8,045 research outputs found

    Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation

    Get PDF
    Artificial olfaction systems, which mimic human olfaction by using arrays of gas chemical sensors combined with pattern recognition methods, represent a potentially low-cost tool in many areas of industry such as perfumery, food and drink production, clinical diagnosis, health and safety, environmental monitoring and process control. However, successful applications of these systems are still largely limited to specialized laboratories. Sensor drift, i.e., the lack of a sensor's stability over time, still limits real in dustrial setups. This paper presents and discusses an evolutionary based adaptive drift-correction method designed to work with state-of-the-art classification systems. The proposed approach exploits a cutting-edge evolutionary strategy to iteratively tweak the coefficients of a linear transformation which can transparently correct raw sensors' measures thus mitigating the negative effects of the drift. The method learns the optimal correction strategy without the use of models or other hypotheses on the behavior of the physical chemical sensors

    Multivariate robust modelling and optimization of cutting forces of the helical milling process of the aluminum alloy Al 7075

    Get PDF
    Helical milling is an advanced hole-making process and different approaches considering controllable variables have been presented addressing modelling and optimization of machining forces in helical milling. None of them considers the importance of the noise variables and the fact that machining forces components are usually correlated. Exploring this issue, this paper presents a multivariate robust modelling and optimization of cutting forces of the helical milling of the aluminum alloy Al 7075. For the study, the tool overhang length was defined as noise variable since in cavities machining there are specific workpiece geometries that constrain this variable; the controllable variables were axial feed per tooth, tangential feed per tooth and cutting speed. The cutting forces in the workpiece coordinate system were measured and the components in the tool coordinate system, i.e., the axial and radial forces, were evaluated. Since these two outcomes are correlated, the weighted principal component analysis was performed together with the robust parameter design to allow the multivariate robust modelling of the mean and variance equations. The normal boundary intersection method was used to obtain a set of Pareto robust optimal solutions related to the mean and variance equations of the weighted principal component. The optimization of the weighted principal component through the normal boundary intersection method was performed and the results evaluated in the axial and radial cutting forces components. Confirmation runs were carried out and it was possible to conclude that the models presented good fit with experimental data and that the Pareto optimal point chosen for performing the confirmation runs is robust to the tool overhang length variation. Finally, the cutting force models were also presented for mean and variance in the workpiece coordinate system in the time domain, presenting low error regarding the experimental test, endorsing the results.publishe

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Signal and data processing for machine olfaction and chemical sensing: A review

    Get PDF
    Signal and data processing are essential elements in electronic noses as well as in most chemical sensing instruments. The multivariate responses obtained by chemical sensor arrays require signal and data processing to carry out the fundamental tasks of odor identification (classification), concentration estimation (regression), and grouping of similar odors (clustering). In the last decade, important advances have shown that proper processing can improve the robustness of the instruments against diverse perturbations, namely, environmental variables, background changes, drift, etc. This article reviews the advances made in recent years in signal and data processing for machine olfaction and chemical sensing

    Drift Correction Methods for gas Chemical Sensors in Artificial Olfaction Systems: Techniques and Challenges

    Get PDF
    In this chapter the authors introduce the main challenges faced when developing drift correction techniques and will propose a deep overview of state-of-the-art methodologies that have been proposed in the scientific literature trying to underlying pros and cons of these techniques and focusing on challenges still open and waiting for solution

    Design Issues and Challenges of File Systems for Flash Memories

    Get PDF
    This chapter discusses how to properly address the issues of using NAND flash memories as mass-memory devices from the native file system standpoint. We hope that the ideas and the solutions proposed in this chapter will be a valuable starting point for designers of NAND flash-based mass-memory devices

    Tensor-on-tensor regression

    Full text link
    We propose a framework for the linear prediction of a multi-way array (i.e., a tensor) from another multi-way array of arbitrary dimension, using the contracted tensor product. This framework generalizes several existing approaches, including methods to predict a scalar outcome from a tensor, a matrix from a matrix, or a tensor from a scalar. We describe an approach that exploits the multiway structure of both the predictors and the outcomes by restricting the coefficients to have reduced CP-rank. We propose a general and efficient algorithm for penalized least-squares estimation, which allows for a ridge (L_2) penalty on the coefficients. The objective is shown to give the mode of a Bayesian posterior, which motivates a Gibbs sampling algorithm for inference. We illustrate the approach with an application to facial image data. An R package is available at https://github.com/lockEF/MultiwayRegression .Comment: 33 pages, 3 figure
    corecore