of “seed” vertexes that triggered the diagnostic event and the

reference event. We then conceptually “roll back” the state of the network to the

corresponding point, make a change that transforms some “bad” vertex into a good

one, and then “roll forward” the network again while keeping track of the new prove-

nance along the way. us, the provenance tree for the diagnostic event will become

more and more like the provenance tree for the reference event. Eventually, the two

trees are equivalent. At this point we output the set of changes (or perhaps only one

change!) that transformed the one tree into the other; this is our estimate of the

“root cause”.

4.2 Differential Provenance

In this section, we introduce the concept of differential provenance. For ease of ex-

position, we adopt a declarative system model that is commonly used in database

systems when reasoning about provenance. is model describes a system’s states

as tuples, and its algorithm as derivation rules that process the tuples. e key ad-

vantage of using this model is that provenance is very easy to see in the syntax.

Although one can directly program with such rules and then compile them into an

executable [116], few deployed systems are written that way today. However, Diff-

Prov is not specific to the declarative model: in Section 4.4, we describe several ways

in which rules and tuples can be extracted from systems that are written in other

languages, and our prototype debugger has a front-end that accepts SDN programs

that are written in Pyretic [131], an imperative language.

4.2.1 System model

We assume that the system that is being diagnosed consists of multiple nodes that

run a distributed protocol, or a combination of protocols. System states and events

are represented as tuples, which are organized into tables. For instance, the model

68

for an SDN switch would have a table called FlowEntry, where each row encodes

an OpenFlow rule and each column encodes a specific attribute of it, e.g., incoming

port (in_port), match fields (nw_dst), actions (actions), and others. As a sim-

plified example, a tuple FlowEntry(5,8,1.2.3.4) may indicate that packets with

destination IP 1.2.3.4 that arrive on port 5 should be sent out on port 8.

e algorithm of the system is described by a set of derivation rules, which encodes

how tuples could be derived when and where. External events to the system, such as

incoming packets, are modeled as base tuples. Whenever a base tuple arrives, it will

trigger a set of derivation rules and cause new derived tuples to appear; the derived

tuples may in turn trigger more rules and produce other derived tuples. Rules have

the form A :- B,C,..., which means that a tuple A will be derived whenever tuples

B,C,... are present; for instance, the model for an SDN switch would have a rule

that derives PacketOut tuples from PacketIn and FlowEntry tuples. Rules can also

specify tuple locations using the @ symbol to encode a distributed operation: for

instance, A(i,j)@X :- B(i)@X,C(j)@Y indicates that an A(i,j) tuple should be

derived on node X whenever a) node X has a B(i) tuple and b) node Y has a C(j)

tuple. Here, i and j are variables of certain types, e.g., IP ranges, switch ports, etc.

e provenance system observes how the primary system runs, keeps track of its

derivation chains, and uses them to explain why a particular system event occurred.

e provenance of a tuple is very easy to explain in terms of the derivation rules:

a base tuple’s provenance is itself, since it cannot be explained further; a derived

tuple’s provenance consists of the rule(s) that have been used to derive it, as well as

the tuples used by the rule(s). For instance, if a tuple A was derived using some rule

A :- B,C,D, then A exists simply because tuples B, C, and D also exist. Without loss

of generality, we model tuple deletions as insertions of special “delete” tuples; this

results in an append-only maintenance of the provenance graph.

69

4.2.2 The provenance graph

ere are different ways to define provenance, and our approach does not depend on

the specific details. For concreteness, we will use a simplified version of the temporal

provenance graph from [182]. We chose this graph because its temporal dimension

enables the graph to “remember” past events; this is useful, e.g., when the reference

event is something that happened in the past. e graph from [182] consists of the

following seven vertex types:

• (n,τ, t), (n,τ, t): Base tuple τ was inserted (deleted) on node n at

time t;

• (n,τ, [t1, t2]): Tuple τ existed on node n from time t1 to t2;

• (n,τ,R, t), (n,τ,R, t): Tuple τ was derived (underived) via rule

R on n at time t;

• (n,τ, t), (n,τ, t): Tuple τ appeared (disappeared) on node n at

time t;

e provenance graph is built incrementally at runtime. When a base tuple is in-

serted, this causes an  to be added to the graph, followed by an  (to

reflect the fact that a new tuple appeared), and finally an  (to reflect that the

tuple now exists in the system). Having three separate vertexes may seem redundant,

but will be useful later – for example, when DiffProv must find tuples that “appeared”

last. If the appearance of a tuple triggers a derivation via a rule, a  vertex is

added to the graph. e remaining three “negative” vertexes (, ,

and ) are analogous to their positive counterparts.

4.2.3 Towards a definition

We are now ready to formalize the problem we have motivated in Section 4.1. For

clarity, we start with the following informal definition (which we then refine in sev-

eral steps):

70

Definition attempt 1. Given a “good” provenance tree TG with root vertex vG and a

“bad” provenance tree TB with root vertex vB, differential provenance is the reason why

the two trees are not the same.

More precisely, we adopt a counterfactual approach to define “the reason”: al-

though the actual provenance of vG is clearly different from that of vB, we can look

for changes to the system that would have caused the provenances to be the same.

For instance, in the example from Section 4.1, the actual reason why the packets P

and P′ were routed differently was an overly specific flow entry; by changing that

flow entry into a more general one, we can cause the two packets to take the same

path. Since any change can be captured by a combination of changes to base tuples,

we can restate our goal as finding some set ∆B→G of changes to base tuples that would

transform the “bad” tree into the “good” one.

Refinement #1 (Mutability): Importantly, not all changes to base tuples make

sense in practice. For instance, in our SDN example, it is perfectly reasonable to

change base tuples that represent configuration states, but it is not reasonable to

change base tuples that represent incoming packets, since the operator has no con-

trol over the kinds of packets that arrive at her border router. us, we distinguish

between mutable and immutable base tuples, and we do not consider changes that

involve the latter. (Note that this restriction implies that a solution does not always

exist.) We thus arrive at our next attempt:

Definition attempt 2. Given two provenance trees TG and TB, their differential prove-

nance is a set of changes ∆B→G to mutable tuples that transforms TB into TG.

Refinement #2 (Preservation of seeds): Even when restricted to mutable tuples,

the above definition is not quite right, because we are not looking to transform TB

into TG verbatim: this contradicts our intuition that TB is about a different event,

and that a meaningful solution must preserve the events whose provenance the trees

represent. To formalize this notion, we designate one leaf tuple in each tree as the

seed of that tree, to reflect that the tree has “sprung” from that event, and we require

71

function DP(TG,TB)
sG← (TG)
sB ← (TB)
if sG ̸≃ sB then 
∆B→G← /0
while TG ̸≃ TB do

(τG,τB)← (sG,sB)
τ ′G← (τG)
(τ ′G,τG)
TB← (TB,∆B→G)

return ∆B→G

function (sG,sB)
for each field sG[i] ̸= sB[i]

(sG[i],sB[i])
τG← sG, τB← sB
while τG ≃ τB do

(τG→ parent(τG))
(τB→ parent(τB))
τG← parent(τG)
τB← parent(τB)

return (τG,τB)

function (τ ′G, τG)
if BaseTuple(τ ′G) then

if ImmutableTuple(τ ′G) then 
∆B→G← ∆B→G ∪{τ ′G}

else
for τi ∈ children(τG) do

(τG→ τi)
τ ′i ← (τi)
if ∄τ ′i then(τ ′i ,τi)

return

Figure 4.4: Pseudocode of the DiffProv algorithm. e , ,
, and  functions are explained in Sections 4.3.2, 4.3.4,
4.3.5, and 4.3.6 respectively. e , , and  func-
tions are introduced to establish equivalence between corresponding tuples in TG and
TB (Section 4.3.3).

that the seeds be preserved while the trees are being aligned. To identify the seed,

observe that, whenever a tuple A is derived through some rule A:-B,C,D,..., one of

the underlying tuples B, C, D, ... was the last one to appear and thus has “triggered”

the derivation. us, we can follow the chain of triggers from the root to exactly

one of the leaves, which, in a sense, triggered the entire tree.

Refinement #3 (Equivalence): If the changes to TB must preserve its seed, the

question arises how the two trees could ever be “the same” if their seeds are dif-

ferent. erefore, we need a notion of equivalence. For instance, suppose that

pkt(1.2.3.4,80,X) and pkt(1.2.3.5,80,Y) are the seeds, representing two HTTP

packets for two different interfaces of the same server. en, when aligning the two

trees, we must account for the fact that the IP addresses and payloads are different.

In simple cases, this might simply mean that all the occurrences of 1.2.3.4 in TG

are replaced with 1.2.3.5 in TB, but there are more complicated cases – e.g., when

the controller program computes different flow entries for the two IPs, perhaps even

with different functions. We will discuss this more in Section 4.3.3.

With these refinements, we arrive at our final definition:

Definition 1 (Differential provenance). Given two provenance trees TG and TB with

seed tuples sG and sB, the differential provenance of TG and TB is a set of changes ∆B→G

72

to mutable tuples that 1) transforms TB into an equivalent of TG, and 2) preserves sB.

Figure 4.5 illustrates this definition with a simple derivation rule C(x,y2,z+1):-A(x,

y),B(x,y,z) and three example tuples. e seeds A(1,2) and A(2,2) are considered

to be equivalent (and immutable). To align the two provenance trees, the differential

provenance of TB and TG would be a change from the mutable base tuple B(1,2,3)

in TB to B(1,2,4), which makes it equivalent to its corresponding tuple B(2,2,4)

in TG. is update will be propagated and further change C(1,4,4) to C(1,4,5) in

TB, which now becomes equivalent to tuple C(2,4,5) in TG.

4.3 The DiffProv algorithm

In this section, we present DiffProv, a concrete algorithm that can generate differ-

ential provenance. Initially, we will assume that the two trees are completely mate-

rialized and have been downloaded to a single node; however, we will remove this

assumption at the end of this section.

4.3.1 Roadmap

e DiffProv algorithm is shown in Figure 4.4. We begin with an intuitive explana-

tion, and then explain each step in more detail.

When invoked with two provenance trees – a “good” tree TG and a “bad” tree TB –

DiffProv begins by identifying the seed tuples of both trees (Section 4.3.2). DiffProv

then verifies that the two seed tuples are of the same type; if they are not, TG and TB

are not really comparable, and the algorithm fails. Otherwise, DiffProv defines an

equivalence relation that maps the seed of the “bad” tree to the seed of the “good”

tree (Section 4.3.3). is helps DiffProv to align a first tiny subtree of the two trees,

which provides the base case for the following inductive step.

Starting with a pair of subtrees that are already aligned, DiffProv then identifies

the parent vertexes τG and τB of the two trees and checks whether they are already the

73

A(1,2)	
 B(1,2,3)	

C(1,4,4)	

immutable	
 mutable	

A(2,2)	
 B(2,2,4)	

C(2,4,5)	

diff	
 diff	

equivalent	
 tuple	

TB TG

Figure 4.5: A simplified example showing the differential provenance for a one-
step derivation. A(1,2), A(2,2) are the seeds; equivalent fields are underlined, and
differences are boxed. Differential provenance transforms B(1,2,3) into B(1,2,4)
to align this derivation.

same under the equivalence relation defined earlier (Section 4.3.4). If so, DiffProv

has found a larger pair of aligned subtrees, and repeats. If not, DiffProv checks which

children of τG are not present in TB, and then attempts to make changes so as to make

these children appear (Section 4.3.5–4.3.6). In doing so, DiffProv heavily relies on

the “good” tree TG as a guide: rather than trying to guess combinations of base tuple

changes that might cause the missing tuples to be created, DiffProv creates them in

the same way that they were created in TG (modulo equivalence), which reduces an

exponential search problem to a linear one.

During alignment, DiffProv accumulates a set of base tuple changes. Once the

roots of TG and TB have been reached, DiffProv outputs the accumulated changes as

∆B→G and terminates.

4.3.2 Finding the seeds

Given the two provenance trees TG and TB, DiffProv’s first step is to find the seed

of each tree. To do this, DiffProv uses the following insight: unlike databases,

distributed systems and networks usually do not perform one-shot computations;

rather, they respond to external stimuli. For instance, networks route incoming

packets, and systems like Hadoop process incoming jobs. us, the provenance of

an output is not a uniform tree; rather, there will be one “special” branch of the tree

that describes how the stimulus made its way through the system (say, the route of an

74

incoming packet), while the other branches describe the reasons for what happened

at each step (say, configuration states). e seed of the tree is simply the external

event, which can be found at the bottom of this “special” branch.

At first glance, it may seem difficult to find this stimulus in a given provenance

tree, but in fact there is an easy way to do this. Notice that each derivation is triggered

because its last precondition has been satisfied; for instance, if a tuple A was derived

through a rule A:-B,C,D, then one of the three tuples B, C, and D must have appeared

last, when the other two were already present. us, this last tuple represents the

stimulus for the derivation. Conveniently, the provenance graph we have adopted

(see Section 4.2.2) already has a special vertex – the  vertex – to identify this

tuple.

us, DiffProv can find the seed as follows. Starting at the root of each tree, it

performs a kind of recursive descent: at each vertex v, it scans the direct children of

v, locates the  vertex with the highest timestamp, and then descends into the

corresponding branch of the tree. By repeating this step, DiffProv eventually reaches

a leaf that is of type , which it then considers to be the seed.

4.3.3 Establishing equivalence

Next, DiffProv checks whether the seeds of TG and TB are of the same type. It is

possible that they are not; for instance, the operator might have asked DiffProv to

compare a flow entry that was generated by the controller program to one that was

hard-coded. In this case, the two trees are not really comparable, and DiffProv fails.

Even if the seeds sG and sB do have the same type, some of their fields will be

different. For instance, sG might be a packet pkt(1.2.3.4,80,A), and sB might

be a packet pkt(1.2.3.5,80,B); in this case, the two packets have the same port

number (80) but different IP addresses and payloads. is is not a problem for the

seeds themselves, since they are equivalent by definition (Section 4.2.3); however, it

is a problem for tuples that are – directly or indirectly – derived from the seeds. For

75

instance, if a tuple τ:=portAndLastOctet(80,4) was derived from sG via a chain of

several different rules, how can DiffProv know what tuple would be the equivalent

of τ in TB? A human diagnostician could intuitively guess that it should be portAnd

LastOctet(80,5), since the last octet in sB was 5, but DiffProv must find some other

way.

To this end, DiffProv taints all the fields of tuples in TG that have been computed

from fields of sG in some way, and maintains, for each tainted field, a formula that

expresses the field’s value as a function of fields in sG. In the above example, both

fields of τ would be tainted. If X, Y, and Z are the three fields of sG, then the formula

for the first field of τ would simply be Y (since it is just the port number from the

original packet), and the formula for the second field would be X&0xFF (since it

is the last octet of the IP address in sG). With these formulae, DiffProv can find

the equivalent of any tuple in TG simply by plugging in the values from sB. is

will become important in the next step, where DiffProv must make missing tuples

appear in TB.

DiffProv computes the taints and formulae incrementally as it works its way up

the tree, as we shall see in the next step. Initially, it simply taints each field in sG and

annotates each field with the identity function.

4.3.4 Aligning larger subtrees

Next, DiffProv attempts to align larger and larger subtrees of TG and TB. Each step

begins with a pair of subtrees that are already aligned (modulo equivalence); initially,

this will be just the two seed tuples.

First, DiffProv propagates the taints to the parent vertex of the good sub-

tree, while updating the attached formulae to reflect any computations. For in-

stance, suppose the root of the subtree was (foo(1,2,3)), its parent was

(bar(1,7),R), and that we have a derivation rule that states bar(a,d):-foo(a

,b,c),d=2*c+1. en DiffProv would propagate the taint from the 1 in foo to the

76

1 in bar and leave its formula unmodified. DiffProv would also propagate the taint

from the 3 in foo to the 7 in bar, but it would attach a different formula to the 7: if

f was the formula used to compute the 3 in the good tree from some field(s) of sG

that were different in sB (see Section 4.3.3), then DiffProv would attach g:=2*f+1

to the 7, to reflect that it was computed using d=2*c+1.

en, DiffProv evaluates the formulae for all the tainted tuples in the parent

to compute the tuple that should exist in the bad tree. For instance, in the above

example, suppose the formulae that are attached to the 1 and the 7 in bar(1,7) are

H+1 and 2*(G+1)+1, where H=9 and G=0 are the values of some fields in TB’s seed (see

Section 4.3.3). en DiffProv would conclude that a bar(10,3) tuple ought to exist

in TB, since this would be equivalent to the bar(1,7) in TG based on the equivalence

relation.

If the expected tuple exists in TB and has been derived using the expected rule,

DiffProv adds the parent vertexes to both subtrees (as well as any other subtrees of

those vertexes) and repeats the induction step with the larger subtrees. If the expected

tuple does not exist in TB, DiffProv detects the first “divergence”, and will try to make

the tuple appear using the procedure we describe next.

4.3.5 Making missing tuples appear

At first glance, it is not at all clear how to create an arbitrary tuple. e tuple might be

indirectly derived from many different base tuples, and attempting random combi-

nations of changes to these tuples would have an exponential complexity. However,

DiffProv has a unique advantage in the form of the “good” tree TG, which shows

how an equivalent tuple has already been derived. us, DiffProv uses TG as a guide

in its search for useful tuple changes.

DiffProv begins by propagating the taints from the parent of the current sub-

tree in TG to the other children of that parent. For instance, suppose that the

current parent in TG is a flowEntry(1.2.3.4,5,8) that has been derived using

77

flowEntry(ip,s,d):- pkt(ip,s),cfg(s,d) on a pkt(1.2.3.4,5), which is the

root of the current subtree. en, DiffProv can simply propagate any taints, and

their formulae, from the 5 and the 8 in the flowEntry to the corresponding fields

in the config tuple.

Note that, in general, propagating taints from a vertex v to one of its chil-

dren can require inverting computations that have been performed to obtain

a field of v. For instance, if a tuple abc(5,8) has been derived using a rule

abc(p,q):-foo(p),bar(x),q=x+2, DiffProv must invert q=x+2 to obtain x=q-2

and to thus conclude that a bar(6) is required. While not all rules are injective

or surjective, or are simple enough to be inverted, in practice, the rules we have

encountered are usually simple enough to permit this. In cases when automatic

inverting is not possible, we depend on the model to provide inverse rules. When

there are several preimages (for example, if q=x2+4), DiffProv can try all of them.

