2,939 research outputs found

    The Geometry of Differential Privacy: the Sparse and Approximate Cases

    Full text link
    In this work, we study trade-offs between accuracy and privacy in the context of linear queries over histograms. This is a rich class of queries that includes contingency tables and range queries, and has been a focus of a long line of work. For a set of dd linear queries over a database xRNx \in \R^N, we seek to find the differentially private mechanism that has the minimum mean squared error. For pure differential privacy, an O(log2d)O(\log^2 d) approximation to the optimal mechanism is known. Our first contribution is to give an O(log2d)O(\log^2 d) approximation guarantee for the case of (\eps,\delta)-differential privacy. Our mechanism is simple, efficient and adds correlated Gaussian noise to the answers. We prove its approximation guarantee relative to the hereditary discrepancy lower bound of Muthukrishnan and Nikolov, using tools from convex geometry. We next consider this question in the case when the number of queries exceeds the number of individuals in the database, i.e. when d>nx1d > n \triangleq \|x\|_1. It is known that better mechanisms exist in this setting. Our second main contribution is to give an (\eps,\delta)-differentially private mechanism which is optimal up to a \polylog(d,N) factor for any given query set AA and any given upper bound nn on x1\|x\|_1. This approximation is achieved by coupling the Gaussian noise addition approach with a linear regression step. We give an analogous result for the \eps-differential privacy setting. We also improve on the mean squared error upper bound for answering counting queries on a database of size nn by Blum, Ligett, and Roth, and match the lower bound implied by the work of Dinur and Nissim up to logarithmic factors. The connection between hereditary discrepancy and the privacy mechanism enables us to derive the first polylogarithmic approximation to the hereditary discrepancy of a matrix AA

    A new Lenstra-type Algorithm for Quasiconvex Polynomial Integer Minimization with Complexity 2^O(n log n)

    Full text link
    We study the integer minimization of a quasiconvex polynomial with quasiconvex polynomial constraints. We propose a new algorithm that is an improvement upon the best known algorithm due to Heinz (Journal of Complexity, 2005). This improvement is achieved by applying a new modern Lenstra-type algorithm, finding optimal ellipsoid roundings, and considering sparse encodings of polynomials. For the bounded case, our algorithm attains a time-complexity of s (r l M d)^{O(1)} 2^{2n log_2(n) + O(n)} when M is a bound on the number of monomials in each polynomial and r is the binary encoding length of a bound on the feasible region. In the general case, s l^{O(1)} d^{O(n)} 2^{2n log_2(n) +O(n)}. In each we assume d>= 2 is a bound on the total degree of the polynomials and l bounds the maximum binary encoding size of the input.Comment: 28 pages, 10 figure

    Simple Approximations of Semialgebraic Sets and their Applications to Control

    Full text link
    Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the solution set of linear matrix inequalities or the Schur/Hurwitz stability domains. These sets often have very complicated shapes (non-convex, and even non-connected), which renders very difficult their manipulation. It is therefore of considerable importance to find simple-enough approximations of these sets, able to capture their main characteristics while maintaining a low level of complexity. For these reasons, in the past years several convex approximations, based for instance on hyperrect-angles, polytopes, or ellipsoids have been proposed. In this work, we move a step further, and propose possibly non-convex approximations , based on a small volume polynomial superlevel set of a single positive polynomial of given degree. We show how these sets can be easily approximated by minimizing the L1 norm of the polynomial over the semialgebraic set, subject to positivity constraints. Intuitively, this corresponds to the trace minimization heuristic commonly encounter in minimum volume ellipsoid problems. From a computational viewpoint, we design a hierarchy of linear matrix inequality problems to generate these approximations, and we provide theoretically rigorous convergence results, in the sense that the hierarchy of outer approximations converges in volume (or, equivalently, almost everywhere and almost uniformly) to the original set. Two main applications of the proposed approach are considered. The first one aims at reconstruction/approximation of sets from a finite number of samples. In the second one, we show how the concept of polynomial superlevel set can be used to generate samples uniformly distributed on a given semialgebraic set. The efficiency of the proposed approach is demonstrated by different numerical examples

    Collision-free path planning for robots using B-splines and simulated annealing

    Get PDF
    This thesis describes a technique to obtain an optimal collision-free path for an automated guided vehicle (AGV) and/or robot in two and three dimensions by synthesizing a B-spline curve under geometric and intrinsic constraints. The problem is formulated as a combinatorial optimization problem and solved by using simulated annealing. A two-link planar manipulator is included to show that the B-spline curve can also be synthesized by adding kinematic characteristics of the robot. A cost function, which includes obstacle proximity, excessive arc length, uneven parametric distribution and, possibly, link proximity costs, is developed for the simulated annealing algorithm. Three possible cases for the orientation of the moving object are explored: (a) fixed orientation, (b) orientation as another independent variable, and (c) orientation given by the slope of the curve. To demonstrate the robustness of the technique, several examples are presented. Objects are modeled as ellipsoid type shapes. The procedure to obtain the describing parameters of the ellipsoid is also presented
    corecore