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ABSTRACT

This paper aims at developing a novel defect detection algorithm for the semiconductor assembly process by
image analysis of a single captured image, without reference to another image during inspection. The integrated
circuit (IC) pattern is usually periodic and regular. Therefore, we can implement a classification scheme whereby
the regular pattern in the die image is classified as the acceptable circuit pattern and the die defect can be mod-
eled as irregularity on the image. The detection of irregularity in image is thus equivalent to the detection of
die defect. We propose a method where the defect detection algorithm first segments the die image into differ-
ent regions according to the circuit pattern by a set of morphological segmentations with different structuring
element sizes. Then, a feature vector, which consists of many image attributes, is calculated for each segmented
region. Lastly, the defective region is extracted by the feature vector classification.
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1. INTRODUCTION

With the advancement of electronic technology, ICs become the fundamental component of all electronic devices.
There is notable growth in the ICs production in recent years. Throughout the semiconductor assembly and
packaging processes, even a small dust particle or dirt can cause malfunction in the ICs at the end. Those ICs
with defects cause loss in the production yield. In order to enhance the production yield, defect detection of the
IC dies is ubiquitous during the manufacturing process.

It is often difficult for human inspector to detect the tiny defect on the small integrated circuit with complex
circuit pattern. Different human inspectors often have different standards and judgments on the defects. Also
the human detection is a labor intensive step and could become the critical bottleneck in the production pro-
cess. Therefore, human detection is not competitive enough when compared with the automated machine vision
system, which is often more effective, efficient and easier for quality control.

The machine vision system acquires the digital image of the die and checks if there is any defect. The com-
mon reference-based defect detection algorithm requires two or more images during the inspection. For instance,
the golden image template reference approach needs an extra defect-free image for each type of die to be the
reference.1 In addition, the rotating, translating, adjusting brightness and aligning processes between the ref-
erence image and the inspect image are needed before the comparison. Obviously, all these necessitate some
pre-processing before the inspection and sometimes the reference database is simply not available. Therefore
this can be a burden on the whole detection system. An automatic and reference-free defect detection approach
can alleviate this burden. It can detect and classify the die defect automatically through the use of only one
die image. There exists a non-referential defect detection algorithm for the semiconductor wafers.2, 3 However,
instead of distinguishing between the non-defective and the defective die images, that algorithm is mainly tar-
geted on the redetection of defects within the historical defect imagery.
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The reference-free defect detection algorithm proposed here is a novel algorithm for the classification of non-
defective dies and defective dies by analyzing a single captured image, without reference to any image during
inspection in the semiconductor assembly process. It is known that the IC pattern is usually periodic and very
regular. In other words, the circuit pattern appears repeatedly in a die. But the die defect, likes dirt, dust
particle, probe mark and ink, is aperiodic and can be random in shape. Moreover, the defect appears locally
and abnormally in a die. Therefore, we can implement a classification scheme whereby the regular pattern in
the die image is classified as the acceptable circuit pattern and the die defect can be modelled as irregularity on
the image. The detection of irregularity in image is thus equivalent to the detection of die defect.

The irregularity detection algorithm first segments the die image into different regions according to the circuit
pattern. To optimize the segmentation for different defect sizes and shapes, a set of morphological segmentations
with different structuring element sizes are used. By carefully linking and comparing the adjacent levels of the
morphological segmentation, we can identify a proper segmentation with minimal number of segments. Then, a
feature vector is calculated for each segmented region. The feature vector consists of many image attributes, such
as size and intensity. Some of these attributes are very outstanding for different classes of defects. Regularity
measurement of each region is classified based on the feature vector. Lastly, the irregular region is extracted and
classified as a defect. Fig. 1 shows the block diagram of the proposed algorithm.

Figure 1. The block diagram of the reference-free detection of semiconductor assembly defect algorithm.

This paper is organized as follows: Section 2 describes the morphological image segmentation algorithm.
Section 3 discusses the generation of the feature vector. Section 4 explains the classification algorithm used.
Section 5 illustrates the results and evaluation and Section 6 concludes the paper.

2. SEGMENTATION OF DIE IMAGE

To inspect the die image, first the machine vision system needs to know what the image looks like. The image
segmentation is typically used for this kind of analysis in the digital image. It can divide an image into different
homogeneous regions, where the pixels are connected and have similar properties, such as the pixel intensity4

within the region, and sketch out the regions’ boundaries according to the image components. In the die images,
these homogeneous regions represent the circuit pattern and any possible defect on the die.