DiffProv then uses the formulae to compute, for each child in TG, the equivalent

tuple in TB, and it checks whether this tuple already exists. e tuple may exist even

if it is not currently part of TB: it may have been derived for other reasons, or it may

have been created by earlier changes to base tuples (see Section 4.3.6). If a tuple does

not exist, DiffProv checks whether it is a base tuple. If not, DiffProv looks up the

rule that was used to derive the missing tuple in TG, and then recursively invokes the

current step to make the missing children of that tuple appear. If the missing tuple

is indeed a base tuple, DiffProv adds that base tuple to ∆B→G and then performs the

step we discuss next.

4.3.6 Updating TB after tuple changes

Once a new change has been added to ∆B→G, DiffProv must update TB to reflect the

change. Since DiffProv is meant to be purely diagnostic, we do not want to actually

apply the new update directly into the running system, since this would affect its

normal execution. Rather, DiffProv clones the current state of the system when it

78

makes the first change, and applies its changes only to the clone. (Cloning can be

performed efficiently using techniques such as copy-on-write.)

e obvious consequence of each update is that one missing tuple in TB appears.

However, the update might cause other missing tuples to appear elsewhere that have

not yet been encountered by DiffProv, or remove existing tuples that transitively

depend on the original base tuple. erefore, DiffProv allows the derivations in

the cloned state to proceed until the state converges. ese updates only affect the

cloned state, and are not propagated to the runtime system.

If the seeds of the two trees are of the same type, and if DiffProv can successfully

invert any computations it encounters while propagating taints, it returns the set of

tuple changes ∆B→G as the estimated root cause.

4.3.7 Properties of DiffProv

Complexity: e number of steps DiffProv takes is linear in the number of ver-

texes in TG. is is substantially faster than a naïve approach that attempts random

changes to mutable base tuples (or combinations of such tuples), which would have

an exponential complexity. DiffProv is faster because of a) its use of provenance,

which allows it to ignore tuples that are not causally related to the event of interest,

and b) its use of taints and formulae, which enables it to find, at each step, a specific

tuple change that will have the desired effect – it never needs to “guess” a suitable

change.

False positives: When DiffProv outputs a set of tuple changes, this set will always

satisfy our definition from Section 4.2.3, that is, it will transform TB into a tree that

is equivalent to TG, while preserving the seed sB. ere are no “false positives” in the

sense that DiffProv would recommend changes that have no effect, or recommend

changes to tuples that are not related to the problem. However, there is no guarantee

that the output will match the operator’s intent: if the operator inputs a packet P and

a reference packet P′, DiffProv will output a change that will make the network treat

79

P and P′ the same, even if, say, the operator would have preferred P to take a different

path. For this reason, it is best if the operator carefully inspects the proposed changes

before applying them.

False negatives: DiffProv can fail for three reasons. First, the seeds of TG and TB

have different types – for instance, the “good” event is a packet and the “bad” event

is a flow entry. In this case, there is no valid solution, and the operator must pick

a suitable reference. Second, the solution would involve changing an immutable

tuple – for instance, a static flow entry that the operator has declared off limits, or

the point at which a packet entered the network. In this case, there is again no valid

solution, but DiffProv can show the operator what would need to be changed, and

why; this should help the operator in picking a better reference. ird, DiffProv

fails if it encounters rules that cannot be inverted (say, a SHA256 hash). We have

not encountered non-invertible rules in our case studies. However, if such a rule

prevents DiffProv from going further, DiffProv can output the “attempted change”

it would like to try, which may still be a useful diagnostic clue.

4.3.8 Extensions

Distributed operation: So far, we have described DiffProv as if the entire prove-

nance trees TG and TB are materialized on a single node. We note that, in actual

operation, DiffProv is decentralized: it never performs any global operation on the

provenance trees, and all steps are performed on a specific vertex and its direct parent

or children. erefore, each node in the distributed system only stores the prove-

nance of its local tuples. When a node needs to invoke an operation on a vertex that

is stored on another node, only that part of the provenance tree is materialized on

demand.

Temporal provenance: When DiffProv tries to make tuples appear, it must consider

the state of the system “as of” the time at which the missing tuple would have had to

exist, and it must apply the new updates to base tuples “early enough” to be present

80

at the required time. DiffProv accomplishes the former by keeping a log of tuple

updates along with some checkpoints, similar with DTaP [182], so that the system

state at any point in the past can be efficiently reconstructed. DiffProv accomplishes

the latter by applying the updates shortly before they are needed for the first time.

4.3.9 Limitations and open problems

We now discuss a few limitations of the DiffProv algorithm, and potential ways to

mitigate some of them in future work.

Minimality: We note that the set of changes returned by DiffProv is not neces-

sarily the smallest, since it attempts to derive missing tuples only via the specific rule

that was used to derive their counterpart in TG. Other derivations may be possible,

and they may require fewer changes. is is, in essence, the price DiffProv pays for

using TG as a guide.

Reference events: DiffProv currently relies on the operator to supply the refer-

ence event. is works well for the majority of the diagnostic cases we have surveyed

(Section 5.1.3), where the operators have explicitly mentioned some potential ref-

erence events as starting points. But we are also exploring to automate this process

using inspirations from Automatic Test Packet Generation [174] and the “guided

probes” idea in Everflow [184].

Performance anomalies: Provenance in its plainest form works aims to explain

individual events. We note that debugging performance anomalies, e.g., high per-

flow latencies, resembles answering aggregation queries, and may require similar ex-

tensions to the current provenance model [33] that considers provenance for ex-

plaining aggregation results.

Non-determinism: Replay-based debuggers such as DiffProv, ATPG [174], etc.,

assume that the network is largely deterministic. In the presence of load-balancers

that make random decisions, e.g., ECMP with a random seed, DiffProv would need

to reason about the balancing mechanism using the seed. Under race conditions,

81

DiffProv would abort at the point where applying the same rule does not result in

the same effect, and suggest that point as a potential race condition.

4.4 Implementation

Next, we present the design and implementation of our DiffProv prototype. We

have implemented a DiffProv debugger in C++ based on RapidNet [18], with five

major components: a) a provenance recorder, b) a front-end, c) a logging engine, d)

a replay engine, and e) the DiffProv reasoning engine.

Provenance recorder: e provenance recorder can extract provenance infor-

mation from the primary system in three possible modes. First, it can directly infer

the provenance if the primary system explicitly captures data dependencies, e.g., it

is compiled into running code from declarative rules [116]. Since RapidNet is a

declarative networking engine based on Network Datalog (NDlog) rules, DiffProv

can infer provenance directly from any NDlog program; we applied this technique

to the first three SDN scenarios.

Alternatively, the primary system can be instrumented with hooks that report

dependencies to the recorder, e.g., as in [132]. We applied this to MapReduce by

instrumenting Hadoop MapReduce v2.7.1 to report its internal provenance to Diff-

Prov. Our instrumentation is moderate: it has less than 200 lines of code, and it

reports dependencies at the level of individual key-value pairs (e.g., words and their

counts), as well as input data files, Java bytecode signatures, and 235 configuration

entries.

Finally, we can treat the primary system as a black box, and use external spec-

ifications to track dependencies between inputs and outputs, e.g., as in [180]. We

applied this to the complex SDN scenario in Section 4.5.7, where the recorder tracks

packet-level provenance in Mininet [13] based on the packet traces it has produced,

as well as an external specification of OpenFlow’s match-action behavior.

Front-end: For our SDN scenario, we have built a front-end for controller pro-

82

grams that accepts programs written either in native NDlog or in NetCore (part

of Pyretic [131]). When a NetCore program is provided, our front-end internally

converts it to NDlog rules and tuples using a technique from Y! [169].

Logging and replay engines: e logging and replay engines are needed to sup-

port temporal provenance as described in Section 4.3.8, and they assist the recorder

to capture provenance information in one of the following two approaches: a) in

the runtime based approach, the logging engine writes down base events and all

intermediate derivations, so that the provenance is readily available at query time;

b) in the query-time based approach, the logging engine writes down base events

only, and the replay engine then reconstructs derivations using deterministic replay.

Although our prototype supports both approaches, we have opted for the latter in

our experiments as it favors runtime performance – diagnostic queries would take

longer, but they are relatively rare events; moreover, it enables an optimization that

allows the replay engine to selectively reconstructs relevant parts of the provenance

graph only.

Reasoning engine: e DiffProv reasoning engine retrieves the provenance trees

from the recorder, performs the DiffProv algorithm we described in Section 4.3, and

then issues replay requests to update the trees.

4.5 Evaluation

In this section, we report results from our evaluation of DiffProv in two sets of case

studies centered around software-defined networks and Hadoop MapReduce. We

have designed our experiments to answer four high-level questions: a) how well

can DiffProv identify the actual root cause of a problem?, b) does DiffProv have a

reasonable cost at runtime?, c) are DiffProv queries expensive to process?, and d)

does DiffProv work well in a complex network with realistic routing policies and

heavy background traffic?

83

4.5.1 Experimental setup

e majority of our SDN experiments are conducted in RapidNet v0.3 on a Dell

OptiPlex 9020 workstation with an 8-core 3.40 GHz Intel i7-4770 CPU, 16 GB of

RAM, a 128 GB OCZ Vector SSD, and a Ubuntu 13.12 OS. ey are based on a

9-node SDN network setup similar with that in Figure 5.1, where we replayed an

OC-192 packet trace obtained from CAIDA [7], as well as several synthetic traces

with different traffic rates and packet sizes.

We further carry out an experiment on a larger and more complex SDN network,

replicating ATPG’s [174] setup of the Stanford backbone network. We replicated

this setup because it is a network with complex policies and heavy background traffic,

thus a suitable scenario to evaluate DiffProv’s capability of finding root causes in

a realistic setting. Since their setup involves a different platform (emulated Open

vSwitch in Mininet [13] with a Beacon [23] controller), we defer the discussion of

this experiment to Section 4.5.7.

Our MapReduce experiments are conducted in Hadoop MapReduce v2.7.1,

on a Hadoop cluster with 12 Dell PowerEdge R300 servers with a 4-core 2.83 GHz

Intel Xeon X33363 CPU, 4GB of RAM, two 250 GB SATA hard disks in RAID

level 1 (mirroring), and a CentOS 6.5 OS. As a further point of comparison, we

also re-implemented the MapReduce scenarios in a declarative implementation, and

evaluated them in RapidNet.

4.5.2 Diagnostic scenarios

For our experiments, we have adapted six diagnostic scenarios from existing papers

and studies of common errors. Our four SDN scenarios are:

• SDN1: Broken flow entry [139]. An SDN switch is configured with an

overly specified flow entry. As a result, traffic from certain subnets is mistakenly

handled by a more general rule, and routed to a wrong server (TB), while other

84

traffic from other subnets continues to arrive at the correct server (TG). is is

the scenario from Section 4.1.

• SDN2: Multi-controller inconsistency [60]. An SDN switch is configured

with two conflicting rules by different controller apps that are unaware of each

other. e lower-priority rule sends traffic to a web server (TG), and the higher-

priority rule sends traffic to a scrubber. However, the header spaces of the rules

overlap, so some legitimate traffic is sent to the scrubber accidentally (TB).

• SDN3: Unexpected rule expiration [146]. An SDN switch is configured

with a multicast rule that sends video data to two hosts (TG). However, when

the multicast rule expires, the traffic is handled by a lower-priority rule and is

delivered to a wrong host (TB). Notice that in this case the “good” example is

a packet that was observed in the past.

• SDN4: Multiple faulty entries. In this scenario, we extended SDN1 with a

larger topology and injected two faulty flow entries on two consecutive hops

(S2–S3). Although some traffic can always arrive at the correct server (TG),

traffic from certain subnets is originally misrouted by S1 (TB1), and then by S2

after the first fault is corrected (TB2). As a result, DiffProv needs to proceed in

two rounds to identify both faults.

Our MapReduce scenarios are inspired by feedback from an industrial collabora-

tor about typical bugs he encounters in his workflow. Since the workflow is propri-

etary, we have translated the problems to the classical WordCount job example, which

counts the number of occurrences of each word in a text corpus. We have evaluated

them with a declarative implementation in RapidNet (MR1-D and MR2-D) and an

imperative implementation in Hadoop’s native codebase (MR1-I and MR2-I). e

MR1 and MR2 scenarios are:

• MR1-D and MR1-I: Configuration changes. e user sees wildly different

output files (TB) from a MapReduce job he runs regularly, because he has ac-

85

Query SDN1 SDN2 SDN3 SDN4
Good example (TG) 156 156 156 201/201
Bad example (TB) 201 156 201 156/145
Plain tree diff 278 238 74 278/218
DiffProv 1 1 1 1/1
Query MR1-D MR2-D MR1-I MR2-I
Good example (TG) 1051 1001 588 588
Bad example (TB) 1051 848 588 438
Plain tree diff 164 306 240 216
DiffProv 1 1 1 1

Table 4.1: Number of vertexes returned by five different diagnostic techniques; for
SDN4, the two rounds of DiffProv are shown separately. DiffProv was able to pin-
point the “root causes” with one or two vertexes in each case, while the other tech-
niques return more complex responses.

cidentally changed the number of reducers. Because of this, almost all the

emitted words end up at a different reducer node than before (TG).

• MR2-D andMR2-I: Code changes. e user deploys a new implementation

of the mapper, but it has a bug that causes the first word of each line to be

omitted. As a result, the job now produces a different output (TB) than before

(TG) for a previously used input file.

4.5.3 Usability

We begin with a series of experiments to verify that differential provenance indeed

provides a more concise explanation of the “root cause” than classical provenance.

For this purpose, we ran two conventional provenance queries using Y! [169] to

obtain the “good” and the “bad” provenance trees for each of the five diagnostic

scenarios, as well as a differential provenance query using DiffProv. We also evaluated

a simple strawman from Section 4.1.5, where we performed a plain tree diff based on

the number of distinct nodes, in the hope that the querier would recognize suspicious

gaps. We then counted the number of vertexes in each result.

86

Table 4.1 shows our results. As expected, the plain provenance trees typically

contain hundreds of vertexes, which would have to be navigated and parsed by the

human querier to extract the actual root cause. e plain diff is not significantly sim-

pler – in fact, it sometimes contains more vertexes than either of the individual trees!

(We have discussed the reason for this in Section 4.1.5.) erefore, it would still

require considerable effort to identify tuples that should not be there (e.g., flow en-

tries that should not have been used) or to guess tuples that are missing. In contrast,

differential provenance always returned very few tuples.

In more detail, for SDN1–SDN4, DiffProv returned the missing (or broken) flow

entries as the root cause; for MR1-I, DiffProv returned mapreduce.job.reduces –

the field in the configuration file that specifies the number of reducers; for MR2-I,

though DiffProv cannot reason about the internals of the actual mapper code, it was

still able to pinpoint the version of the mapper code (identified by the checksum of

its Java bytecode) that caused the error; for MR1-D and MR2-D, DiffProv returned

those fields’ declarative equivalents in the NDlog model.

To test how DiffProv handles unsuitable reference events, we issued ten addi-

tional queries in the SDN1 and MR1-D scenarios for which we picked a reference

event at random. (We applied a simple filter to avoid picking events that we knew

were suitable references.) As expected, DiffProv failed with an error message in all

cases. In three of the cases, the supplied reference event was not comparable with the

event of interest because their seeds had different types; for instance, one seed was

a MapReduce operation but the other was a configuration entry. In the remaining

seven cases, aligning the trees would have required changes to “immutable” tuples;

for instance, the packet of interest entered the network at one ingress switch and the

reference packet at another. In all cases, DiffProv’s output clearly indicated what as-

pect of the chosen reference event was causing the problem; this would have helped

the operator pick a more suitable reference.

87

 1

 10

 100

 300

1Mbps 10Mbps 100Mbps 1Gbps 10Gbps
Lo

gg
in

g
ra

te
 (M

B/
s)

Traffic rate

.03 .29

2.8

28.4

283.7

Figure 4.6: Logging rate for different traffic rates.

4.5.4 Cost: Latency

Next, we evaluated the runtime costs of our prototype, starting with the latency

overhead incurred by logging. For the SDN setup, we streamed 2.5 million 500-

byte packets through the SDN1 scenario, and measured the average latency inflation

of our prototype to process one packet when logging is enabled. For the MapRe-

duce setup, we processed a 12.8 GB Wikipedia dataset in the MR1-I scenario, and

recorded the extra time it took to run the same job with logging enabled. We ob-

served that the latency is increased by 6.7% in the first experiment, and 2.3% in the

second.

We note that our prototype was not optimized for latency, so it should be possi-

ble to further reduce this cost. For instance, the Y! system [169] was able to record

provenance in a native Trema OpenFlow controller with a latency overhead of only

1.6%, and a similar approach should work in our setting. In the MapReduce sce-

nario, the dominating cost was getting the checksums of the data files in HDFS.

Instead of computing these checksums every time a file is read (as in our prototype),

it would be possible to compute them only when files are created or changed. We

tested this optimization in our prototype, and it reduced the latency cost to 0.2%.

88

 5
 10
 15
 20
 25
 30
 35
 40

500B 700B 900B 1100B 1300B 1500B
Lo

gg
in

g
ra

te
 (M

B/
s)

Packet size

Figure 4.7: Logging rate with different packet sizes at 1Gbps.

4.5.5 Cost: Storage

Next, we evaluate the storage cost of logging at runtime. We varied the traffic rates

in the SDN1 scenario from 1 Mbps to 10 Gbps, with the packet size fixed at 500

bytes, and then measured the rates of log size growth at the border switch. Figure 4.6

shows that the logging rate 1) scales linearly with the traffic rate, and 2) is well within

the sequential write rate of our commodity SSD (400 MB/s), even at 10 Gbps. We

also note that DiffProv does not maintain a log for every single switch, but only

for border switches: a packet’s provenance can be selectively reconstructed at query

time through replay (Section 4.4). erefore, if DiffProv is deployed in a 100-node

network with three border switches, we would only need three times as much storage,

not 100 times.

