3,104 research outputs found

    Toward a unified PNT, Part 2: Ambiguity and environmental data: Two further key challenges of multisensor positioning

    Get PDF
    The coming requirements of greater accuracy and reliability in a range of challenging environments for a multitude of missioncritical applications require a multisensor approach and an over-arching methodology that does not yet exist. The likelihood depends on both the positioning method and the context, both environmental and behavioral. Urban and indoor positioning techniques that do not require dedicated infrastructure are particularly vulnerable to ambiguity. Even where a signal of opportunity is identifiable, the transmission site may change without warning. For example, Wi-Fi access points are sometimes moved and mobile phone networks are periodically refigured. Thus, there is a risk of false landmark identification. The pattern-matching positioning method maintains a database of measurable parameters that vary with position. Examples include terrain height, magnetic field variations, Wi-Fi signal strengths, and GNSS signal availability information

    Accurate and automatic NOAA-AVHRR image navigation using a global contour matching approach

    Get PDF
    The problem of precise and automatic AVHRR image navigation is tractable in theory, but has proved to be somewhat difficult in practice. The authors' work has been motivated by the need for a fully automatic and operational navigation system capable of geo-referencing NOAA-AVHRR images with high accuracy and without operator supervision. The proposed method is based on the simultaneous use of an orbital model and a contour matching approach. This last process, relying on an affine transformation model, is used to correct the errors caused by inaccuracies in orbit modeling, nonzero value for the spacecraft's roll, pitch and yaw, errors due to inaccuracies in the satellite positioning and failures in the satellite internal clock. The automatic global contour matching process is summarized as follows: i) Estimation of the gradient energy map (edges) in the sensed image and detection of the cloudless (reliable) areas in this map. ii) Initialization of the affine model parameters by minimizing the Euclidean distance between the reference and sensed images objects. iii) Simultaneous optimization of all reference image contours on the sensed image by energy minimization in the domain of the global transformation parameters. The process is iterated in a hierarchical way, reducing the parameter searching space at each iteration. The proposed image navigation algorithm has proved to be capable of geo-referencing a satellite image within 1 pixel.Peer ReviewedPostprint (published version

    GNSS Shadow Matching: The Challenges Ahead

    Get PDF
    GNSS shadow matching is a new technique that uses 3D mapping to improve positioning accuracy in dense urban areas from tens of meters to within five meters, potentially less. This paper presents the first comprehensive review of shadow matching’s error sources and proposes a program of research and development to take the technology from proof of concept to a robust, reliable and accurate urban positioning product. A summary of the state of the art is also included. Error sources in shadow matching may be divided into six categories: initialization, modelling, propagation, environmental complexity, observation, and algorithm approximations. Performance is also affected by the environmental geometry and it is sometimes necessary to handle solution ambiguity. For each error source, the cause and how it impacts the position solution is explained. Examples are presented, where available, and improvements to the shadow-matching algorithms to mitigate each error are proposed. Methods of accommodating quality control within shadow matching are then proposed, including uncertainty determination, ambiguity detection, and outlier detection. This is followed by a discussion of how shadow matching could be integrated with conventional ranging-based GNSS and other navigation and positioning technologies. This includes a brief review of methods to enhance ranging-based GNSS using 3D mapping. Finally, the practical engineering challenges of shadow matching are assessed, including the system architecture, efficient GNSS signal prediction and the acquisition of 3D mapping data

    Cooperative Relative Positioning of Mobile Users by Fusing IMU Inertial and UWB Ranging Information

    Full text link
    Relative positioning between multiple mobile users is essential for many applications, such as search and rescue in disaster areas or human social interaction. Inertial-measurement unit (IMU) is promising to determine the change of position over short periods of time, but it is very sensitive to error accumulation over long term run. By equipping the mobile users with ranging unit, e.g. ultra-wideband (UWB), it is possible to achieve accurate relative positioning by trilateration-based approaches. As compared to vision or laser-based sensors, the UWB does not need to be with in line-of-sight and provides accurate distance estimation. However, UWB does not provide any bearing information and the communication range is limited, thus UWB alone cannot determine the user location without any ambiguity. In this paper, we propose an approach to combine IMU inertial and UWB ranging measurement for relative positioning between multiple mobile users without the knowledge of the infrastructure. We incorporate the UWB and the IMU measurement into a probabilistic-based framework, which allows to cooperatively position a group of mobile users and recover from positioning failures. We have conducted extensive experiments to demonstrate the benefits of incorporating IMU inertial and UWB ranging measurements.Comment: accepted by ICRA 201

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Multisensor navigation systems: a remedy for GNSS vulnerabilities?