A diversity of image segmentation algorithm exists, however different types of images need different algo-
rithms to obtain reasonable results. For instance, using thresholding to segment the images usually works well
in images with clear background and foreground, but unsatisfactory results are often obtained in images with
complex pattern. In order to optimize the segmentation for various circuit patterns and defects, which usually
have different sizes and shapes, a multiscale morphological segmentation is used in our work.

The multiscale morphological segmentation utilizes the method of mathematical morphology5 by using struc-
turing elements with different sizes. A small structuring element is aimed at extracting the small image com-
ponents, while a large structuring element is targeted for the large image components. Together they help to
extract image components of different size.6
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2.1. Multiscale morphological segmentation algorithm
There are two major steps in the multiscale morphological segmentation algorithm for the die images.6 In the
first step, the image components of different sizes are extracted by using structuring elements with ascending
size and the top-hat and bottom-hat morphological operations. Then a binary image is formed to record the
extracted image components for each size of the structuring element. In the second step, the boundaries of the
homogeneous regions are decided based on the information in the binary images.

2.1.1. Extraction of various-size image components

The noise of the input die image is first smoothed by the local monotonicity preprocessing method outlined
in Ref. 7. This method can decrease the noise impact in the segmentation while preserving the edges of the
circuit patterns and defects. Then the preprocessed die image X goes through the top-hat and bottom-hat
transformations with structuring elements Si of ascending scale i to produce the different pairs of morphologically
transformed images Pi and Qi

6 with
Pi = X − X ◦ Si (1)

Qi = X • Si − X, (2)

where Pi represents the set of morphological transformed die image from the top-hat operation and structuring
element with scale i, ‘◦’ represents the morphological opening operation and ‘•’ represents the morphological
closing operation. Pi contains bright image components that are the image components with high pixel intensity
and with similar size to the corresponding structuring element. And Qi is the set of transformed image from
the bottom-hat operation and contains dark image components that are the image components with low pixel
intensity.

It is known that the intensity values of the pixels within a circuit pattern or defect are not all in the same
value. Due to this small fluctuation of pixel intensity, some image components with low contrast in Pi and Qi

are often the brightest or darkest part of some large circuit patterns or defects on the die image. As they cannot
represent the whole circuit pattern or defect and they like the noise in the segmentation, so removing them can
provide better segmentation result. Therefore the Pi and Qi are then converted into binary images Ti and Bi

respectively, to preserve the image components with significant contrast only.

Instead of using thresholding, which ignores the connectivity of the image components, to decide the Ti and
Bi, the morphological H-maxima transformation Hmax is introduced with

Hmax(f, c) = Rδ
f (f − c), (3)

where Rδ
f is morphological reconstruction of f by dilation, f is the image to be transformed and c is the value

of the significant contrast.8 Therefore,
Ti = Hmax(Pi, c) (4)

Bi = Hmax(Qi, c). (5)

This is because the Hmax can discard the image components extracted in the Pi and Qi with contrast less than
c and can maintain the connectivity. That means the shape of the image components can be preserved under
the Hmax.

The larger the i, the larger the circuit pattern or defect can be extracted. However, when i is larger than the
circuit pattern or defect with the largest size, further increase in i is meaningless. Therefore it is very important
to automatically stop the growth of the i, so that the repeating of the morphological top-hat and bottom-
hat transformation and the H-maxima transformation with increasing i can be stopped automatically when
enough image components are extracted in Ti and Bi. But the size information of the circuit pattern or defect
is often unknown before the segmentation. In order to achieve this, an edge map comparison method is proposed.