We performed another experiment in which we fixed the traffic rate at 1 Gbps

and varied the packet sizes from 500 bytes to 1,500 bytes. Figure 4.7 shows that

the logging rate decreases as the packet size grows. is is because 1) a dominating

fraction of the log consists of the incoming packets, and 2) we only store fixed-

size information for each packet, i.e., the header and the timestamp, not unlike

in NetSight [87] or Everflow [184]: the latter has shown the feasibility of logging

packet traces at data-center level with Tbps traffic rates. Moreover, the logs do not

necessarily have to be maintained for an extensive period of time, and old entries

89

can be gradually aged out to reduce the amount of storage needed.

Finally, we measured the storage cost in our MapReduce scenarios, where the logs

were very small – 26 kB for the 12.8 GB Wikipedia dataset, and 1.5 kB for the 1 GB

text corpus. is is because our logging engine records only the metadata of input

files, not their contents: our replay engine can identify input files by their checksums

upon a query, as long as those files are not deleted from HDFS.

4.5.6 Query processing speed

Diagnostic queries do not typically require a real-time response, although it is always

desirable for the turnaround time to be reasonably low. To evaluate DiffProv’s query

processing speed, we measured the time DiffProv took to answer each of the queries.

As a baseline, we measured the time Y! [169] took to answer each of the individual

provenance queries for the “bad” tree only.

We first ran our SDN queries on a replay of an OC-192 capture from CAIDA,

and the declarative MapReduce queries on a 1 GB text corpus. Figure 4.8 shows

our result: except for SDN4, all other queries were answered within one minute;

the most complex DiffProv query (SDN3) was answered in 53.5 seconds. As the

breakdown in the figure shows, query time is dominated by the time it takes to

replay the log and to reconstruct the relevant part of the provenance graph. As a

result, in each case, DiffProv queries took about twice as long as classic provenance

queries using the Y! method: both DiffProv and Y! need a replay to query out the

trees, but DiffProv replays a second time to update the bad tree after inserting the

new tuple. Moreover, for SDN4, both Y! and DiffProv need to repeat this twice,

once for each fault; therefore, both tools spent about twice as long on SDN4 as

SDN1–SDN3.

If the reference event is contained in a separate, T ′-second execution, DiffProv

would take an additional T ′ seconds to replay and construct the reference tree. is is

the case for our MapReduce queries that use a reference from a separate job. DiffProv

90

20

40

60

80

100

120

SDN1 SDN2 SDN3 SDN4 MR1 MR2
Tu

rn
ar

ou
nd

 ti
m

e
(s

)
Query

Other
Replay

Tree construction
Y! (baseline)

Figure 4.8: Turnaround time for answering differential provenance queries (left),
and Y! queries (right). DiffProv’s reasoning time (shown as “Other”) is too small to
be visible.

performs three replays for those queries: once on the correct job, another on the

faulty job, and a final one to update the tree. (In Figure 4.8, we have batched the

first two replays to run in parallel, as they are independent jobs.) We then ran the

imperative MapReduce queries on a larger, 12.8 GB Wikipedia data, without any

batching: this time, Y! spent 349 seconds on MR1-I, and 336 seconds on MR2-I;

DiffProv took three times as long as Y! in both cases.

We also observe that the actual DiffProv reasoning takes a negligible amount

of time – 3.8 milliseconds in the worst case, as shown in a further decomposition

in Figure 4.9. We can see that detecting the first divergence and making missing

tuples appear took more time, because they involve tracking taints and evaluating

their formulae. e SDN cases took more time in making tuples appear, because the

missing (broken) flow entries were generated with more derivation steps. MR1-D

took the longest time in divergence detection because its trees are deeper than those

in all other cases.

4.5.7 Complex network diagnostics

Now that we have shown that DiffProv has a reasonably small overhead, we turn

to evaluating the effectiveness of DiffProv’s diagnostics on a complex network with

91

 0

 1

 2

 3

 4

SDN1 SDN2 SDN3 SDN4 MR1 MR2
Ti

m
e

(m
s)

Query

MakeAppear
FirstDiv
FindSeed

Figure 4.9: Decomposition of DiffProv’s reasoning time. For SDN4, we have
stacked its two rounds together.

real-world configurations and realistic background traffic.

Basic setup: Our scenario is based on the Stanford University network setup

obtained from ATPG [174]; it represents a realistic campus network setting with

complex forwarding policies and access control rules. e network has 14 Oper-

ational Zone (OZ) routers and 2 backbone routers that form a tree-like topology,

and they are configured with 757,000 forwarding entries and 1,500 ACL rules. e

routers are emulated with Open vSwitch (OVS) in Mininet [13], and controlled

by a Beacon [23] controller. We also replicated their “Forwarding Error” scenario

that involves two hosts and two switches, which we will refer to as H1, H2, and S1,

S2, respectively: in the error-free setting, H1 should be able to reach H2 via a path

H1-S1-S2-H2; however, S2 contains a misconfigured OpenFlow entry that drops

packets to 172.20.10.32/27, which is H2’s subnet. Please refer to [174] for a more

detailed description on the configurations and the diagnostic scenario.

Multiple faults: Large networks are often misconfigured in more than one place,

and their configuration tends to be changed frequently. e resulting “noise” can

be challenging for debuggers that simply look for anomalies or recent changes. To

demonstrate that DiffProv’s use of provenance prevents it from being confused by

bugs or changes that are not causally related to the queried event, we injected 20

additional faulty OpenFlow rules; 10 of them were on-path from H1 to H2, and the

92

other 10 were on other OVS switches. We verified that the original fault we wanted

to diagnose remained reproducible after injecting these additional faults.

Background traffic: To obtain a realistic data-plane environment, we ran three

different applications in the network, and injected a mix of background traffic: 1)

an HTTP client that fetches the homepage from a remote server periodically; 2)

a client that downloads a large data file from a file server; 3) an NFS client that

crawls the files in the root directory exported by a remote NFS server; and 4) we

streamed the OC-192 trace from CAIDA through the network. e experiments

took about 10 minutes, and produced 12GB packet captures, in which the tshark

protocol analyzer detected 69 distinct protocol types.

Result: To diagnose the faulty event (i.e., a packet that is dropped midway from

H1 to 172.20.10.32/27), we provided DiffProv with a reference event, which is a

packet from H1 to 172.19.254.0/24: this is because we noticed that the subnets

172.19.254.0/24 and 172.20.10.32/27 are co-located in S2’s operational zone, yet

H1 is only able to reach the former. We queried out the provenance trees of the

faulty event and the reference event. e trees are smaller than those in previous

SDN scenarios, as this fault only involves two intermediate hops: they contain 67

and 75 nodes, respectively. Nevertheless, their plain differences contain as many as

108 nodes. We then used DiffProv to diagnose the fault - it correctly identifies the

misconfigured OpenFlow entry on S2 to be the “root cause”, despite the 20 other

concurrent faults and the heavy background traffic.

At first glance, DiffProv’s resilience to environments with substantial background

traffic might seem surprising; in fact, DiffProv inherits this from the use of prove-

nance, which captures true causality, not merely correlations. Note that this property

sets our work apart from heuristics-based debuggers, e.g., DEMi [150] that is based

on fuzzy testing, PeerPressure [167] that uses statistical analysis to find the likely

value of a configuration entry, NetMedic [97] that ranks likely causes using statisti-

cal abnormality detection, and others. ose debuggers do not incur the overhead

93

of accurately capturing causality, but may introduce false positives or negatives in

their diagnostics as a result.

4.5.8 Experience

To check whether DiffProv’s diagnostics indeed translates to significant time savings,

we have performed a study with eight graduate students from our department who

specialize in networking research. All participants specialize in networking research,

and have prior exposure to provenance. We presented each participant with an illus-

tration of the SDN1 scenario in Figure 5.1, the controller program, the network’s

intended operation, and we answered any questions they had. We then presented

them with a description of the fault (a packet was routed to the wrong server) and

the corresponding provenance tree. Since the original tree has 156 vertexes and is

thus quite complex, we applied some of the heuristics from Y! [169] (e.g., by sum-

marizing derivation chains in a single super-vertex), yielding a much simpler tree

with 56 vertexes. We asked each participant to diagnose the problem and suggest a

root cause.

Seven of the participants took 20, 20, 24, 35, 40, 45, and 71 minutes (averaging

32 minutes) to diagnose the problem; one gave up after 30 minutes. We then showed

each participant the output from DiffProv, and each quickly agreed that this was

consistent with their understanding of the root cause. We note that this is not a

formal user study; there was no control group, the number of participants is very

small, and the participants were not representative of the likely users of DiffProv

(network operators). Nevertheless, our results suggest that diagnosing faults with a

complex provenance tree can take a substantial amount of time, which DiffProv’s

much simpler output can help to reduce. We plan to carry out a more detailed user

study as our future work.

94

4.6 Related Work

Network diagnostics: A variety of diagnostic systems have been developed over

time. For instance, Anteater [120], Header Space Analysis [101], and NetPlumber [100]

rely on static analysis, while OFRewind [171], Minimal Causal Sequence analy-

sis [151], DEMi [150], and ATPG [174] use dynamic analysis and probing. Unlike

DiffProv, many of these systems are specific to the data plane and cannot be used

to diagnose other distributed systems, such as MapReduce. Also, none of these

systems use reference events. As a result, they have the same drawback as the ear-

lier provenance-based systems: they return a comprehensive explanation of each

observed event and cannot focus on specific differences between “good” and “bad”

events.

A few existing systems do use some form of reference: for instance, PeerPres-

sure [167], EnCore [176], ClearView [141], and Shen et al. [152] use statistical

analysis or data mining to learn correct configuration values, performance models,

or system invariants. But none of them accurately capture causality, or leverage

causality to reduce the space of candidate diagnoses. Attariyan and Flinn [40] does

take causality into account, but it can only compare equivalent systems (e.g., “sick”

and “healthy” computers), not events. NetMedic [97] also models dependencies,

but it relies on statistical analysis and learning to infer the likely faulty component.

e idea of identifying the specific moment when a system “goes wrong” has

appeared in other papers, e.g., in [103], which diagnoses liveness violations by find-

ing a critical state transition. However, [103] does not use reference events, and its

technical approach is completely different from ours.

Some existing solutions have packet recording capabilities that resemble the log-

ging in DiffProv. For instance, NetSight [87] records traces of packets as they traverse

the network, and Everflow [184] provides packet-level telemetry at datacenter scales.

ese systems reproduce the path a packet has taken, but not the causal connections,

95

e.g., to configuration states. Provenance offers richer diagnostic information, and is

applicable to general distributed systems.

Moreover, we note that related work on network provenance has been described

in Chapter 2.

4.7 Conclusion

Differential provenance is a way for network operators to obtain better diagnostic

information by leveraging additional information in the form of reference events –

that is, “good” and “bad” examples of the system’s behavior. When reference events

are available, differential provenance can reason about their differences, and pro-

duce very precise diagnostic information in return: the output can be as small as a

single critical event that explains the differences between the “good” and the “bad”

behavior. We have presented an algorithm called DiffProv for generating differential

provenance, and we have evaluated DiffProv in two sets of case studies: SDNs and

Hadoop MapReduce. Our results show that DiffProv’s overheads are low enough to

be practical.

96

5
Causal Networks

So far in this dissertation, we have presented systems that can secure high-speed

provenance data in adversarial environments and use the provenance data to iden-

tify root causes of network problems. In this chapter, we take the next step and

leverage the collected provenance data to generate network repairs. is is challeng-

ing because implementing a repair can have network-wide effects – it is important to

ensure that a repair not only fixes the symptom at hand, but also avoids undesirable

side-effects in the network.

Existing approaches [86, 183, 87, 169] have proposed “network debuggers” to

help operators with diagnostics. Analogous to conventional debuggers, network de-

buggers (e.g., ndb [86]) accept a buggy behavior (e.g., an unexpected event or state) as

input, produce a “backtrace” that chronicles what happened in the network, and link

the buggy behavior to certain parts of the network execution and/or its root causes.

But most debuggers only explain how a problem surfaced, but do not consider how

to repair it – the latter is an operator’s ultimate goal, but it is also more challeng-

ing. Recently, researchers have proposed another kind of debuggers [168, 147, 50]

97

to generate network repairs in an automated fashion, which can potentially offer

operators a lot more help. However, [147] can only repair static data-plane config-

urations; although [168] and [50] are applicable to distributed systems in general,

they only produce repairs that rectify a single buggy behavior without considering

the side-effects on other parts of the network. As a result, repairs generated in this

way may break the network elsewhere.

Consider a scenario where Alice sees her DNS server S receive a spurious HTTP

packet, and she asks her debugger to generate a repair that prevents the packet from

arriving at S. Since Alice’s request only mentions one goal (removing a packet from

server S), her debugger may produce a repair that simply drops all HTTP packets

at the network ingress, or a repair that disconnects S from its last-hop switch. Both

repairs faithfully remove the packet from S, but both would cause new problems

elsewhere. e ideal repair, on the other hand, may be “change the flow entry at S’s

last-hop switch to forward HTTP packets to a different port”. In network opera-

tions, the risk of “death by failure recovery” [79] is non-trivial – some of the biggest

network incidents have resulted from applying an improper repair [62, 71, 72, 129].

erefore, it would be valuable to have a debugger that not only rectifies the problem

at hand, but also minimizes undesirable side-effects elsewhere.

We argue that the problem at its core is that existing debuggers have a very restrictive

interface, which accepts one single buggy behavior as input. As a result, although

Alice has many constraints about what the correct network ought to look like, she

can only convey to her debugger part of the story (i.e., the correct network should

not contain the input event or state). If Alice were able to tell her debugger all of her

constraints – e.g., that HTTP traffic should not go to server S, but S′ instead, and

that DNS traffic should still be processed by server S – the debugger would have a

lot more information that it can use to generate a successful repair.

We observe that this is analogous to automated program repair [73]. For some

time, the software engineering community has been considering the problem of gen-

98

erating program repairs with few side-effects. One effective solution this community

has developed is to tell the debugger not just about the bug itself but about multiple

desirable properties. is extra information can then guide the automated debug-

ger towards a better repair. Our key insight is that it should be possible to adapt

this idea and apply it to the networking domain as well: if network debuggers had

a more expressive interface, operators would be able to articulate more clearly what

they want, and thus obtain better repairs.

In this chapter, we make a case for this new approach, which we call intent-based

diagnostics. We propose Aladdin, a language for describing diagnostic intents. When

an operator sees a network problem, she can use Aladdin to describe in a diagnostic

intent what she wishes to happen instead. is interface is far more expressive than

just one buggy event, because an operator can describe in an intent many events and

how they relate to each other, e.g., HTTP traffic should be forwarded to server S′

and DNS traffic should be forwarded to server S. Our debugger, NetGenie, can then

leverage all expressed constraints to find a high-quality repair. NetGenie needs to

find a small repair that achieves multiple goals; this can involve a huge search space,

so simply trying random changes would not work. We address this using causal

networks [85], a generalization of network provenance [169] that encodes causality

between many network events. NetGenie then leverages this causality information

to perform targeted repair.

We proceed with an overview in Section 5.1. We then formalize the network

repair problem in Section 5.2, design the NetGenie algorithm in Section 5.3, and

present the evaluation in the context of SDNs in Section 4.5. Finally, we discuss

related work in Section 5.5, and conclude this chapter in Section 5.6.

5.1 Overview

We begin with a very simple scenario in Figure 5.1 that illustrates the type of prob-

lems we are considering. It shows an SDN with three switches and three servers.

99

Server 1 Server 3

Broken firewall rule

Internet

S1# S2# S3#
Server 2

P
?#

Figure 5.1: An example SDN network.

e operator, Alice, would like requests from a trusted origin (e.g., traffic from

10.0.0.0/24) to be load-balanced between servers 2 and 3, and requests from un-

trusted origins (e.g., traffic from 1.2.3.0/24) to be processed by server 1 (e.g., because

it is in a DMZ). To implement the security policy, she configured two firewall rules

on S2: a) R1, a rule that forwards the trusted traffic to S3, and b) R2, a wildcard rule

that forwards the untrusted traffic to server 1. To implement the load-balancing

policy, she configured two load-balancing rules R3 and R4 on S3 to match traffic

from 10.0.0.0/25 and 10.0.0.128/25, and forward it to servers 2 and 3, respectively.

However, Alice made a mistake in R1, which was misconfigured to match the sub-

net 10.0.1.0/24 instead of 10.0.0.0/24. As a result, Alice sees a mix of trusted and

untrusted traffic at server 1, and she would like to diagnose the problem.

5.1.1 Why are existing debuggers not enough?

Most existing debuggers [87, 86, 28, 169, 66, 183, 161, 180] can explain how an

event in a distributed system came about, in the form of a “backtrace”. For instance,

if a packet p from 10.0.0.1 was misrouted to server 1, ndb [86] would produce a

backtrace like the following: p was received by server 1 at 10:51pm, because 23ms

ago, it was transmitted from switch S2 at port #1 due to a flow entry match; this in

turn was because 40ms ago, S1 transmitted p at port #0 due to another flow entry

match, etc. However, producing a backtrace is only the first step – the operator still

needs to identify the root cause in the backtrace, and decide on a repair.

Recently, researchers have proposed another kind of debuggers that can generate

repairs for distributed systems [50, 168]. Given a buggy behavior, e.g., the misrouted

100

1) ~Pkt(@Srv1, 10.0.0.1)

2) Pkt(@Srv2, 10.0.0.1) �
 Pkt(@Srv3, 10.0.0.1)

3) Pkt(@Srv1, 1.2.3.1)

Diagnostic Intent

Figure 5.2: An example diagnostic intent.

packet p in Figure 5.1, they can propose changes to the network to remove the bug.

However, repairs produced in this way are narrowly targeted at a single event and thus

may break the network elsewhere. For example, in order to remove p, a debugger

might propose to disconnect server 1 from S2, or to drop all packets at S1. Both are

valid repairs in that they successfully remove p, but both have undesired side-effects.

We observe that this is because the operator has many constraints on what a cor-

rect network should look like, but existing debuggers do not have an interface for her

to express them. Suppose that we had a debugger that accepts multiple constraints

of what a successful repair should achieve – e.g., packets in 10.0.0.1 should not be

routed to server 1, but to server 2 or 3 instead; moreover, other packets should still

be routed to server 1 – the debugger would be much more likely to identify the

broken entry at S2 to be the culprit.

