4,799 research outputs found

    Automated visual assembly inspection

    Get PDF
    Includes bibliographical references (pages 699-700).This chapter has discussed an intelligent assembly inspection system that uses a multiscale algorithm to detect errors in assemblies after the algorithm is trained on synthetic CAD images of correctly assembled products. It was shown how the CAD information of an assembly along with fast rendering techniques on specialized graphics machines can be used for the automation of the work-cell camera and light placement. The current emphasis in the manufacturing industry on concurrent engineering will only cause this integration between the CAD model of products and its manufacturing inspection to grow in value

    Automated assembly inspection using a multiscale algorithm trained on synthetic images

    Get PDF
    Includes bibliographical references.An important part of a robust automated assembly process is an accurate and efficient method for the inspection of finished assemblies. This paper presents a novel multiscale assembly inspection algorithm that is used to detect errors in an assembled product. The algorithm is trained on synthetic images generated using the CAD model of the different components of the assembly. The CAD model guides the inspection algorithm through its training stage by addressing the different types of variations that occur during manufacturing and assembly. Those variations are classified into those that can affect the functionality of the assembled product and those that are unrelated to its functionality. Using synthetic images in the training process adds to the versatility of the technique by removing the need to manufacture multiple prototypes and control the lighting conditions. Once trained on synthetic images, the algorithm can detect assembly errors by examining real images of the assembled product. The effectiveness of the system is illustrated on a typical mechanical assembly.This work was supported by National Science Foundation grant number CDR 8803017 to the Engineering Research Center for Intelligent Manufacturing Systems, National Science Foundation grant number MIP93-00560, an AT&T Bell Laboratories PhD Scholarship, and the NEC corporation

    Feature and viewpoint selection for industrial car assembly

    Get PDF
    Abstract. Quality assurance programs of today’s car manufacturers show increasing demand for automated visual inspection tasks. A typical example is just-in-time checking of assemblies along production lines. Since high throughput must be achieved, object recognition and pose estimation heavily rely on offline preprocessing stages of available CAD data. In this paper, we propose a complete, universal framework for CAD model feature extraction and entropy index based viewpoint selection that is developed in cooperation with a major german car manufacturer

    Camera and light placement for automated assembly inspection

    Get PDF
    Includes bibliographical references.Visual assembly inspection can provide a low cost, accurate, and efficient solution to the automated assembly inspection problem, which is a crucial component of any automated assembly manufacturing process. The performance of such an inspection system is heavily dependent on the placement of the camera and light source. This article presents new algorithms that use the CAD model of a finished assembly for placing the camera and light source to optimize the performance of an automated assembly inspection algorithm. This general-purpose algorithm utilizes the component material properties and the contact information from the CAD model of the assembly, along with standard computer graphics hardware and physically accurate lighting models, to determine the effects of camera and light source placement on the performance of an inspection algorithm. The effectiveness of the algorithms is illustrated on a typical mechanical assembly.This work was supported by National Science Foundation grant number CDR 8803017 to the Engineering Research Center for Intelligent Manufacturing Systems, National Science Foundation grant number MIP93-00560, an AT&T Bell Laboratories PhD Scholarship, and the NEC Corporation

    Reference-free detection of semiconductor assembly defect

    Get PDF
    This paper aims at developing a novel defect detection algorithm for the semiconductor assembly process by image analysis of a single captured image, without reference to another image during inspection. The integrated circuit (IC) pattern is usually periodic and regular. Therefore, we can implement a classification scheme whereby the regular pattern in the die image is classified as the acceptable circuit pattern and the die defect can be modeled as irregularity on the image. The detection of irregularity in image is thus equivalent to the detection of die defect. We propose a method where the defect detection algorithm first segments the die image into different regions according to the circuit pattern by a set of morphological segmentations with different structuring element sizes. Then, a feature vector, which consists of many image attributes, is calculated for each segmented region. Lastly, the defective region is extracted by the feature vector classification. © 2005 SPIE and IS&T.published_or_final_versio

    On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling

    Get PDF
    A multi-fidelity surrogate model for highly nonlinear multiscale problems is proposed. It is based on the introduction of two different surrogate models and an adaptive on-the-fly switching. The two concurrent surrogates are built incrementally starting from a moderate set of evaluations of the full order model. Therefore, a reduced order model (ROM) is generated. Using a hybrid ROM-preconditioned FE solver, additional effective stress-strain data is simulated while the number of samples is kept to a moderate level by using a dedicated and physics-guided sampling technique. Machine learning (ML) is subsequently used to build the second surrogate by means of artificial neural networks (ANN). Different ANN architectures are explored and the features used as inputs of the ANN are fine tuned in order to improve the overall quality of the ML model. Additional ANN surrogates for the stress errors are generated. Therefore, conservative design guidelines for error surrogates are presented by adapting the loss functions of the ANN training in pure regression or pure classification settings. The error surrogates can be used as quality indicators in order to adaptively select the appropriate -- i.e. efficient yet accurate -- surrogate. Two strategies for the on-the-fly switching are investigated and a practicable and robust algorithm is proposed that eliminates relevant technical difficulties attributed to model switching. The provided algorithms and ANN design guidelines can easily be adopted for different problem settings and, thereby, they enable generalization of the used machine learning techniques for a wide range of applications. The resulting hybrid surrogate is employed in challenging multilevel FE simulations for a three-phase composite with pseudo-plastic micro-constituents. Numerical examples highlight the performance of the proposed approach

    kmos: A lattice kinetic Monte Carlo framework

    Get PDF
    Kinetic Monte Carlo (kMC) simulations have emerged as a key tool for microkinetic modeling in heterogeneous catalysis and other materials applications. Systems, where site-specificity of all elementary reactions allows a mapping onto a lattice of discrete active sites, can be addressed within the particularly efficient lattice kMC approach. To this end we describe the versatile kmos software package, which offers a most user-friendly implementation, execution, and evaluation of lattice kMC models of arbitrary complexity in one- to three-dimensional lattice systems, involving multiple active sites in periodic or aperiodic arrangements, as well as site-resolved pairwise and higher-order lateral interactions. Conceptually, kmos achieves a maximum runtime performance which is essentially independent of lattice size by generating code for the efficiency-determining local update of available events that is optimized for a defined kMC model. For this model definition and the control of all runtime and evaluation aspects kmos offers a high-level application programming interface. Usage proceeds interactively, via scripts, or a graphical user interface, which visualizes the model geometry, the lattice occupations and rates of selected elementary reactions, while allowing on-the-fly changes of simulation parameters. We demonstrate the performance and scaling of kmos with the application to kMC models for surface catalytic processes, where for given operation conditions (temperature and partial pressures of all reactants) central simulation outcomes are catalytic activity and selectivities, surface composition, and mechanistic insight into the occurrence of individual elementary processes in the reaction network.Comment: 21 pages, 12 figure
    corecore