SPIE-IS&T/ Vol. 5679     29



The edge image E of the input die image is employed to measure when the number of image components
extracted in the Ti and Bi is enough. The E is generated by Canny’s edge detector9 and it contains almost all
the edges of the circuit patterns or defects on the die image. Since each structuring element is associated with
two binary images Ti and Bi, therefore the pair of the binary images are united together temporarily to form a
single image Ui for the edge measurement

Ui = Ti

⋃
Bi. (6)

If the number of edges of the extracted image components in Ui is equal to or greater than the number of edges in
the E, almost all the circuit patterns or defects are extracted out. However the edges in E can be disconnected,
so the number of edge segments in E cannot represent the number of real edges of the die image. Therefore the
number of pixels is used as the metric for the edge measurement. The intersection between Ui and E is employed
to form the edge map Ai, which indicates how many image components are extracted in scale i with reference to
E. Then the ratio of pixels in Ai to that in E is calculated, where k ranges from 0 to 1 and num is the function
that counting the number of pixels in an image:

Ai = Ui

⋂
E (7)

ki =
num(Ai)
num(E)

. (8)

The higher value of ki, the more image components are extracted. Therefore the growth of i and the mor-
phological transformations can be stopped when ki is larger then or equal to a certain threshold, for example, 0.9.

2.1.2. Decision of the segment boundaries

Ti and Bi contain the location information of the extracted image components under various scales i. The image
components in small scale is usually growing across the larger scales until their sizes are similar to their corre-
sponding circuit patterns or defects. However, some of the extracted image components from different circuit
patterns or defects may be fused into one large image component in some large scale. If this kind of fusion
happens in a certain scale, this scale is regarded as the “unreasonable growth scale”. In order to decide the
boundaries of the segments, it is necessary to check how the image components grow across all the scales.

Different circuit patterns and defects are mainly distinguished by their own pixel intensities. Therefore the
mean pixel intensity of the image component is adopted to measure the growth of the component. The fusion
of different components from different circuit patterns or defects will change the corresponding mean intensities
across the two scales significantly. So the change of the mean pixel intensity can indicate how homogeneous a
region is.

The steps for the segment boundaries decision are described as follows: first the mean pixel intensity of
each extracted image component across all the scales is calculated based on the location information in Ti and
Bi. Then a mean-intensity trace for each extracted image component is formed from the smallest scale to the
largest scale. By checking how this mean-intensity trace changes across all the scales, the correct scale for that
image component can be decided. When the maximum change of the mean-intensity trace across two certain
scales is larger than a threshold, this indicates that there is an unreasonable growth or fusion of the components.
Therefore the larger scale is considered to be the “unreasonable growth scale”. Then the image component in
the smaller scale is chosen and its boundary is extracted. Fig. 2 shows the segmentation result.
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Figure 2. Left: The original die image. Right: The multiscale morphological segmentation result. The boundary is in
white color.

3. GENERATION OF FEATURE VECTOR

After the region segmentation, instead of pixels with different intensity values, the die image is represented by
different segments. In order to classify the segments through the computer, we need to describe the segment
mathematically. Therefore each segment is represented by a feature vector according to the segment’s properties.
The feature vector has ten dimensions and the elements are listed in Table 1.

Area Compactness

Eccentricity Major axis length

Minor axis length Mean intensity

Rectangularity Rectilinearity

Solidity Standard deviation of intensity

Table 1. The elements in the feature vector.

Each element in the feature vector can characterize the segment in a certain aspect. However, using each of
them alone is not enough to classify different circuit patterns and defects. Therefore they are combined together
to form a feature vector to model each segment. Only some of the elements in the feature vector are defined
based on the ellipse, but they can also be obtained in other shapes. In addition, in order to minimize the time
requirement for the feature vector calculation, the simplest and most efficient way to calculate the element is used
even if there exists another slower but more accurate method to calculate it. The following is a brief explanation
of each element in the feature vector:

• The area of the segment is the number of pixels in the corresponding segment. It can be used to group
circuit patterns with similar sizes together.

• The compactness is the measurement of how efficient a boundary can enclose the area. A circle encloses the
maximum area for a given perimeter. Therefore the compactness of a circle equals to 1 and other shapes
will have smaller values of compactness. The formula of the compactness10 is

Compactness =
4πArea

Perimeter2
. (9)
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• The eccentricity is the ratio of the distance between the foci of an ellipse and its major axis length.11

• For the major axis length and the minor axis length, an ellipse that has the same second-moments as the
segment is used. The major axis length is the length in pixels of the major axis of that ellipse, while the
minor axis length is the length of the minor axis11 as shown in Fig. 3.

Figure 3. The illustration of major axis length and minor axis length.

• The mean intensity is the average pixel intensity value of the segment. It is expected that the defect has
a different mean intensity with the other circuit patterns.

• The rectilinearity ranges from 0 to 1.12 For a rectilinear polygon, the rectilinearity of it is 1. And a
polygon is rectilinear if its interior angles are either 90◦ or 270◦. Fig. 4 shows a cross, which is an example
of the rectilinear polygon.