5.1.2 Approach: Intent-based diagnostics

We propose to build a new debugger that can generate repairs based on a diagnostic

intent, which is far more expressive than a single event. With this debugger, an

operator’s main duty is to describe what she wishes to happen in her network, using

a language that we call Aladdin. Aladdin supports three simple operators ∧ (and), ∨

(or), and ∼ (not), which can be used to compose complex intents from simple ones.

For instance, to generate a repair for the scenario in Figure 5.1, an operator can write

down her intent, as shown in Figure 5.2: 1) packets from 10.0.0.1 should not have

been processed by server 1; 2) they should be processed by servers 2 or 3 instead;

101

Diagnostic intent

Network state

NetGenie

Repair #1
Repair #2
 …

Figure 5.3: e workflow of intent-based diagnostics.

and 3) packets from 1.2.3.1 should still be processed by server 1. Our automated

debugger, which we call NetGenie, then takes into account all constraints expressed

in the intent, and suggests repairs that satisfy all of them, as shown in Figure 5.3.

Goals and non-goals: At first glance, the use of a high-level intent might be

reminiscent of network verification or synthesis (e.g., HSA [101], NetGen [147],

NetEgg [173], etc.), which are still restricted to certain types of network [165, 140],

not general distributed systems. But the goal of NetGenie is not to perform full ver-

ification, i.e., to guarantee the correct behavior for all possible packets in the header

space, but rather to repair specific problems that have manifested in the network.

is resembles the difference between program verification (which is universal but

expensive) and program debugging (which is case-specific and much cheaper). In

other words, a generated repair may not guarantee that Pkt(@Srv1,10.0.0.1) will

never occur again, regardless of network topology, packet history, etc.; however, it

will fix any problems that have affected the packets in this space so far. is is less

ambitious than verification, but in return, NetGenie gains the ability to repair much

more complex networks, and even other kinds of distributed systems (analogous to

[168] and [50]), which is still beyond the reach of current network verification or

synthesis techniques [165].

5.1.3 Would NetGenie be practical?

It is reasonable to ask how common it is for a repair task to have multiple goals. To

answer this question, we reviewed 62 incident reports from Google Cloud Status

102

Dashboard [11], which documented major network faults in Google’s data centers,

from April 2014 to March 2016. We found that 46 (74%) of them require two to

ten constraints to hold at the same time in a successful repair. We then formulated

an intent for each scenario, and found that a typical intent can be complex enough

to involve 2 to 17 Aladdin operators.

One might also wonder if NetGenie would be perceived as difficult to use, as

it requires some additional work from the network operators (writing down their

diagnostic intent in Aladdin). To understand this, we studied operators’ common

practices from several sources, including mailing lists [15, 25], surveys [138], online

discussions [24, 163, 106, 93, 112], and made two observations. First, operators

are masters in simple CLI languages, e.g., router configuration languages. As the

Cisco manual indicates, configuring the BGP protocol could involve 59 different

commands [9]. Moreover, even a medium-sized network could be configured with

1,500 ACL rules and 757,000 forwarding entries [101, 174]. As a survey with 217

network operators shows [138, 104], operators prefer languages that are “concise,

intuitive, easy to understand”. Second, due to the rise of SDNs, more and more net-

work operators are becoming programmers [138, 106, 166]. We see many operators

transition from NetOps to DevOps [112, 93], and they are frequently learning new

languages [163, 112, 24] such as Puppet [17], Chef [8], Ansible [4], etc.

Given that Aladdin is no more complex than the languages already in use, and

that network repairs can be tricky to get right, we believe that operators’ benefits in

using NetGenie should far outweigh the effort of writing down their intent.

We note that NetGenie does not require operators to write down her intent ex-

haustively, which will likely involve a huge number of constraints, but only a subset

of them. is is similar in spirit with other systems that reason with user-provided

examples, including NetEgg [173] on SDN policies, Foofah [94] on semi-structured

data transformations, QuickCode [78] on string transformations in spreedsheets,

Storyboard Programming [155] on pointer manipulations on data strucutures such

103

as linked lists and binary trees, and [154] on number transformations such as format-

ting and rounding. A small number of examples often suffices in practice, because

each example tends to cut down the search space quite significantly. For instance, in

FooFah [94], one or two input-output examples are already enough for the system to

find the correct transformation; similarly, in NetEgg [173], each scenario also only

contains one to three examples.

In fact, we have similar observations: in Section 5.4, we will see that relatively

simple intents are also sufficient for NetGenie to generate high-quality repairs. at

said, since NetGenie is restricted to work with an incomplete intent, any guarantees

it can provide would only hold on the expressed goals. One implication of this is

that, to be on the safe side, operators are still recommended to manually inspect the

generated repairs before applying them to the running network.

5.1.4 Challenge

Finding a repair that satisfies all constraints could involve a huge search space, so

naïvely trying change combinations would not work. We observe that tracking

causality, as in network provenance [183], can be a useful starting point: if Net-

Genie tracks the causal connections between events and state, it can then pinpoint

just a few places in the network that have affected the event, and perform targeted

repair. However, reasoning about each event separately would not work: a fix that

is effective for one event could cause problem for another. To address this, we use

a data structure called causal networks, a concept in classic causality theory [85] that

can be seen as a generalization of provenance. With causal networks, NetGenie can

find repairs that fix all problems simultaneously.

5.2 Intent-based network repair

In this section, we formalize the problem of intent-based network repair, and we

describe a solution that is based on the concept of causal networks.

104

function CN(ψ, S)
N← ⟨ /0, /0⟩
for e in ψ do

if e ∈ S then
⟨V,E⟩ ← PP(e,S)

else
⟨V,E⟩ ← NP(∼e,S)

N← EN(N,⟨V,E⟩)
return N

function FR(N,S)
PC← PC(O)
OC← OC(O)
for each o ∈ O do

DC← DC∪ DC(o)
∆← /0,k← 1,C← PC∪OC∪DC
while ∆ = /0 & NTO do

∆← FKC(I,k,C)
k← k+1

return ∆

function FKC(I,k,C)
Ik ← NKT(I, /0)
while Ik ̸= /0, ∆ = /0, NTO

do
PC← PC∪ PC(Ik)
∆← FA(C)
Ik ← NKT(I, Ik)

return ∆

Figure 5.4: Algorithms for constructing causal networks, and for finding repairs.

5.2.1 System model

For ease of exposition, we use a declarative model in Network Datalog (ND-

log) [116], because causality is particularly easy to see in a declarative syntax. We

note that provenance is not restricted to declarative languages; it has been widely

applied in many imperative systems [89, 69, 57, 132, 43], and provenance can be

extracted from imperative systems and even black-box applications [180].

In this model, network state and events are modeled as tuples that can either be

externally inserted into the network (i.e., base tuples, such as incoming packets at the

ingress router, initial configuration state, etc.), or generated by the network protocol

(i.e., derived tuples, such as forwarded packets, derived configuration state, etc.).

e network protocol can be seen as a set of NDlog rules in the form of X:-A,B,C,

where X, A, B, and C can be either configuration state or network events, which means

that an X tuple should be generated whenever the network has A, B, and C. Moreover,

tuples are organized into tables, e.g., a packet could be represented by a tuple in the

Pkt table.

e provenance of a tuple can be easily defined based on the declarative rules.

A base tuple’s provenance is itself, since it cannot be explained further. A derived

tuple X’s provenance is its derivation rule (e.g., X:-A,B,C), the tuples that are used to

derive it (e.g., A, B, and C), and, recursively, their provenance as well. erefore, the

provenance of an event e would be a tree of events and state, where e is the root of the

tree, and e’s children are its immediate causes; each node in the tree can in turn be

105

recursively explained by the subtree rooted at it, until we reach a set of leaves, or base

tuples. We can also reason about why an event failed to occur, using a variant called

negative provenance [169]. is is achieved by tracing along the causal connections

that almost derived the desired event, and examining which pre-conditions failed to

hold (e.g., a packet was received, but it never matched any flow entry).

5.2.2 The network repair problem

We now formalize the problem of network repair, using a “possible worlds” seman-

tics [54].

Intents: We distinguish four kinds of atomic repair intents. e first two are used

to describe the desired effects of the repair: the operator can ask for a new tuple to

be created (add) or an existing tuple to be removed (delete). e others are used

to avoid side effects: the operator can specify that an existing tuple should not be

removed by the repair (preserve) or that a non-existing tuple should not be created

(suppress). More complex intents can be described by disjunctions, conjunctions

or negations of these events.

Possible worlds: A network protocol, as modeled by a set of derivation rules R,

induces a set of worlds S that are permitted under this protocol. Each world S ∈S

describes a particular state that the network could be in, and can be further divided

into S= Sb∪Sd, where Sb is the set of base tuples in the network state, and Sd the set of

derived tuples. Sb represents the set of initial configurations, incoming packets, and

other external inputs to the system. Sd represents the set of derived configurations,

forwarded packets, etc., that can be obtained by recursively applying R to Sb until S

stabilizes.

We say that a world S is sound iff, for each tuple τ ∈ S, we have either a) τ ∈ Sb, i.e.,

it is a base tuple, or b) τ ∈ Sd, and there exists at least one derivation rule τ:-τ1, · · · ,τk,

where τk ∈ S,∀i∈ [1..k]. In other words, soundness requires that derived tuples cannot

appear out of thin air, when none of the corresponding rules have fired. We say that

106

a world S is complete if we have τ1, · · · ,τk ∈ S, and τ:-τ1, · · · ,τk, then we also have

τ ∈ S – in other words, if every derivable tuple has been derived. If a world is both

sound and complete, we call it a possible world.

Network repair: Suppose S0 = S0
b ∪ S0

d is the state of the network at the time the

operator requests a repair. en the goal of network repair is to find a set of changes

to base tuples ∆ := {τ1 → τ ′1, · · · ,τk → τ ′k}, where τ1, · · · ,τk ∈ S0
b, that transforms S0

into a possible world S that satisfies the diagnostic intent. We call such a ∆ a valid

repair. If there are multiple valid repairs, the goal is to find the one that changes the

fewest tuples.

5.2.3 Causal networks

Next, we introduce the concept of causal networks, and discuss how we can use this

concept to generate network repairs.

If we only needed to change a single tuple, we could track the tuples’s precondi-

tions in the form of a provenance tree, and either make the tuple appear by adding

all the required base tuples, or make it disappear by removing at least one of them.

For instance, if we know that X:-A,B, then removing either A or B would make X dis-

appear. However, since we need to produce a repair that accounts for all events at

the same time, it cannot consider each event in isolation. e reason for this is that

breaking the pre-conditions of one event might affect other events in unexpected

ways. For instance, suppose we need to remove X and preserve Y, where Y:-A,C; we

cannot do this by first deleting A to remove X, and then adding it back to obtain Y.

To address this, we use a concept that was originally proposed in classic causality

theory: causal networks [85]. A causal network can be seen as a generalization of

provenance. Its vertexes are classified as V = O∪ I∪C, where a) O is the set of outcome

vertexes, which correspond to the diagnostic events in the intent, b) I is a set of input

vertexes, which correspond to the base tuples in the network state, and c) C is a set

of causality vertexes, which capture the derivations from the inputs I to the outcomes

107

foo(1,4)(

A(1,2)(

bar(3)(

B(2,4)(

Z(0,1)(

xyz(1,4)(abc(1,2)(

D(2,t)(

(a) An example causal network.

bar(t)':)'D(z,t)'
abc(x)':)'A(x,z),'D(z,t)'
foo(x,y)':)'A(x,z),'B(z,y),'x'<'y'
xyz(x)1,y)':)'B(x,y)'
A(x+1,2*z)':)'C(x,z)'

(b) Derivation rules.

(((((((((((((((((((((((((((Diagnos<c(intent:((
'

'''''''''~foo(1,4)��bar(3)�abc(1,2)�xyz(1,4)'
'''''''''''''''''''''''''''Delete:'foo(1,4)'
'''''''''''''''''''''''''''Suppress:'bar(3)'
'''''''''''''''''''''''''''Add:'abc(1,2)'''''
'''''''''''''''''''''''''''Preserve:'xyz(1,4)'

(c) e repair intent.

Figure 5.5: An example causal network constructed from a repair intent.

O. Given a set of intents (outcome vertexes), we can construct a causal network for

them by gradually adding the dependencies for each outcome vertex, as shown in

the CN procedure in Figure 5.4.

e key benefit of causal networks is that they can encode all dependencies for all

diagnostic events. We have also sketched an example causal network in Figure 5.5.

5.2.4 Generating repairs

With a causal network that encodes all events of interest and their inter-dependencies,

we are now ready to generate network repairs that account for all constraints. is is

done by performing counterfactual reasoning on the causal network, which asks the

question, “what could have happened instead so that the network state would fulfill

the intent?”, and produces a set of network changes as a candidate repair. Below,

we present the algorithm in more detail.

Preservation constraints: We begin with the properties of the network that the

operator wishes to preserve. ese are described with preserve intents, which iden-

tify existing tuples in the network that need to be preserved, and suppress intents,

which identify undesirable tuples that need to be suppressed. erefore, when at-

tempting to find a repair, the algorithm needs to ensure that the changes satisfy these

requirements.

e algorithm achieves this by performing a recursive descent over the causal

network, starting from the preserve and suppress outcome vertexes. For each step,

we collect a set of positive constraints C1 that describe conditions that must hold to

108

prevent the preserve tuples from disappearing, and a set of negative constraints C2

that describe conditions that will prevent the suppress tuples from appearing. For

instance, in the example in Figure 5.5, C1 would contain xyz.x==1∧xyz.y==4, which

are collected over the outcome vertex xyz(1,4), and C2 would contain ∼bar.x==3,

which is collected over bar(3). e algorithm then follows the causality chains in

the causal network, and recursively explores the set of conditions that need to hold

for the current vertexes’ children; it stops until a set of input vertexes have been

reached. en, when we are generating repairs to the network, we need to ensure

that C1 and C2 always hold for the repaired state.

Objective and derivation constraints: Next, we discuss how the algorithm han-

dles delete and add intents. is step also heavily relies on the causal network as a

guide, and uses a similar recursive descent from the delete and add outcome ver-

texes.

For a delete outcome vertex, we collect a set of constraints that describe the

corresponding tuple and its dependencies, and then negate these constraints to

reflect the fact that this tuple should be deleted. is can be done by examin-

ing the constraints and dependent vertexes for this target tuple. For instance,

consider the outcome vertex foo(1,4) in Figure 5.5, which has been derived by

foo(x,y):-A(x,z), B(z,y), x < y. en, the set of objective constraints would

be ∼(foo.x==1∧foo.y==4).

For an add outcome vertex, we collect a set of objective constraints that need

to hold in order for the corresponding tuple to appear in the network state. Since

this tuple does not yet exist, the algorithm must analyze the constraints in the

derivation step counterfactually, somewhat analogous to negative provenance [169].

For instance, consider a missing tuple abc(1,2), and a potential derivation rule

abc(x,y):-D(z,t),A(x,z), the algorithm may find that a dependent tuple A(1,2)

already exists in the network, but an appropriate D tuple is missing. en, we would

collect a set of objective constraints abc.x==1∧abc.y==2.

109

In order to make the objective constraints hold, it may be necessary to make their

dependencies become true. For instance, to delete an unwanted event from the net-

work, we must delete one or more of its children; to make a missing event appear,

we must add all its missing dependencies. erefore, to satisfy a set of objective

constraints on the outcome vertexes, we need to, recursively, satisfy a set of deriva-

tion constraints that describe how the desirable outcomes can be achieved. To this

end, our algorithm descends from the set of outcome vertexes along the dependency

chains, and collects a set of derivation constraints on each of the causality vertexes.

is can be achieved by propagating the set of objective constraints down the

causality chains. For instance, in order to delete the undesirable tuple foo(1,4), the

algorithm needs to additional create derivation constraints∼(A.x==1∧A.y==2∧B.x==2

∧B.y==4); in order to make the missing tuple abc(1,2) appear, the algorithm needs

to additionally create derivation constraints D.x==2∧A.y==2. e algorithm re-

cursively walks down the causal chains while propagating the constraints, until it

reaches the set of input vertexes, and return a set of objective and derivation con-

straints over the causal network. Finally, after collecting the preservation, objective,

and derivation constraints, the algorithm can find a repair by jointly solving those

constraints.

Notice that, for each step, instead of naïvely trying out all combinations of possi-

ble changes, the algorithm relies heavily on the causality chains in the causal network

to make targeted changes to the current state.

5.2.5 Generating the minimal repair

Now, another challenge arises: since any repair that satisfies the set of collected con-

straints could satisfy the diagnostic intent, the number of possible repairs can be very

large, or even infinite. Ideally, we would like to find a minimal repair, with a very

small number of changes to the network – that is, we would like the repaired net-

work state to be as close as the original state as possible, except for necessary changes

110

to fulfill the diagnostic intents.

erefore, we take an iterative deepening approach [108] to finding the minimal

network repair, as shown in the FR procedure in Figure 5.4. In the k-th

round of the search (initially, k = 1), the algorithm attempts to find a repair with

exactly k changes to the base tuples, or input vertexes; it will only proceed to the

(k+ 1)-th round if the current round cannot produce a repair. If any round finds

a repair successfully, the algorithm terminates and output the ∆ it has found; if the

current k does not yield a repair, then the algorithm increments k and proceeds to

the next round. By so doing, we can guarantee that any repair found would contain

the minimal number of tuple changes possible.

For the k-th round, the algorithm uses a close variant of that in Section 5.2.4

that is parameterized by the number of changes to input vertexes that are allowed.

To do this, it picks k input vertexes from the causal network, and attempts to find a

repair that only involves changing those k input vertexes (besides the changes to the

causality and outcome vertexes as a result). Our algorithm achieves this by expanding

the set of Preservation Constraints (PC) on the input vertexes that are not picked

in this round, analogous to how it handles preserve and suppress events. For

instance, if an input vertex B(2,4) is not picked in the current round, the PC would

be expanded to include B.x==2∧B.y==4.