    Get PDF
    Space-based positioning, navigation, and timing (PNT) technologies, such as the global navigation satellite systems (GNSS) provide position, velocity, and timing information to an unlimited number of users around the world. In recent years, PNT information has become increasingly critical to the security, safety, and prosperity of the World's population, and is now widely recognized as an essential element of the global information infrastructure. Due to its vulnerabilities and line-of-sight requirements, GNSS alone is unable to provide PNT with the required levels of integrity, accuracy, continuity, and reliability. A multisensor navigation approach offers an effective augmentation in GNSS-challenged environments that holds a promise of delivering robust and resilient PNT. Traditionally, sensors such as inertial measurement units (IMUs), barometers, magnetometers, odometers, and digital compasses, have been used. However, recent trends have largely focused on image-based, terrain-based and collaborative navigation to recover the user location. This paper offers a review of the technological advances that have taken place in PNT over the last two decades, and discusses various hybridizations of multisensory systems, building upon the fundamental GNSS/IMU integration. The most important conclusion of this study is that in order to meet the challenging goals of delivering continuous, accurate and robust PNT to the ever-growing numbers of users, the hybridization of a suite of different PNT solutions is required

    A Portuguese Case Study

    Get PDF
    There is a high national dependency on Position, Navigation and Timing (PNT) Systems for several individuals, services and organisations that depend on this information on a daily basis. Those who rely on precise, accurate and continuous information need to have resilient systems in order to be highly efficient and reliable. A resilient structure and constantly available systems makes it easier to predict a threat or rapidly recover in a hazardous environment. One of these organisations is the Portuguese Navy, whose main purposes are to combat and maintain maritime safety. In combat, resilient PNT systems are needed for providing robustness in case of any threat or even a simple occasional system failure. In order to guarantee maritime safety, for example in Search and Rescue Missions, the need of PNT information is constant and indispensable for positioning control. The large diversity of PNT-dependent equipment, developed over the last two decades, is a valid showcase for the high GPS dependency that is seen nowadays – which is vulnerable to various factors like interference, jamming, spoofing and ionospheric conditions. The recent interest over integrated PNT system resolutions is related to the search for redundancy, accuracy, precision, availability, low cost, coverage, reliability and continuity. This study aimed to build a current PNT Portuguese picture based on Stakeholder Analysis and Interviews; assess the vulnerability of those who depend mainly on GPS for PNT information and, find out what the next steps should be in order to create a National PNT Strategy.Existe uma elevada dependência nacional em sistemas de Posição, Navegação e Tempo (PNT) por parte de diversos indivíduos, serviços e organizações que dependem desta informação no seu dia-a-dia. Todos os que dependem de informação precisa, exata e contínua, necessitam de ter sistemas resilientes para que sejam altamente eficientes e fiáveis. Uma estrutura resiliente e sistemas continuamente disponíveis facilitam a previsão de possíveis ameaças ou a expedita recuperação da funcionalidade, em ambientes hostis. Uma destas organizações é a Marinha Portuguesa cujas funções principais são o combate, a salvaguarda da vida humana no mar e a segurança marítima e da navegação. Para o combate, são necessários sistemas PNT, resilientes, que ofereçam robustez em caso de uma simples ameaça ou falha temporária dos sistemas. Por forma a ser possível cumprir a missão, a necessidade de ter informação PNT, fidedigna e atualizada, é constante e indispensável para o controlo preciso e exato da posição. Uma unidade naval, por forma a permanecer continuamente no mar, manter a sua prontidão, treinar a sua guarnição ou ser empenhada num cenário de guerra, necessita de saber, com confiança e sem erros, a sua posição e referência de tempo. A grande diversidade de sistemas dependentes de informação PNT, desenvolveu-se em larga escala nas últimas duas décadas e sustenta cada vez mais a alta dependência do GPS, que é vulnerável a diversas fontes de erro, tais como interferência, empastelamento, mistificação e condições ionosféricas. Atualmente, o elevado interesse na criação de sistemas PNT integrados está associado à procura da redundância, exatidão, precisão, disponibilidade, baixo custo, cobertura, fiabilidade e continuidade. Este estudo teve como objetivos construir o panorama atual, em Portugal, ao nível dos Sistemas PNT, baseando-se numa análise de Stakeholders e entrevistas; avaliar a vulnerabilidade de organizações e serviços que dependam exclusivamente do GPS como fonte de informação PNT; e propor um possível caminho para que seja possível criar uma Estratégia PNT Naciona

    Accurate Estimation of a Coil Magnetic Dipole Moment

    Full text link
    In this paper, a technique for accurate estimation of the moment of magnetic dipole is proposed. The achievable accuracy is investigated, as a function of measurement noise affecting estimation of magnetic field cartesian components. The proposed technique is validated both via simulations and experimentally.Comment: Preprin

    Enabling Communication Technologies for Automated Unmanned Vehicles in Industry 4.0

    Full text link
    Within the context of Industry 4.0, mobile robot systems such as automated guided vehicles (AGVs) and unmanned aerial vehicles (UAVs) are one of the major areas challenging current communication and localization technologies. Due to stringent requirements on latency and reliability, several of the existing solutions are not capable of meeting the performance required by industrial automation applications. Additionally, the disparity in types and applications of unmanned vehicle (UV) calls for more flexible communication technologies in order to address their specific requirements. In this paper, we propose several use cases for UVs within the context of Industry 4.0 and consider their respective requirements. We also identify wireless technologies that support the deployment of UVs as envisioned in Industry 4.0 scenarios.Comment: 7 pages, 1 figure, 1 tabl
    • …
    corecore