Figure 4. A rectilinear polygon.

• The rectangularity is the area ratio of the segment to the segment’s minimum rectangular bounding box.13

This bounding box is the minimum rectangle that can enclose the segment.

• The solidity is the area ratio of the segment to the segment’s convex hull. The convex hull is the smallest
convex polygon that can contain the segment.11

• The standard deviation of intensity measures how homogeneous a segment is by calculating the standard
deviation of the pixel intensities within the segment.

4. CLASSIFICATION OF DIE

Subsequent to the computation of feature vector in each segment, we classify the segments into non-defective
segments or defective segments. Defect does not belong to the circuit pattern, therefore it is expected that the
feature vector of the defective segment is different from that of the normal circuit pattern. If there is any defect
on the die, then after the classification of feature vector, the abnormal feature vector can be found out and the
defect can be detected.
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Let xi1 be the value of the first element in the feature vector of segment i, xi2 be the second element and so
on. Then in each segment, the xij (for j = 1, 2, ..., 10) is associated with a weighting coefficient aj , which can be
found by using a neural network which models the Equation (10):

a1xi1 + a2xi2 + a3xi3 + ... + a10xi10

{ ≤ 0 if the segment is non-defective ;
> 0 if the segment is defective. (10)

The type of neural network used is the perceptron network.14 The input of the neural work is the values of the
ten elements in each feature vector. There is one hidden layer in the neural network and one node in that layer.
Each input element value is connected to the node through the weighting coefficient aj . Then by training the
neural work, the set of weighting coefficient aj can be obtained.

Through computing Equation (10), the defect classification can be achieved. If there is no defect on the die,
then all the segments’ values calculated in the Equation (10) are smaller or equal to zero. If there is any defect
likes the ink or dirt on the die, then that value of the defect’s segment is greater than zero.

5. DETECTION RESULTS AND DISCUSSION

Several different types of dies are tested under the proposed defect detection algorithm. The circuit pattern and
size of these dies are different. The input to our detection algorithm is only the digital image of each die. The
output indicates whether the die is defective or not and locates the defect(s) on the defective die. Fig. 5 to Fig.
7 show the detection results by extracting the detected defects on the defective dies.

The dirt defect in Fig. 5 is successfully detected and the defect edge is correctly traced out. But for the
bottom left defect in Fig. 6, only part of the defect is detected. It is because the value of Equation (10) for the
undetected defect is very close but smaller than zero and not all part of the defect is segmented out. In Fig. 7,
besides the large defect in the middle of the die, there are also some little defects around the die. They cannot
be detected is because the little defects is too small to be segmented out where the minimum size of the feature
to be segmented out depends on the size of structuring element Si.

In our multiscale morphological segmentation, the square structuring element is used. It is because the
circuit pattern is usually rectangular. The size of structuring element Si is ni pixel(s) × ni pixel(s) and �n
is the increment of n across two adjacent scales. If �n is equal to 1, the growth of the structuring element is
slow. And it is possible that the image components extracted in scale i and i + 1 are the same when i is small.
Therefore we set �n in 4 pixels and n1 in size 4 pixels × 4 pixels. These values can extracted the circuit pattern
and defect out with only little overlapping in the image components extracted in adjacent scales. In addition,
by using larger �n, the structuring element can growth faster. As a result, the number of iteration for the
morphological transformations decreases and the segmentation becomes faster.
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Figure 5. Left: The die with dirt in the middle. Right: The defect detection result. The defect’s boundary is in white
color.

Figure 6. Left: The die with ink defects in the middle and bottom left corner. Right: The defects detection result. The
defects’ boundaries are in white color.

Figure 7. Left: The die with a large defect in the middle and a defect in the top left corner. Right: The defects
detection result. The defects’ boundaries are in white color.

34     SPIE-IS&T/ Vol. 5679



6. CONCLUSION

A novel defect detection algorithm for the semiconductor assembly process by image analysis of a single cap-
tured image, without reference to another image during inspection, is proposed. It can distinguish between the
defective die and non-defective die effectively. The detection result depends on both of the sensitivity of the
segmentation algorithm and the setting of the threshold in the classification. Although the exact edge of some
defect may not be able to trace out, the location of the defect can be found out successfully.
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