For the input vertexes that are picked in a round, e.g., Z(0,1), we create free vari-

ables associated with each of its fields, i.e., Z.x and Z.y. Notice that, it is possible

that we need multiple copies of Z tuples in order to repair the network. erefore,

our algorithm also accounts for this, by creating multiple copies of a tuple if neces-

sary. Nevertheless, in the k-th round, the number of copies will be exactly k. For

instance, in the second round, the algorithm will not only try to generate repairs by

changing two tuples in D, Z, and B, but also two copies of the same tuple as well.

If the algorithm attempts to change two copies of Z, it will create free variables for

each copy, e.g., Z1.x, Z1.y, etc.

111

For instance, in the example in Figure 5.5, the algorithm would suggest a repair

with two changes: a) changing Z(0,1) to Z(0,y),y̸=1, which can delete foo(1,4)

while preserving xyz(1,4), and b) inserting D(2,t),t̸=3, which can make abc(1,2)

appear while suppressing bar(3).

5.2.6 Properties

Soundness and completeness: e repaired network state is always sound, because

for each tuple τ that is added to the network, the algorithm will also add its de-

pendent tuples. Likewise, the repaired network state is also complete, since the

algorithm only makes direct changes to the input vertexes, and the causality and

outcome vertexes are only changed indirectly.

Validity: If the algorithm outputs a repair ∆, then it always meets the diagnostic

intent. is is guaranteed by the step where the algorithm collects the objective

constraints. If the algorithm does find a repair, then the repair will satisfy the OC

constraints, which in turn guarantee that the repair is valid.

Minimality: e repair ∆ found in this way is always minimal, because the iterative

deepening procedure will make sure that repairs of size k are all explored before

moving on to explore repairs of size k+1.

5.2.7 Limitations

ere are also several limitations of the algorithm, which we discuss below.

Handling user-defined functions: e step where we collect the derivation con-

straints may fail, due to the use of user-defined functions in the NDlog rules. When

we have such functions, the algorithm would not be able to recognize which depen-

dent tuples are needed in order to make a target tuple appear. In such cases, the

algorithm would abort early, reporting the tuples on which it is no longer able to

make progress.

Uniqueness: e repair that the algorithm finds may not be unique. Although the

112

function NG(S,Ψ)
ψ1∨ψ2..∨ψt ← P(Ψ)
for ψi, i ∈ [1..t] do

Ni← CN(ψi,S)
∆i← FR(Ni,S)

return ∆ = minsize{∆1,∆2 · · · ,∆t}

function I(τ)
PC← PC∪ PC(τ)
for τ ′ ∈ C(τ) do

I(τ ′)
function P(Ψ)

ψ1∨ψ2..∨ψt ← DNFC(Ψ)
return ψ1∨ψ2..∨ψt

Figure 5.6: Pseudocode of the NetGenie algorithm.

algorithm aims to find the minimal repair, there may still exist multiple repairs that

have the same size. In such cases, the algorithm cannot recognize which is the “best”

candidate repair, since all of them satisfy the diagnostic intent.

Wrong intent: If an operator supplies a wrong intent, then the algorithm would

not be able to recognize them. e repair will still satisfy the supplied intent, but it

may not achieve what the operator actually has in mind.

5.3 The NetGenie algorithm

So far, we have introduced the problem of intent-based network repair, and how we

can use the concept of causal networks for this purpose. In this section, we start

with describing Aladdin, a language that can describe diagnostic intents. We then

present several refinements to the basic algorithm in Section 5.2, leveraging unique

properties in the SDN context, arriving at the final algorithm for the NetGenie

debugger.

5.3.1 The Aladdin language

First, we introduce the Aladdin language, which is used to describe an operator’s

diagnostic intent to NetGenie. Its syntax is presented in Figure 5.7. A diagnostic

event can be represented by a tuple with a list of typed attributes a1, ..,ak, with types

T1, ..,Tk, respectively, as defined by the schema of its table; in our system model, this

could denote a network event, such as a misrouted packet in the Pkt table, or a

113

Diagnostic event e ::= ⟨a1:T1, ..,ak:Tk⟩| /0
Operator op ::= ∧|∨ | ∼

Statement st ::= e| ∼e |(e1∧e2)|(e1∨e2)

Diagnostic intent Ψ ::= {st1,st2, ..,stn}

Figure 5.7: Syntax of the Aladdin language.

network state, such a flow entry in the FlowEntry table. As a simplified example, a

packet located at switch S can be represented by a Pkt(@S,Sip,Dip,Spt,Dpt,Pro)

tuple, where the location S and the five fields are the packet’s attributes. Aladdin

supports three operators –∧ (and), ∨ (or), and∼ (not), which can be used to compose

statements from events. e overall diagnostic intent is a conjunction of all statements.

5.3.2 Refinement #1: Sub-intents

In an SDN setting, there may exist multiple “versions” of network state that are all

considered to be correct. A simple example of this is load-balancing policies, where

certain packets can be handled by one of several switches or servers. More generally,

such multiplicity can be detected by the use of disjunctions in the intent.

When an intent contains disjunctions, NetGenie can first break it into a set of

“smaller” sub-intents, e.g., Ψ′ = ψ1∨ψ2∨ ·· ·∨ψt , and then constructs a causal net-

work for each ψi. By so doing, the size of the causal networks can be reduced for

more efficient reasoning. Since each of the sub-intents can be considered correct on

its own, this partitioning does not violate the correctness of the repair. NetGenie

can generate a set of repairs for each sub-intent, and return the smallest repair as

the final result. is partitioning process can be achieved by a conversion of the

intent into Disjunctive Normal Form (DNF) formulas, for which many algorithms

are available.

114

5.3.3 Refinement #2: Immutable tuples

In principle, NetGenie can change any parts of the causal network, as long as the

produced repair satisfies the intent. However, not all the base tuples in the network

can necessarily be changed. For instance, suppose the operator would like to suppress

a single DNS packet that was routed to her web server because of a corner case that

was not handled correctly by several aspects of the network configuration. In this

case, a naïve algorithm might suggest to simply remove the DNS packet itself (which

is represented as a base tuple). However, in practice a repair cannot influence what

kind of traffic arrives, it can only change how the network handles that traffic.

erefore, our second refinement introduces the notion of immutable tuples.

When generating a repair, NetGenie only considers changes to mutable tuples, not

immutable ones. is is achieved by adding an additional set of “preservation con-

straints” in the FR procedure in Figure 5.4, based on the set of tuples that

are considered immutable. We expect that, in most cases, mutability will be related

to the tuple type and not to individual tuple instances (e.g., configuration entries

are mutable, and packets are immutable); thus, mutability would only need to be

specified once for each network.

5.3.4 The final NetGenie algorithm

With those refinements above, we have arrived at the final version of the NetGenie

algorithm, as shown in Figure 5.6. Overall, NetGenie takes in the current network

state S and a diagnostic intent Ψ, and it outputs a list of base tuple changes ∆ that

represents the proposed repair. (Derived tuple changes are captured by a combi-

nation of base tuple changes.) e NetGenie algorithm proceeds as follows. First,

it partitions Ψ′ into a disjunction of sub-intents, each of which describes a “valid”

version of the network of its own, and constructs a causal network Ni for each sub-

intent ψi. Finally, it analyzes each Ni to find ∆i – a set of changes to the mutable

tuples in the network state, such that ψi is fulfilled in the repaired network. NetGe-

115

nie then returns the ∆i with the fewest number of changes as the “best” candidate

repair. Finally, NetGenie injects the generated repair to a clone of the network state,

and validates that the diagnostic goals have been met.

5.4 Evaluation

In this section, we evaluate NetGenie with four diagnostic scenarios in the context

of SDNs. Our evaluation aims to answer three high-level questions: a) how well can

NetGenie generate network repairs that account for an operator’s diagnostic intent?

b) does NetGenie incur a reasonable overhead at runtime? and c) how fast can

NetGenie generate network repairs?

5.4.1 Prototype implementation

We have implemented a prototype of the NetGenie debugger with 8752 lines of code

in C++. Our prototype has the following four components:

Front-end: Our front-end accepts Aladdin intents, performs syntax checks, and sub-

intent partitions; it then invokes the back-end debugger to generate network repairs.

e front-end also accepts program written in NetCore (part of Pyretic [131]), and

translates NetCore programs into NDlog rules and tuples using a similar technique

from Y! [169].

Logging and snapshot engines: Our logging and snapshot engines are used to re-

construct a historical state of the network upon diagnostic queries. At runtime,

the logging engine only writes down external inputs to the network in a log, such

as packets arriving at an ingress switch. erefore, it only needs to keep a log for

each ingress switch, not for the internal switches; any internal events are later recon-

structed by the replay engine. e snapshot engine takes periodic snapshots of the

state of the network, so that when it is needed to reconstruct a historical state, we

only need to replay a segment of the log starting from a certain snapshot, not in its

entirety.

116

Replay engine: Our replay engine can take in a historical snapshot of the network’s

state, a segment of the log, and reconstruct the network state using deterministic

replay; it is also used to test out a repair by applying it to a network state, and

detecting whether the diagnostic goals have been met. (We note that, however, the

repairs are not directly applied to the running system, but only a clone of its state.)

Since the replay engine is only activated when there is a need to answer diagnostic

queries, it does not incur any runtime overhead. It can also selectively reconstruct

part of the network state to optimize for speed [180].

NetGenie reasoning engine: e NetGenie reasoning engine implements the main

algorithm that we described in Sections 5.2 and 5.3, and it has an interface to the Z3

solver [56] for constraint solving. is engine accepts a reconstructed network state

from the replay engine, and performs causal network analysis to generate repairs.

5.4.2 Experimental setup

We conducted our experiments in RapidNet v0.3 [18], a declarative networking

engine, on a Dell OptiPlex 9020 workstation, which has a 8-core 3.40 GHz Intel

i7-4770 CPU with 16 GB of RAM and a 128 GB SSD. e OS was Ubuntu 13.04,

and the kernel version was 3.8.0. We set up the diagnostic scenarios using a similar

OpenFlow model as in Y! [169]. To create realistic background traffic, we replayed

a CAIDA packet trace collected from an OC-192 link [7] through our network, in

addition to the test traffic we generated in each scenario.

5.4.3 Diagnostic scenarios

We have adapted four diagnostic scenarios in the context of SDNs for our exper-

iments, based on an extended network topology of that in Figure 5.1. Below, we

present the (slightly abbreviated) diagnostic intents, and note that these intents can-

not be expressed to existing debuggers because they contain multiple goals.

• SDN1: Load-balancing policies: Certain requests were received by server 1

117

Scenario e1 e2 e3 Naïve NetGenieonly only only
SDN1 12/0 5/1 5/1 25% 1/1
SDN2 12/0 5/1 N/A 25% 1/1
SDN3 19/1 19/1 N/A 11% 1/1
SDN4 19/0 4/3 7/2 23% 1/1

Table 5.1: Repairs generated based on individual intents rarely satisfy the operator’s
overall intent, whereas NetGenie can generate effective repairs for all of our scenarios.
An X/Y entry means that X repairs were generated for the intent in that column,
and Y of them satisfied the entire intent. Scenarios SDN2 and SDN3 only contain
two individual intents. e ‘Naïve’ column shows the probability that a random
combination of repairs for e1–e3 individually will satisfy the overall intent.

(e1=P@S1), but they should have been processed by either of the load-balanced

servers 2 (e2=P@S2) or 3 (e3=P@S3). An operator writes the corresponding

intent as Ψ = {∼P@S1∧(P@S2∨P@S3)}.

• SDN2: Misrouted packets: A subset of HTTP traffic was misrouted to a

DNS server S1 (e1=P@S1) instead of the intended HTTP server (e2=P@S2).

To address this problem, an operator specifies the intent Ψ= {∼P@S1∧P@S2}.

• SDN3: Duplicate packets: Certain traffic was received by server 1 (e1=P@S1)

and server 2 (e2=P@S2), but it should have been processed by one server only,

e.g., because of a load-balancing policy. en, an operator writes the intent as

Ψ = {(P@S1∨P@S2)∧∼(P@S1∧ P@S2)}.

• SDN4: Traffic scrubbing: Traffic from untrusted origins should have been

processed by a traffic scrubber (e1=P@S1), and handled by a server in DMZ

(e2=P@S2), but it was routed to the internal server as a mistake (e3=P@S3).

e diagnostic intent is written as Ψ = {P@S1∧P@S2∧∼P@S3}.

5.4.4 Effectiveness

First, we performed a simple sanity check that is designed to test whether NetGe-

nie can indeed find effective repairs. To test this, we formulated the intents from

118

our four scenarios in Aladdin, and we ran them through NetGenie; we counted the

number of repairs that were generated, and we tested whether the repairs did indeed

fix the problem that existed in that scenario. Our results are shown in the last col-

umn of Table 5.1: as expected, NetGenie found a working repair for each scenario.

For instance, in SDN1, NetGenie constructed a causal network with 94 vertexes,

including 21 input vertexes; from this complex network, NetGenie then pinpointed

the flow entry for 10.0.0.0/24 at S2, and changed the next-hop field from port 1 to

port 2. is is the repair that a human operator would probably expect as well.

Next, we tested how much NetGenie benefits from having entire diagnostic in-

tents, rather than individual atomic intents (like the existing solutions). ere are

two concerns here. First, it might be the case that the repairs for the individual in-

tents are already “good enough” in many cases, in the sense that they often already

satisfy the entire intent, even if it is not specified. Second, it might be the case that

the repairs for the individual intents rarely cause any “collateral damage” or are in-

compatible; in this case, one could simply run an existing repair generator on all the

add and add intents separately, and then combine the resulting repairs. (Existing

solutions do not support preserve or suppress intents.)

To answer this question, we performed additional NetGenie runs using each

of the individual delete or add intents ei from each scenario. For instance, for

SDN1, we ran NetGenie three times: once to remove only Pkt(@Srv1,10.0.0.1)

(e1), once to create only Pkt(@Srv2,10.0.0.1) (e2), and once to create only

Pkt(@Srv3,10.0.0.1) (e3). We counted 1) how many repairs were generated for

each individual intent ei; and 2) how many of these repairs happened to satisfy

the overall intent Ψ. Additionally, we generated all the naïve combinations of the

resulting repairs (for each scenario, a full cross product of the two or three sets of

repairs) and we counted how many of these combinations satisfied the overall intent

Ψ.

Our results are shown in Table 5.1. e first three columns contain entries X/Y,

119

1KB

1MB

1GB

10 100 1K 10K 100K 1M
Sn

ap
sh

ot
 s

iz
e

Number of flow entries

6.8KB
29KB

.25MB

2.5MB

25.2MB

252MB

Figure 5.8: e size of snapshots grows (mostly) linearly with the number of flow
entries in the network.

where X is the total number of repairs generated for ei, and Y is the number of these

repairs that happened to satisfy Ψ; the fourth column shows the fraction of the cross

product that satisfies Ψ. It is clear that the answer to the first concern is no: in

the overwhelming majority of the cases, solving an individual problem ei did not

serendipitously solve the other problems as well.

As the second-to-last column shows, the answer to the second concern is also no:

in many cases, the repairs for the individual problems are not compatible with the

repairs for the other problems. To use SDN1 as a concrete example, one repair that

was generated for e1 deleted the flow entry for 10.0.0.0/24 at S1; this would stop

such traffic from being routed to server 1, but neither server 2 or 3 could receive

those packets either. Another repair for this scenario simply disconnects server 1.

Repairs generated for e2 and e3 include flooding packets from 10.0.0.0/24 at S2

to all ports, or installing a flow entry at S2 that forwards all packets to S3. is

is not necessarily surprising (the repair generator simply does not know about the

operator’s other goals and can therefore satisfy them only by accident); at the same

time, it clearly shows the benefits that NetGenie’s richer interface can provide.

120

5.4.5 Runtime overhead

Next, we evaluated the runtime overhead of NetGenie in terms of latency and storage

overheads, and how the sizes of the snapshots scale with the network size.

Latency: To evaluate the latency overhead of NetGenie, we conducted two sets of

experiments. In the first set of experiments, we streamed the CAIDA trace through

the network, and measured the average latency for processing one packet without

logging. In the second set of experiments, we measured the same metric with the

logging engine enabled. We found that logging increased the latency by 3.2%, which

seems reasonable. We also note that further optimizations are feasible, which can

bring down the latency even further [169].

Storage: Next, we evaluate the storage overhead incurred by logging. For each in-

coming packet, NetGenie logged its header, timestamp, the ingress switch ID, and

several other types of metadata; on average, each packet consumed about 136 B

disk space. erefore, for a 10 Gbps switch with 500 B average packet size, the

growth of the log is about 272 MB/s, without any compression or selective sam-

pling. Moreover, it has been shown that packet capture is a common requirement

in large-scale deployments, and that compression and sampling can help reduce the

amount of storage growth [87], and enable packet logging in data centers on a Tbps

scale [184].

Scalability: Next, we measure how the snapshot scales with the complexity of the

network. Since the size of the snapshot depends on the number of flow entries in

the network, we varied the number of flow entries configured in the network from

10 to 1 million, and plotted the growth of the snapshot size in Figure 5.8. As we

can see from the figure, the growth is mostly linear; this is because NetGenie uses a

constant size for each type of configurations (e.g., flow entries, server configurations,

etc.) Since a typical network could contain 289k [120] to 575k [174] rules overall,

NetGenie should be able to scale to that size with a reasonable amount of overhead.

121

 0

 10

 20

 30

 40

SDN1 SDN2 SDN3 SDN4
Ti

m
e

(s
)

Scenario

Testing
Reasoning
Replay

Figure 5.9: e repair generation speed for different scenarios. NetGenie returns an
answer within one minute in all cases.

5.4.6 Repair generation speed

Network diagnostics typically does not require a real-time response; however, it is

still desirable to have a reasonably short turnaround time. To evaluate this, we mea-

sured the time it took for NetGenie to generate network repairs for each scenario.

Figure 5.9 shows the results. We can see that for all four cases, NetGenie finished

within one minute, which seems like a reasonable amount of time for the purpose of

network debugging. Moreover, most of the time has been spent in constructing the

historical network state using replay, and in testing out the repair afterwards. e

actual NetGenie reasoning took much less time.

Figure 5.10 shows a further decomposition of NetGenie’s reasoning time. We can

see that the provenance queries and the causal network analysis took the majority

of the time. Once the causal network is constructed, collecting and solving the

constraints took much less time. Overall, the NetGenie reasoning took less than 2.5

seconds in all scenarios.

5.5 Related Work

Our work is related to provenance in its use of causality, but it generalizes the concept

of provenance to causal networks, which can keep track of causal connections and

122

 0

 0.5

 1

 1.5

 2

 2.5

SDN1 SDN2 SDN3 SDN4
Ti

m
e

(s
)

Scenario

Constraint solving
Causal network reasoning
Provenance query

Figure 5.10: A decomposition of NetGenie’s reasoning latency.

inter-dependencies among many events. For a more detailed discussion on related

work on provenance, please refer to Chapter 2. Below, we discuss other related work

of NetGenie.

Network diagnostics: Many debuggers have been proposed for diagnosing dis-

tributed systems. Examples include ndb [86], NetSight [87], X-Trace [66], Cher-

ryPick [161], and SDN traceroute [28], which can produce a “backtrace” for a given

event. is is similar in spirit with provenance-based debuggers, such as [43, 169,

132, 183, 69, 180, 57]. However, all of the above solutions are purely diagnos-

tic; they cannot generate repairs. [168] and [50] can produce repairs, but only

for a single buggy event. Debugging can also be done by dynamic testing, as in

OFRewind [171], ATPG [174], DEMi [150], and MCS [151], or by statistical

learning, as in NetMedic [97] or NetPoirot [39]. ese approaches do not track

provenance or causality; therefore, they can narrow down potential culprits but not

pinpoint root causes or generate a repair for a given diagnostic intent.

Verification and synthesis: Verification can eliminate bugs for certain types of net-

works, such as in Anteater [120], Header Space Analysis [101], NetPlumber [100],

VeriFlow [102], Batfish [65], Libra [175], ConfigChecker [31], FlowChecker [30],

Flowlog [137], NetKAT [35], Kinect [104], etc. However, verification does not

obsolete network repair, as they are orthogonal problems – if the verification pro-

cess finds a violation, one still needs to (manually) roll out a fix. NetGenie is also

123

related to network synthesis, including NetEgg [173] that synthesizes SDN poli-

cies, Condor [149] that synthesizes network topologies, [123] that synthesizes net-

work updates and their ordering, etc. NetGenie does not synthesize a network from

scratch, but a small change to an existing network. is is similar in spirit with

NetGen [147], though the latter only repairs static data planes.

5.6 Conclusion

In this chapter, we have proposed NetGenie – a new kind of debugger that can

generate network repairs based on an operator’s diagnostic intent. When an operator

sees a network problem, she could describe what she wishes to happen instead using

the Aladdin language. NetGenie then reasons about the diagnostic intent, identifies

the root causes, and suggests a potential repair. In our case studies in the context

of SDNs, we have found that NetGenie can generate high-quality network repairs

that account for an operator’s entire diagnostic intent, unlike existing repair tools

that only fix a single event and may cause undesirable side-effects elsewhere in the

network. Moreover, NetGenie incurs a reasonable runtime overhead, and generates

network repairs within one minute.

124

6
Conclusion

e main goal of this dissertation is to investigate whether provenance can be a

good candidate for supporting the challenging diagnostic and forensic tasks that we

face today. Overall, the results in the above three chapters suggest a positive answer

to this hypothesis. In this final chapter, we reflect on the lessons learned in this

investigation, and we then look beyond on possible future work.

6.1 The benefits of provenance

In retrospect, provenance offers three properties that have proven to be crucial in

supporting diagnostic and forensic tasks.

First, provenance turns out to be a “common core” that underlies many iden-

tified diagnostic and forensic tasks. is is because, at least at a conceptual level,

provenance can be seen as a complete chronicle of everything that happened in the

network; for instance, SPP can capture information about network topology, con-

trol plane configurations, as well as data plane events. erefore, if a diagnostic or

125

forensic question can be answered by querying such a “chronicle”, then provenance

would be a natural candidate for providing such support.

Second, provenance comes with a general data model, so users can easily cus-

tomize the provenance model for different applications. is is evidenced by the

variety of case studies we have applied provenance to: SPP applies provenance to the

Internet’s data plane, NetGenie focuses on provenance in SDNs, and DiffProv uses

provenance in both SDNs and Hadoop MapReduce. is versatility has an impor-

tant implication – research advances in provenance can potentially benefit a wide

range of use cases or applications. In fact, DiffProv is an exact case in point – the

same differential provenance algorithm has proven to be helpful in debugging very

different types of distributed systems.

Last but not least, provenance can help weed out irrelevant factors in diagnosis,

which reduces the potential search space as a result. is is because provenance cap-

tures causality, not just incidental correlations. NetGenie, for instance, uses causal

networks as a close guide to generate targeted repairs. Such causality information

also offers a second benefit: it enables a kind of “what-if ” analysis to reason about

potential outcomes of configuration changes – a property that both DiffProv and

NetGenie have leveraged to avoid “guesswork”, which is often a major source of

false positives and false negatives.

6.2 Limitations and future work

At the same time, provenance is not without its limitations. First, capturing full,

fine-grained provenance about an entire system can be expensive, as it can require

significant storage space. erefore, in practice, provenance systems may need to

expire old data, or selectively capture a subset of events and states. For instance, SPP

does not capture provenance on the application layer, and it may need to gradually

summarize old data into coarser levels of granularity. As a result, if later, operators

discover that a particular diagnostic task requires analyzing provenance data that

126

already expired or were not captured at all, such a task would be difficult to perform.

erefore, reducing the storage overhead of provenance systems is an interesting

research direction. For instance, can we build provenance systems that automatically

recognize what “level of detail” is necessary for a particular set of diagnostic and

forensic tasks, or even systems that can dynamically tune the provenance model at

runtime? Such systems would make it safe to expire certain data without jeopardiz-

ing the ability to answer provenance queries later on. Or, would it be possible to

develop powerful compression techniques on provenance data, so that data deletion

or expiration would not even be necessary?

e second limitation arises when applying provenance to legacy applications.

When the applications’ source code is available, we would need to manually instru-

ment them to extract provenance information. For blackbox applications where only

binary executables are available, we would have to rely on external specifications or

models of an application’s expected behavior for provenance extraction. Both ap-

proaches can be tedious and error-prone; if the instrumentations or external models

are incorrect or incomplete, then this would affect the quality of the captured prove-

nance.

erefore, an interesting question to consider is how we can automate prove-

nance extraction for legacy applications. Here, two techniques could help. First,

static analysis could be a good candidate for automatically recognizing where in the

program to instrument and how, relieving programmers of such a burden. Second,

dynamic tracing may also be helpful – for instance, recent processors have built-in

hardware support for instruction-level program tracing with minimum performance

overhead (such as Intel PT [12] and ARM CoreSight [5]). Such features can be a

fine-grained provenance data source even for blackbox applications.

ird, existing provenance systems assume that the needed provenance data is

always available in its entirety. is is a reasonable assumption for many diagnos-

tic scenarios – for instance, when diagnosing problems that happen in an enterprise

127

network. However, there are also cases where (part of) the provenance data may be

private. In SPP, we have already seen a preliminary version of this problem, where

certain provenance vertexes are only visible to users with privileged views, but not

others. Another example scenario would be multi-tenant data centers – if a tenant’s

VM has a misconfiguration, this may affect the normal operations of the underlying

physical infrastructure (e.g., causing congestion on certain links); or, on the other

hand, if the infrastructure misconfigures a tenant’s access-control list rules, the ten-

ant’s VMs may fail to receive traffic. Both scenarios require performing diagnostics

with incomplete provenance data.

To address this, it would be interesting to consider whether we can develop

privacy-preserving diagnostics with provenance. e first step for this would be to

find the right privacy model, answering questions such as “which part of the prove-

nance data should be considered private?”. e second step would be to design

privacy-preserving algorithms on provenance data, where secure multiparty com-

putation or other security protocols may be important building blocks. Last but

not least, it would also be interesting to explore the theoretical limitations posed by

privacy requirements. Since the diagnostic tool only has access to limited data, this

would lead to an inherent limitation as to which types of problems are “diagnosable”.

Finally, existing provenance systems still adopt a human-in-the-loop approach

to diagnostics. For instance, DiffProv requires an operator to provide both a faulty

symptom as well as a reference event, and NetGenie requires an operator to write

down a diagnostic intent. Involving human operators in the loop has two potential

downsides: a) the turnaround time for diagnostics is limited by how fast human

operators can identify and respond to network problems, and b) the effectiveness of

the diagnostics depends on the quality of the inputs from operators.

Looking beyond, one interesting approach would be to take human operators

completely out of the loop. Ideally, there would be a fault detection component in

the system that performs real-time problem detection. Upon fault detection, a fault

128

diagnosis component would analyze the symptom and identify the root cause of the

detected problem. Finally, a fault recovery component would generate repairs and

inject them to the system to rectify the problem. Here, several interesting questions

arise: a) how can we borrow from the formal methods community and develop spec-

ifications or invariants of “correct” behaviors of a system?; b) how should we assess

the degree of success of fault recovery?; and even c) can we use program synthesis

techniques to synthesize networks that are correct by construction? If we are able

to address some or all of the above challenges, it could substantially enhance the

reliability and security of future distributed systems.

129

Bibliography

[1] 5-minute outage costs Google $545,000 in revenue. https://venturebeat.com/2013/08/

16/3-minute-outage-costs-google-545000-in-revenue/. Accessed: May 2017. [Cited

on page 2.]

[2] Amazon and the $150 million typo. http://www.npr.org/sections/thetwo-way/2017/03/

03/518322734/amazon-and-the-150-million-typo. Accessed: May 2017. [Cited on page

2.]

[3] Amazon mystery solved: A typo took down a big chunk of the In-

ternet. https://www.usatoday.com/story/tech/news/2017/03/02/

mystery-solved-typo-took-down-big-chunk-web-tuesday/98645754/. Accessed:

May 2017. [Cited on page 2.]

[4] Ansible Playbooks. http://docs.ansible.com/ansible/playbooks_intro.html. Accessed:

May 2017. [Cited on page 103.]

[5] ARM CoreSight. http://www.arm.com/products/system-ip/coresight-debug-trace.

Accessed: June 2017. [Cited on page 127.]

[6] BGP case studies. http://bgp.us/case-studies/. Accessed: May 2017. [Cited on page 1.]

[7] CAIDA. http://www.caida.org/home/. Accessed: May 2017. [Cited on pages 84 and 117.]

[8] Chef for Junos OS. https://docs.chef.io/junos.html. Accessed: May 2017. [Cited on

page 103.]

130

https://venturebeat.com/2013/08/16/3-minute-outage-costs-google-545000-in-revenue/
https://venturebeat.com/2013/08/16/3-minute-outage-costs-google-545000-in-revenue/
http://www.npr.org/sections/thetwo-way/2017/03/03/518322734/amazon-and-the-150-million-typo
http://www.npr.org/sections/thetwo-way/2017/03/03/518322734/amazon-and-the-150-million-typo
https://www.usatoday.com/story/tech/news/2017/03/02/mystery-solved-typo-took-down-big-chunk-web-tuesday/98645754/
https://www.usatoday.com/story/tech/news/2017/03/02/mystery-solved-typo-took-down-big-chunk-web-tuesday/98645754/
http://docs.ansible.com/ansible/playbooks_intro.html
http://www.arm.com/products/system-ip/coresight-debug-trace
http://bgp.us/case-studies/
http://www.caida.org/home/
https://docs.chef.io/junos.html

[9] Command References: BGP Commands. http://www.cisco.com/c/en/us/td/docs/ios/

12_2/iproute/command/reference/fiprrp_r/1rfbgp1.html. Accessed: May 2017. [Cited

on page 103.]

[10] Cwe-117: Improper output neutralization for logs. https://cwe.mitre.org/data/

definitions/117.html. Accessed: May 2017. [Cited on page 2.]

[11] Google Cloud Status Dashboard. https://status.cloud.google.com/summary. Accessed:

May 2017. [Cited on page 103.]

[12] Intel PT. https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing.

Accessed: June 2017. [Cited on page 127.]

[13] Mininet. http://mininet.org/. Accessed: May 2017. [Cited on pages 82, 84, and 92.]

[14] NTT SLA. http://www.ntt.net/english/service/sla_ts.html. Accessed: 2013. [Cited

on page 44.]

[15] Outages mailing list. http://wiki.outages.org/index.php/Main_Page#Outages_

Mailing_Lists. Accessed: May 2017. [Cited on pages 1 and 103.]

[16] Police face £750k bill for false Operation Ore charges. http://www.

telegraph.co.uk/technology/news/8422200/Police-face-750k-bill-for-false-

Operation-Ore-charges.html. Accessed: May 2017. [Cited on pages 2 and 22.]

[17] Puppet 4.5 reference manual. https://docs.puppet.com/puppet/latest/reference/

lang_summary.html. Accessed: May 2017. [Cited on page 103.]

[18] RapidNet. http://netdb.cis.upenn.edu/rapidnet/. Accessed: May 2017. [Cited on pages

82 and 117.]

[19] A rare peek into the massive scale of AWS. http://www.enterprisetech.com/2014/11/14/

rare-peek-massive-scale-aws/. Accessed: Nov. 2014. [Cited on page 1.]

[20] Sprint SLA. https://www.sprint.net/sla_performance.php. Accessed: May 2017. [Cited

on page 44.]

[21] Symantec says hackers tried extortion. http://bits.blogs.nytimes.com/2012/02/07/

symantec-says-hackers-tried-extortion/. Accessed: May 2017. [Cited on page 21.]

131

http://www.cisco.com/c/en/us/td/docs/ios/12_2/iproute/command/reference/fiprrp_r/1rfbgp1.html
http://www.cisco.com/c/en/us/td/docs/ios/12_2/iproute/command/reference/fiprrp_r/1rfbgp1.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/117.html
https://status.cloud.google.com/summary
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
http://mininet.org/
http://www.ntt.net/english/service/sla_ts.html
http://wiki.outages.org/index.php/Main_Page#Outages_Mailing_Lists
http://wiki.outages.org/index.php/Main_Page#Outages_Mailing_Lists
http://www.telegraph.co.uk/technology/news/8422200/Police-face-750k-bill-for-false-
http://www.telegraph.co.uk/technology/news/8422200/Police-face-750k-bill-for-false-
Operation-Ore-charges.html
https://docs.puppet.com/puppet/latest/reference/lang_summary.html
https://docs.puppet.com/puppet/latest/reference/lang_summary.html
http://netdb.cis.upenn.edu/rapidnet/
http://www.enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws/
http://www.enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws/
https://www.sprint.net/sla_performance.php
http://bits.blogs.nytimes.com/2012/02/07/symantec-says-hackers-tried-extortion/
http://bits.blogs.nytimes.com/2012/02/07/symantec-says-hackers-tried-extortion/

[22] Techie lands in jail due to Airtel, sues it. http://ibnlive.in.com/news/

techie-lands-in-jail-due-to-airtel- sues-it/101343-3.html. Accessed: 2009.

[Cited on pages 2, 21, and 22.]

[23] e Beacon Controller. https://openflow.stanford.edu/display/Beacon/Home. Ac-

cessed: May 2017. [Cited on pages 84 and 92.]

[24] e DevOps 2.0 Toolkit. https://leanpub.com/the-devops-2-toolkit/read. Accessed:

May 2017. [Cited on page 103.]

[25] e NANOG Archives. http://mailman.nanog.org/pipermail/nanog/. Accessed: May

2017. [Cited on pages 1 and 103.]

[26] What we know about Friday’s massive East Coast Internet outage. https://www.wired.com/

2016/10/internet-outage-ddos-dns-dyn/. Accessed: May 2017. [Cited on page 2.]

[27] M. Afanasyev, T. Kohno, J. Ma, N. Murphy, S. Savage, A. C. Snoeren, and G. M. Voelker.

Privacy-preserving network forensics. CACM, 54(5), May 2011. [Cited on page 38.]

[28] K. Agarwal, E. Rozner, C. Dixon, and J. Carter. SDN traceroute: Tracing SDN forwarding

without changing network behavior. In ACM SIGCOMM Workshop on Hot Topics in Software

Defined Networking (HotSDN), Aug. 2014. [Cited on pages 10, 100, and 123.]

[29] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. N. Padmanabhan, and G. M. Voelker.

NetPrints: Diagnosing home network misconfigurations using shared knowledge. In USENIX

Symposium on Networked Systems Design and Implementation (NSDI), 2009. [Cited on page

10.]

[30] E. Al-Shaer and S. Al-Haj. FlowChecker: Configuration analysis and verification of federated

OpenFlow infrastructures. In ACM workshop on Assurable and Usable Security Configuration,

2010. [Cited on pages 12 and 123.]

[31] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi. Network configuration in a box:

Towards end-to-end verification of network reachability and security. In IEEE International

Conference on Network Protocols (ICNP), 2009. [Cited on pages 12 and 123.]

[32] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for aggregate queries. In ACM

Symposium on Principles of Database Systems (PODS), 2011. [Cited on page 13.]

132

http://ibnlive.in.com/news/techie-lands-in-jail-due-to-airtel-
http://ibnlive.in.com/news/techie-lands-in-jail-due-to-airtel-
sues-it/101343-3.html
https://openflow.stanford.edu/display/Beacon/Home
https://leanpub.com/the-devops-2-toolkit/read
http://mailman.nanog.org/pipermail/nanog/
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/

[33] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for aggregate queries. In ACM

Symposium on Principles of Database Systems (PODS), 2011. [Cited on page 81.]

[34] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and S. Shenker. Ac-

countable Internet protocol (AIP). In ACM SIGCOMM Conference on Data Communication

(SIGCOMM), 2008. [Cited on pages 11, 19, 20, 22, 37, 38, 55, 56, and 57.]

[35] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and D. Walker.

NetKAT: Semantic foundations for networks. In ACM SIGPLAN Symposium on Principles of

Programming Languages (POPL), 2014. [Cited on pages 12 and 123.]

[36] K. Argyraki, P. Maniatis, D. R. Cheriton, and S. Shenker. Providing packet obituaries. In

ACM Workshop on Hot Topics in Networks (HotNets), 2004. [Cited on pages 11 and 57.]

[37] K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker. Loss and delay accountability

for the Internet. In IEEE International Conference on Network Protocols (ICNP), 2007. [Cited

on pages 3, 11, 18, 34, and 57.]

[38] K. Argyraki, P. Maniatis, and A. Singla. Verifiable network-performance measurements. In In-

ternational Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2010.

[Cited on pages 11, 22, 37, 38, 56, and 57.]

[39] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred. Taking the blame game out of

data centers operations with NetPoirot. In ACM SIGCOMM Conference on Data Communi-

cation (SIGCOMM), Aug. 2016. [Cited on pages 10 and 123.]

[40] M. Attariyan and J. Flinn. Using causality to diagnose configuration bugs. In USENIX Annual

Technical Conference (ATC), 2008. [Cited on page 95.]

[41] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy, C. Magnien, and

R. Teixeira. Avoiding traceroute anomalies with Paris Traceroute. In ACM Internet Measure-

ment Conference (IMC), 2006. [Cited on pages 3, 18, 19, 22, 34, 38, 56, and 57.]

[42] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. Neill, and W. P. Marnane. FPGA

implementations of the round two SHA-3 candidates. In Second SHA-3 Candidate Conference,

2010. [Cited on page 43.]

[43] A. Bates, D. Tian, K. R. Butler, and T. Moyer. Trustworthy whole-system provenance for the

Linux kernel. In Proc. USENIX Security Symposium, 2015. [Cited on pages 14, 105, and 123.]

133

[44] D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. An annotation management

system for relational databases. In International Conference on Very Large Databases (VLDB),

2004. [Cited on page 13.]

[45] P. Bille. A survey on tree edit distance and related problems. eor. Comput. Sci., 337(1-

3):217–239, June 2005. [Cited on pages 61 and 66.]

[46] M. Blott, J. Ellithorpe, N. McKeown, K. Visssers, and H. Zeng. FPGA research design plat-

form fuels network advances. Xilinx Xcell Journal, Fourth Quarter:24–29, 2010. [Cited on

page 39.]

[47] P. Buneman, S. Khanna, and W.-C. Tan. Why and where: A characterization of data prove-

nance. In e International Conference on Database eory (ICDT), Jan. 2001. [Cited on pages

13, 20, 22, and 64.]

[48] P. Buneman, S. Khanna, and W.-C. Tan. On propagation of deletions and annotations through

views. In ACM Symposium on Principles of Database Systems (PODS), 2002. [Cited on page

13.]

[49] A. Chen, W. B. Moore, H. Xiao, A. Haeberlen, L. T. X. Phan, M. Sherr, and W. Zhou.

Detecting covert timing channels with time-deterministic replay. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI), Oct. 2014. [Cited on page 2.]

[50] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo. e Good, the Bad, and the

Differences: Better Network Diagnostics with Differential Provenance. In ACM SIGCOMM

Conference on Data Communication (SIGCOMM), Aug. 2016. [Cited on pages 97, 98, 100,

102, and 123.]

[51] C. Chen, H. T. Lehri, L. K. Loh, L. Jia, B. T. Loo, W. Zhou, and A. Alur. Distributed

provenance compression. In ACM SIGMOD International Conference on Management of Data

(SIGMOD), 2017. [Cited on page 17.]

[52] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in databases: Why, how, and where.

Found. Trends databases, 1(4):379–474, Apr. 2009. [Cited on page 13.]

[53] D. Clark. e design philosophy of the DARPA Internet protocols. ACM SIGCOMM CCR,

18(4):106–114, 1988. [Cited on pages 18 and 21.]

[54] N. Dalvi and D. Suciu. Management of probabilistic data: Foundations and challenges. In

ACM Symposium on Principles of Database Systems (PODS), June 2007. [Cited on page 106.]

134

[55] S. Davidson, Z. Bao, and S. Roy. Hiding data and structure in workflow provenance. In

International Workshop on Databases in Networked Information Systems, 2011. [Cited on page

13.]

[56] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Apr. 2008. [Cited

on page 117.]

[57] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. Quire: Lightweight provenance

for smart phone operating systems. In Proc. USENIX Security Symposium, 2011. [Cited on

pages 14, 105, and 123.]

[58] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi, R. Mahajan, and S. Saroiu. Glasnost:

Enabling end users to detect traffic differentiation. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2010. [Cited on pages 11, 22, 38, 56, and 57.]

[59] N. G. Duffield and M. Grossglauser. Trajectory sampling for direct traffic observation.

IEEE/ACM Trans. Netw., 9(13):280–292, 2001. [Cited on pages 22, 38, 56, and 57.]

[60] R. Durairajan, J. Sommers, and P. Barford. Controller-agnostic SDN debugging. In Inter-

national Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2014.

[Cited on pages 59 and 85.]

[61] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li, N. Weaver, J. Amann,

J. Beekman, M. Payer, and V. Paxson. e matter of heartbleed. In ACM Internet Measurement

Conference (IMC), 2014. [Cited on page 2.]

[62] Facebook. More details on today’s outage. https://www.facebook.com/notes/

facebookengineering/more-details-on-todaysoutage/431441338919. Accessed: May

2017. [Cited on pages 2 and 98.]

[63] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar. BUZZ: Testing context-dependent

policies in stateul networks. In USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI), 2016. [Cited on page 10.]

[64] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs. Locating Internet routing

instabilities. In ACM SIGCOMM Conference on Data Communication (SIGCOMM), Aug.

2004. [Cited on pages 3 and 18.]

135

https://www.facebook.com/notes/facebookengineering/more-details-on-todaysoutage/431441338919
https://www.facebook.com/notes/facebookengineering/more-details-on-todaysoutage/431441338919

[65] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan, and T. Mill-

stein. A general approach to network configuration analysis. In USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), 2015. [Cited on pages 12 and 123.]

[66] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-Trace: A pervasive network

tracing framework. In USENIX Symposium on Networked Systems Design and Implementation

(NSDI), Apr. 2007. [Cited on pages 10, 100, and 123.]

[67] K. Gaj, E. Homsirikamol, and M. Rogawski. Comprehensive comparison of hardware perfor-

mance of fourteen round 2 SHA-3 candidates with 512-bit outputs using field programmable

gate arrays. In Second SHA-3 Candidate Conference, 2010. [Cited on page 43.]

[68] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U. Sharif. Comprehensive evalu-

ation of high-speed and medium-speed implementations of five SHA-3 finalists using Xilinx

and Altera FPGAs. https://eprint.iacr.org/2012/368.pdf. [Cited on page 42.]

[69] A. Gehani and D. Tariq. SPADE: Support for provenance auditing in distributed envi-

ronments. In ACM/IFIP/USENIX International Middleware Conference (Middleware), 2012.

[Cited on pages 14, 64, 105, and 123.]

[70] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in data centers: Measure-

ment, analysis, and implications. In ACM SIGCOMM Conference on Data Communication

(SIGCOMM), 2011. [Cited on page 1.]

[71] Google. About today’s App Engine outage. http://googleappengine.blogspot.com/2012/

10/about-todays-app-engine-outage.html. Accessed: May 2017. [Cited on page 98.]

[72] Google. More on today’s Gmail issue. https://gmail.googleblog.com/2009/09/

more-on-todays-gmail-issue.html. Accessed: May 2017. [Cited on pages 2 and 98.]

[73] C. L. Goues, S. Forrest, and W. Weimer. Current challenges in automatic software repair.

Software Quality Journal, 21(3):421–443, 2013. [Cited on page 98.]

[74] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In ACM Symposium on

Principles of Database Systems (PODS), 2007. [Cited on page 13.]

[75] T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton, and Z. G. Ives. Orchestra: Facilitating

collaborative data sharing. In ACM SIGMOD International Conference on Management of Data

(SIGMOD), June 2007. [Cited on page 13.]

136

https://eprint.iacr.org/2012/368.pdf
http://googleappengine.blogspot.com/2012/10/about-todays-app-engine-outage.html
http://googleappengine.blogspot.com/2012/10/about-todays-app-engine-outage.html
https://gmail.googleblog.com/2009/09/more-on-todays-gmail-issue.html
https://gmail.googleblog.com/2009/09/more-on-todays-gmail-issue.html

[76] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. e cost of a cloud: Research problems

in data center networks. ACM SIGCOMM CCR, 39(1):68–73, Dec. 2008. [Cited on page

21.]

[77] T. G. Griffin, F. B. Shepherd, and G. Wilfong. e stable paths problem and interdomain

routing. IEEE/ACM Trans. Netw., 10(2):232–243, Apr. 2002. [Cited on page 60.]

[78] S. Gulwani. Automating string processing in spreadsheets using input-output examples. In

ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), 2011. [Cited on

page 103.]

[79] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang, Y. Luo, T. Bergan, M. Musuvathi,

Z. Zhang, and L. Zhou. Failure recovery: When the cure is worse than the disease. In

USENIX Workshop on Hot Topics in Operating Systems, 2013. [Cited on page 98.]

[80] A. Haeberlen, I. Avramopoulos, J. Rexford, and P. Druschel. NetReview: Detecting when

interdomain routing goes wrong. In USENIX Symposium on Networked Systems Design and

Implementation (NSDI), Apr. 2009. [Cited on pages 3, 18, 20, 27, and 51.]

[81] A. Haeberlen, M. Dischinger, K. P. Gummadi, and S. Saroiu. Monarch: A tool to emulate

transport protocol flows over the Internet at large. In ACM Internet Measurement Conference

(IMC), 2006. [Cited on page 18.]

[82] A. Haeberlen, P. Fonseca, R. Rodrigues, and P. Druschel. Fighting cybercrime with packet at-

testation. Technical Report MPI-SWS-2011-002, Max Planck Institute for Software Systems,

July 2011. [Cited on pages 11, 22, 34, 38, 49, 56, and 57.]

[83] A. Haeberlen and P. Kuznetsov. e fault detection problem. In International Conference on

Principles of Distributed Systems (OPODIS), 2009. [Cited on page 36.]

[84] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview: Practical accountability for dis-

tributed systems. In ACM Symposium on Operating Systems Principles (SOSP), Oct. 2007.

[Cited on pages 32 and 33.]

[85] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach. Part I:

Causes. e British journal for the philosophy of science, 56(4):843–887, 2005. [Cited on pages

99, 104, and 107.]

137

[86] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown. Where is the debugger

for my software-defined network? In ACM SIGCOMM Workshop on Hot Topics in Software

Defined Networking (HotSDN), Aug. 2012. [Cited on pages 9, 97, 100, and 123.]

[87] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown. I know what your

packet did last hop: Using packet histories to troubleshoot networks. In USENIX Symposium

on Networked Systems Design and Implementation (NSDI), Apr. 2014. [Cited on pages 9, 22,

34, 38, 56, 57, 89, 95, 97, 100, 121, and 123.]

[88] S. Hao, M. omas, V. Paxson, N. Feamster, C. Kreibich, C. Grier, and S. Hollenbeck. Un-

derstanding the domain registration behavior of spammers. In ACM Internet Measurement

Conference (IMC), 2013. [Cited on page 21.]

[89] R. Hasan, R. Sion, and M. Winslett. e case of the fake picasso: Preventing history forgery

with secure provenance. In USENIX Conference on File and Storage Technologies (FAST), 2009.

[Cited on pages 20 and 105.]

[90] X. Inc. Virtex-5 family overview. http://www.xilinx.com/support/documentation/data_

sheets/ds100.pdf, Feb. 2009. [Cited on page 40.]

[91] Z. G. Ives, A. Haeberlen, T. Feng, and W. Gatterbauer. Querying provenance for ranking and

recommending. In International Workshop on eory and Practice of Provenance (TaPP), 2012.

[Cited on page 13.]

[92] V. Jacobson. Traceroute. ftp://ftp.ee.lbl.gov/traceroute.tar.gz. [Cited on page 49.]

[93] Jeremy Schulman. DevOps for Networking? https://puppet.com/blog/

devops-for-networking. Accessed: May 2017. [Cited on page 103.]

[94] Z. Jin, M. R. Anderson, M. Cafarella, and H. V. Jagadish. Foofah: Transforming data by

example. In ACM SIGMOD International Conference on Management of Data (SIGMOD),

2017. [Cited on pages 103 and 104.]

[95] A. Juels and J. Brainard. Client puzzles: A cryptographic countermeasure against connection

depletion attacks. In e Network and Distributed System Security Symposium (NDSS), Feb.

1999. [Cited on page 21.]

[96] Juniper Networks. Packets per second. http://kb.juniper.net/InfoCenter/index?page=

content&id=KB14737. Accessed: May 2017. [Cited on page 41.]

138

http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
ftp://ftp.ee.lbl.gov/traceroute.tar.gz
https://puppet.com/blog/devops-for-networking
https://puppet.com/blog/devops-for-networking
http://kb.juniper.net/InfoCenter/index?page=content&id=KB14737
http://kb.juniper.net/InfoCenter/index?page=content&id=KB14737

[97] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl. Detailed diagnosis in

enterprise networks. In ACM SIGCOMM Conference on Data Communication (SIGCOMM),

August 2009. [Cited on pages 10, 93, 95, and 123.]

[98] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott, J. Sherry, P. Van Wesep, T. An-

derson, and A. Krishnamurthy. Reverse traceroute. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2010. [Cited on pages 3, 18, 19, 22, 38, 56,

and 57.]

[99] E. Katz-Bassett, H. V. Madhyastha, J. P. John, A. Krishnamurthy, D. Wetherall, and T. An-

derson. Studying black holes in the Internet with Hubble. In USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), 2008. [Cited on pages 3 and 18.]

[100] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte. Real time

network policy checking using header space analysis. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI), Apr. 2013. [Cited on pages 12, 95, and 123.]

[101] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static checking for

networks. In USENIX Symposium on Networked Systems Design and Implementation (NSDI),

2012. [Cited on pages 1, 12, 59, 95, 102, 103, and 123.]

[102] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow: Verifying network-

wide invariants in real time. In USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI), 2013. [Cited on pages 12 and 123.]

[103] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, death, and the critical transition:

Finding liveness bugs in systems code. In USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2007. [Cited on page 95.]

[104] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark. Kinetic: Verifiable

dynamic network control. In USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI), 2015. [Cited on pages 12, 103, and 123.]

[105] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig. Lightweight source

authentication and path validation. In ACM SIGCOMM Conference on Data Communication

(SIGCOMM), 2014. [Cited on page 38.]

[106] Kirk Byers. Programming: An Essential Skill For Network

Engineers. http://www.networkcomputing.com/data-centers/

139

http://www.networkcomputing.com/data-centers/programming-essential-skill-network-engineers/1722440870
http://www.networkcomputing.com/data-centers/programming-essential-skill-network-engineers/1722440870

programming-essential-skill-network-engineers/1722440870. Accessed: May

2017. [Cited on page 103.]

[107] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. e Click modular router.

ACM Trans. on Computer Systems, 18(3):263–297, 2000. [Cited on page 39.]

[108] R. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelli-

gence, 27(1):97–109, 1985. [Cited on page 111.]

[109] M. Kotadia. Trojan horse found responsible for child porn. ZDNet, 8/1/2003. [Cited on

pages 20 and 21.]

[110] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy, T. Anderson, and

J. Gao. Moving beyond end-to-end path information to optimize CDN performance. In

ACM Internet Measurement Conference (IMC), 2009. [Cited on pages 3, 18, 20, 21, 22, 38,

49, 56, and 57.]

[111] M. Liberatore, B. N. Levine, and C. Shields. Strengthening forensic investigations of child

pornography on P2P networks. In International Conference on emerging Networking EXperi-

ments and Technologies (CoNEXT), 2010. [Cited on pages 11 and 18.]

[112] Lisa Sampson. A DevOps primer for network engineers. http://searchnetworking.

techtarget.com/feature/A-DevOps-primer-for-network-engineers. Accessed: May

2017. [Cited on page 103.]

[113] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: Secure and adoptable source authentica-

tion. In USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2008.

[Cited on pages 3, 11, 18, 20, 22, 37, 38, 56, and 57.]

[114] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One sketch to rule them

all: Rethinking network flow monitoring with UnivMon. In ACM SIGCOMM Conference on

Data Communication (SIGCOMM), 2016. [Cited on page 57.]

[115] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ramakr-

ishnan, T. Roscoe, and I. Stoica. Declarative networking: Language, execution and optimiza-

tion. In ACM SIGMOD International Conference on Management of Data (SIGMOD), 2006.

[Cited on pages 14, 15, and 16.]

140

http://www.networkcomputing.com/data-centers/programming-essential-skill-network-engineers/1722440870
http://searchnetworking.techtarget.com/feature/A-DevOps-primer-for-network-engineers
http://searchnetworking.techtarget.com/feature/A-DevOps-primer-for-network-engineers

[116] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ramakr-

ishnan, T. Roscoe, and I. Stoica. Declarative networking. Comm. ACM, 52(11):87–95, Nov.

2009. [Cited on pages 68, 82, and 105.]

[117] Y. Lu, M. Wang, B. Prabhakar, and F. Bonomi. ElephantTrap: A low cost device for identifying

large flows. In IEEE Symposium on High-Performance Interconnects, 2007. [Cited on page 47.]

[118] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level Internet path diagnosis.

In ACM Symposium on Operating Systems Principles (SOSP), 2003. [Cited on pages 3, 18, 22,

34, 38, 49, 56, and 57.]

[119] R. Mahajan, M. Zhang, L. Poole, and V. Pai. Uncovering performance differences among

backbone ISPs with Netdiff. In USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI), 2008. [Cited on pages 3, 18, 20, 34, and 49.]

[120] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King. Debugging

the data plane with Anteater. In ACM SIGCOMM Conference on Data Communication (SIG-

COMM), 2012. [Cited on pages 12, 59, 95, 121, and 123.]

[121] P. Maniatis and M. Baker. Secure history preservation through timeline entanglement. In

USENIX Security Symposium, 2002. [Cited on page 33.]

[122] S. Matsuo, M. Knezevic, P. Schaumont, I. Verbauwhede, A. Satoh, K. Sakiyama, and K. Ota.

How can we conduct fair and consistent hardware evaluation for sha-3 candidate? In Second

SHA-3 Candidate Conference, 2010. [Cited on page 43.]

[123] J. McClurg, H. Hojjat, P. Černý, and N. Foster. Efficient synthesis of network updates. In

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),

2015. [Cited on pages 12 and 124.]

[124] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. e complexity of causality and

responsibility for query answers and non-answers. In VLDB Endowment, 2010. [Cited on

page 13.]

[125] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. Why so? or why no? functional

causality for explaining query answers. In International Workshop on Management of Uncertain

Data (MUD), 2010. [Cited on page 13.]

141

[126] A. Meliou and D. Suciu. Tiresias: e database oracle for how-to queries. ACM SIGMOD

International Conference on Management of Data (SIGMOD), pages 337–348, 2012. [Cited

on page 13.]

[127] R. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on Security and Privacy,

1980. [Cited on page 30.]

[128] H. E. Michail, L. Ioannou, and A. G. Voyiatzis. Pipelined SHA-3 implementations on FPGA:

Architecture and performance analysis. In Workshop on Cryptography and Security in Computing

Systems, Jan. 2015. [Cited on page 43.]

[129] Microsoft. Summary of Windows Azure Service Disruption on

Feb 29th, 2012. https://azure.microsoft.com/en-us/blog/

summary-of-windows-azure-service-disruption-on-feb-29th-2012/. Accessed:

May 2017. [Cited on pages 2 and 98.]

[130] A. Mizrak, S. Savage, and K. Marzullo. Detecting compromised routers via packet forwarding

behavior. Network, IEEE, 22(2):34–39, 2008. [Cited on pages 22, 56, and 57.]

[131] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing software-defined

networks. In USENIX Symposium on Networked Systems Design and Implementation (NSDI),

2013. [Cited on pages 68, 83, and 116.]

[132] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko, D. Maclean, D. Margo,

M. Seltzer, and R. Smogor. Layering in provenance systems. In USENIX Annual Techni-

cal Conference (ATC), 2009. [Cited on pages 14, 82, 105, and 123.]

[133] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer. Provenance for the cloud. In USENIX

Conference on File and Storage Technologies (FAST), 2010. [Cited on page 14.]

[134] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKeown. Implementing

an openflow switch on the NetFPGA platform. In ACM/IEEE Symposium on Architectures for

Networking and Communications Systems (ANCS), 2008. [Cited on page 40.]

[135] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and A. Seehra. Verifying and

enforcing network paths with ICING. In International Conference on emerging Networking

EXperiments and Technologies (CoNEXT), 2011. [Cited on pages 3, 11, 18, 19, 20, 22, 38, 55,

56, and 57.]

142

https://azure.microsoft.com/en-us/blog/summary-of-windows-azure-service-disruption-on-feb-29th-2012/
https://azure.microsoft.com/en-us/blog/summary-of-windows-azure-service-disruption-on-feb-29th-2012/

[136] D. Naylor, M. K. Mukerjee, and P. Steenkiste. Balancing accountability and privacy in the net-

work. In ACM SIGCOMM Conference on Data Communication (SIGCOMM), 2014. [Cited

on page 42.]

[137] T. Nelson, A. D. Ferguson, M. J. Scheer, and S. Krishnamurthi. Tierless programming and

reasoning for software-defined networks. In USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2014. [Cited on pages 12 and 123.]

[138] Nick Feamster. Tomorrow’s Network Operators Will Be Programmers. http://2015.

splashcon.org/event/splash2015-keynotes-nick-feamster-keynote. Accessed: May

2017. [Cited on page 103.]

[139] K. Pan, S. Kim, and E. J. Whitehead Jr. Toward an understanding of bug fix patterns. Empirical

Software Engineering, 14(3):286–315, 2009. [Cited on page 84.]

[140] A. Panda, K. Argyraki, M. Sagiv, M. Schapira, and S. Shenker. New directions for network

verification. In Summit on Advances in Programming Languages, 2015. [Cited on page 102.]

[141] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco, F. Sher-

wood, S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Au-

tomatically patching errors in deployed software. In ACM Symposium on Operating Systems

Principles (SOSP), 2009. [Cited on page 95.]

[142] M. Piatek, T. Kohno, and A. Krishnamurthy. Challenges and directions for monitoring P2P

file sharing networks. In USENIX Workshop on Hot Topics in Security (HotSec), July 2008.

[Cited on page 38.]

[143] A. Ramachandran, K. Bhandankar, M. B. Tariq, and N. Feamster. Packets with provenance.

In Poster, ACM SIGCOMM Conference on Data Communication (SIGCOMM), 2008. [Cited

on page 38.]

[144] A. Ramachandran and N. Feamster. Understanding the network-level behavior of spammers.

In ACM SIGCOMM Conference on Data Communication (SIGCOMM), 2006. [Cited on page

21.]

[145] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver. Detecting in-flight page changes with web

tripwires. In USENIX Symposium on Networked Systems Design and Implementation (NSDI),

2008. [Cited on pages 11, 22, 38, 56, and 57.]

143

http://2015.splashcon.org/event/splash2015-keynotes-nick-feamster-keynote
http://2015.splashcon.org/event/splash2015-keynotes-nick-feamster-keynote

[146] J. Ruckert, J. Blendin, and D. Hausheer. Rasp: Using OpenFlow to push overlay streams into

the underlay. In IEEE International Conference on Peer-to-Peer Computing (P2P), 2013. [Cited

on page 85.]

[147] S. Saha, S. Prabhu, and P. Madhusudan. NetGen: Synthesizing data-plane configurations for

network policies. In ACM Symposium on SDN Research (SOSR), 2015. [Cited on pages 97,

98, 102, and 124.]

[148] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support for IP trace-

back. In ACM SIGCOMM Conference on Data Communication (SIGCOMM), 2000. [Cited

on pages 22, 38, 56, and 57.]

[149] B. Schlinker, R. N. Mysore, S. Smith, J. C. Mogul, A. Vahdat, M. Yu, E. Katz-Bassett, and

M. Rubin. Condor: Better topologies through declarative design. In ACM SIGCOMM Con-

ference on Data Communication (SIGCOMM), Aug. 2015. [Cited on pages 12 and 124.]

[150] C. Scott, A. Panda, V. Brajkovic, G. Necula, A. Krishnamurthy, and S. Shenker. Minimizing

faulty executions of distributed systems. In USENIX Symposium on Networked Systems Design

and Implementation (NSDI), Mar. 2016. [Cited on pages 10, 93, 95, and 123.]

[151] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang, Z. Liu, A. El-Hassany,

S. Whitlock, H. Acharya, K. Zarifis, and S. Shenker. Troubleshooting blackbox SDN control

software with minimal causal sequences. In ACM SIGCOMM Conference on Data Communi-

cation (SIGCOMM), 2014. [Cited on pages 10, 59, 95, and 123.]

[152] K. Shen, C. Stewart, C. Li, and X. Li. Reference-driven performance anomaly identification.

In ACM SIGMETRICS International Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS), 2009. [Cited on page 95.]

[153] R. Sherwood, A. Bender, and N. Spring. DisCarte: A disjunctive Internet cartographer. In

ACM SIGCOMM Conference on Data Communication (SIGCOMM), 2008. [Cited on pages

18, 19, 28, and 39.]

[154] R. Singh and S. Gulwani. Synthesizing number transformations from input-output examples.

In International Conference on Computer-Aided Verification (CAV), 2012. [Cited on page 104.]

[155] R. Singh and A. Solar-Lezama. Synthesizing data-structure manipulations from storyboards.

In e joint meeting of the European Software Engineering Conference and the ACM SIGSOFT

144

Symposium on the Foundations of Software Engineering (ESEC/FSE), 2011. [Cited on page

103.]

[156] R. Sinha, C. Papadopoulos, and J. Heidemann. Internet packet size distributions: Some

observations. Technical Report ISI-TR-2007-643, USC ISI, 2007. [Cited on page 42.]

[157] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio, B. Schwartz, S. Kent, and

W. Strayer. Single-packet IP traceback. IEEE/ACM Trans. Netw., 10(6):721–734, 2002. [Cited

on pages 3, 11, 18, 22, 34, 38, 49, 52, 56, and 57.]

[158] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. e first collision for full

SHA-1. Cryptology ePrint Archive, Report 2017/190, 2017. [Cited on page 39.]

[159] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H. Katz. Listen and Whisper: Security

mechanisms for BGP. In USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2004. [Cited on pages 22, 38, 56, and 57.]

[160] R. Sylvester. IP address typo leads to a false arrest in Kansas. e Wichita Eagle, http://

www.kansas.com/mld/eagle/news/local/crime_courts/12620843.htm. Accessed: 2005.

[Cited on pages 2 and 22.]

[161] P. Tammana, R. Agarwal, and M. Lee. Cherrypick: Tracing packet trajectory in software-

defined datacenter networks. In ACM Symposium on SDN Research (SOSR), June 2015. [Cited

on pages 10, 100, and 123.]

[162] R. Teixeira and J. Rexford. A measurement framework for pin-pointing routing changes. In

ACM SIGCOMM workshop on Network Troubleshooting, 2004. [Cited on pages 2, 3, and 18.]

[163] Trevor Parsons. Infographic: e Modern IT and Dev Ops Toolkit. https://blog.

logentries.com/2014/12/infographic-the-modern-it-and-dev-ops-toolkit/. Ac-

cessed: May 2017. [Cited on page 103.]

[164] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. Swift. A placement vulnerability study in

multi-tenant public clouds. In Proc. USENIX Security Symposium, 2015. [Cited on page 2.]

[165] Y. Velner, K. Alpernas, A. Panda, A. Rabinovich, M. Sagiv, S. Shenker, and S. Shoham. Some

complexity results for stateful network verification. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), 2016. [Cited on page 102.]

145

http://www.kansas.com/mld/eagle/news/local/crime_courts/12620843.htm
http://www.kansas.com/mld/eagle/news/local/crime_courts/12620843.htm
https://blog.logentries.com/2014/12/infographic-the-modern-it-and-dev-ops-toolkit/
https://blog.logentries.com/2014/12/infographic-the-modern-it-and-dev-ops-toolkit/

[166] A. Voellmy, A. Agarwal, P. Hudak, N. Feamster, S. Burnett, and J. Launchbury. Don’t con-

figure the network, program it! domain-specific programming languages for network systems.

Technical Report YALEU/DCS/RR-1432, Yale University, July 2010. [Cited on page 103.]

[167] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Automatic misconfiguration

troubleshooting with PeerPressure. In USENIX Symposium on Operating Systems Design and

Implementation, 2004. [Cited on pages 1, 10, 59, 93, and 95.]

[168] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo. Automated bug removal for software-

defined networks. In USENIX Symposium on Networked Systems Design and Implementation

(NSDI), Mar. 2017. [Cited on pages 1, 17, 97, 98, 100, 102, and 123.]

[169] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo. Diagnosing missing events in

distributed systems with negative provenance. In ACM SIGCOMM Conference on Data Com-

munication (SIGCOMM), 2014. [Cited on pages 4, 5, 6, 17, 59, 64, 83, 86, 88, 90, 94, 97,

99, 100, 106, 109, 116, 117, 121, and 123.]

[170] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo. Diagnosing missing events in

distributed systems with negative provenance. In ACM SIGCOMM Conference on Data Com-

munication (SIGCOMM), 2014. [Cited on page 20.]

[171] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann. OFRewind: Enabling record and

replay troubleshooting for networks. In USENIX Annual Technical Conference (ATC), 2011.

[Cited on pages 10, 59, 95, and 123.]

[172] M. Yu, L. Jose, and R. Miao. Software defined traffic measurement with OpenSketch. In

USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2013. [Cited

on page 57.]

[173] Y. Yuan, D. Lin, R. Alur, and B. T. Loo. Scenario-based programming for SDN policies.

In International Conference on emerging Networking EXperiments and Technologies (CoNEXT),

2015. [Cited on pages 12, 102, 103, 104, and 124.]

[174] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown. Automatic test packet generation.

In International Conference on emerging Networking EXperiments and Technologies (CoNEXT),

2012. [Cited on pages 10, 81, 84, 92, 95, 103, 121, and 123.]

146

[175] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown, and A. Vahdat. Libra:

Divide and conquer to verify forwarding tables in huge networks. In USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2014. [Cited on pages 12 and 123.]

[176] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and Y. Zhou. EnCore: Ex-

ploiting system environment and correlation information for misconfiguration detection. In

ACM International Conference on Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS), 2014. [Cited on page 95.]

[177] X. Zhang, A. Jain, and A. Perrig. Packet-dropping adversary identification for data plane

security. In International Conference on emerging Networking EXperiments and Technologies

(CoNEXT), 2008. [Cited on page 58.]

[178] Y. Zhang, Z. M. Mao, and M. Zhang. Detecting traffic differentiation in backbone ISPs with

NetPolice. In ACM Internet Measurement Conference (IMC), Nov. 2009. [Cited on pages 11,

18, 22, 34, 38, 56, and 57.]

[179] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush. iSPY: Detecting IP prefix hijacking

on my own. IEEE/ACM Trans. Netw., 18(6):1815–1828, Dec. 2010. [Cited on page 18.]

[180] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr. Secure network prove-

nance. In ACM Symposium on Operating Systems Principles (SOSP), Oct. 2011. [Cited on

pages 4, 5, 17, 20, 49, 59, 82, 100, 105, 117, and 123.]

[181] W. Zhou, Q. Fei, S. Sun, T. Tao, A. Haeberlen, Z. Ives, B. T. Loo, and M. Sherr. NetTrails:

A declarative platform for provenance maintenance and querying in distributed systems. In

Demo, ACM SIGMOD International Conference on Management of Data (SIGMOD), 2011.

[Cited on page 27.]

[182] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen, Z. Ives, B. T. Loo, and M. Sherr. Distributed

time-aware provenance. In International Conference on Very Large Databases (VLDB), Aug.

2013. [Cited on pages 4, 17, 25, 70, and 81.]

[183] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient querying and mainte-

nance of network provenance at Internet-scale. In ACM SIGMOD International Conference

on Management of Data (SIGMOD), 2010. [Cited on pages 3, 4, 14, 16, 20, 24, 59, 63, 97,

100, 104, and 123.]

147

[184] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz, L. Yuan, M. Zhang,

B. Y. Zhao, and H. Zheng. Packet-level telemetry in large datacenter networks. In ACM

SIGCOMM Conference on Data Communication (SIGCOMM), Aug. 2015. [Cited on pages

81, 89, 95, and 121.]

[185] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore. NetFPGA SUME: Toward

100 Gbps as research commodity. IEEE Micro, 34(5):32–41, 2014. [Cited on pages 43

and 45.]

148

7
Appendix

In this appendix, we include more example code for building applications on top of

SPP. In Figures 7.1–7.5, we have sketched the code snippets for implementing the

functionalities in Table 3.3.

149

void reverse-tracert(Packet *p, Evidence *e) {
IP *prevHop = gatewayIP;
Packet *p0 = p;
do {

query(&p, &e, prevHop);
print(prevHop+" "+(e.time-p0.time));

} while (prevHop != START_OF_PATH);
}

Figure 7.1: Code for tracing a received packet’s reverse path.

void identify-drop(Packet *p, Evidence *e) {
IP *nextHop = gatewayIP;
Packet *p0 = p;
do {

query(&p, &e, nextHop);
} while (e != NULL);
print(nextHop+" dropped the packet");

}

Figure 7.2: Code for identifying the node that dropped a packet.

void attest(Packet *p, Evidence *e) {
IP *nextHop = gatewayIP;
Packet *p0 = p;
query(&p, &e, nextHop);
if (e != NULL)

print("Packet " + p + " had been transmitted.");
else

print("Packet " + p + " hadn't been transmitted.");
}

Figure 7.3: Code for attesting to the transmission of a packet.

150

void highestdelay(Packet *p, Evidence *e) {
IP *nextHop = gatewayIP;
Packet *p0 = p;
IP *start[255];
IP *end[255];
int numHops = 0;
double delay[255];
do {

start[numHops] = nextHop;
query(&p, &e, nextHop);
delay[numHops] = e.time-p.time;
end[numHops] = nextHop;

} while (nextHop != END_OF_PATH);
double highest = delay[0];
int linkID = 0;
int i;
for (int i = 0; i < numHops; i ++) {

if (highest < delay[i]) {
highest = delay[i];
linkID = i;

}
}
print("Highest-delay link: " + start[i] + "->" + end[i]);

}

Figure 7.4: Code for identifying the link on a path with the highest delay.

void throughput(Packet **p, Evidence **e, int n, Link l) {
double delaysum = 0;
int i;
for (i = 0; i < n; i ++) {

IP *nextHop = gatewayIP;
bool linkIdentified;
Packet *p0 = p[i];
do {

if (l.start == nexthop) {
linkIdenfied = true;

else
linkIdenfied = false;

}
query(&p, &e, nextHop);
if ((l.end == nextHop) & (linkIdentified)) {

delaysum += e.time-p.time
}

} while (nextHop != END_OF_PATH);
double volume = 0;
int j;
for (j = 0; j < n; j ++) {

volume += p[j].size;
}
double avg = volume/delaysum;
print("Average throughput for the link: " + avg);

}

Figure 7.5: Code for the average throughput of a link.

151

	University of Pennsylvania
	ScholarlyCommons
	2017

	Secure Diagnostics And Forensics With Network Provenance
	Ang Chen
	Recommended Citation

	Secure Diagnostics And Forensics With Network Provenance
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	A provenance-based approach
	Thesis
	Contributions

	Background
	Network diagnostics and forensics
	Provenance
	Network provenance

	Secure Packet Provenance
	Overview
	The provenance graph
	The SPP protocol
	Case studies
	Implementation
	Evaluation
	Deployment
	Related Work
	Conclusion

	Differential Provenance
	Overview
	Differential Provenance
	The DiffProv algorithm
	Implementation
	Evaluation
	Related Work
	Conclusion

	Causal Networks
	Overview
	Intent-based network repair
	The NetGenie algorithm
	Evaluation
	Related Work
	Conclusion

	Conclusion
	The benefits of provenance
	Limitations and future work

	Appendix

