31 research outputs found

    Experimental Evaluation of Hybrid Fibre−Wireless System for 5G Networks

    Get PDF
    This article describes a novel experimental study considering a multiband fibre–wireless system for constructing the transport network for fifth-generation (5G) networks. This study describes the development and testing of a 5G new radio (NR) multi-input multi-output (MIMO) hybrid fibre–wireless (FiWi) system for enhanced mobile broadband (eMBB) using digital pre-distortion (DPD). Analog radio over fibre (A-RoF) technology was used to create the optical fronthaul (OFH) that includes a 3 GHz supercell in a long-range scenario as well as a femtocell scenario using the 20 GHz band. As a proof of concept, a Mach Zehnder modulator with two independent radio frequency waveforms modifies a 1310 nm optical carrier using a distributed feedback laser across 10 km of conventional standard single-mode fibre. It may be inferred that a hybrid FiWi-based MIMO-enabled 5G NR system based on OFH could be a strong competitor for future mobile haul applications. Moreover, a convolutional neural network (CNN)-based DPD is used to improve the performance of the link. The error vector magnitude (EVM) performance for 5G NR bands is predicted to fulfil the Third Generation Partnership Project’s (3GPP) Release 17 standards

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    Design and analysis of LTE and wi-fi schemes for communications of massive machine devices

    Get PDF
    Existing communication technologies are designed with speciÿc use cases in mind, however, ex-tending these use cases usually throw up interesting challenges. For example, extending the use of existing cellular networks to emerging applications such as Internet of Things (IoT) devices throws up the challenge of handling massive number of devices. In this thesis, we are motivated to investigate existing schemes used in LTE and Wi-Fi for supporting massive machine devices and improve on observed performance gaps by designing new ones that outperform the former. This thesis investigates the existing random access protocol in LTE and proposes three schemes to combat massive device access challenge. The ÿrst is a root index reuse and allocation scheme which uses link budget calculations in extracting a safe distance for preamble reuse under vari-able cell size and also proposes an index allocation algorithm. Secondly, a dynamic subframe optimization scheme that combats the challenge from an optimisation solution perspective. Thirdly, the use of small cells for random access. Simulation and numerical analysis shows performance improvements against existing schemes in terms of throughput, access delay and probability of collision. In some cases, over 20% increase in performance was observed. The proposed schemes provide quicker and more guaranteed opportunities for machine devices to communicate. Also, in Wi-Fi networks, adaptation of the transmission rates to the dynamic channel condi-tions is a major challenge. Two algorithms were proposed to combat this. The ÿrst makes use of contextual information to determine the network state and respond appropriately whilst the second samples candidate transmission modes and uses the e˛ective throughput to make a deci-sion. The proposed algorithms were compared to several existing rate adaptation algorithms by simulations and under various system and channel conÿgurations. They show signiÿcant per-formance improvements, in terms of throughput, thus, conÿrming their suitability for dynamic channel conditions

    Interference-robust Air Interface for 5G Small Cells:Managing inter-cell interference with advanced receivers and rank adaption

    Get PDF

    Experimental Demonstration and Performance Enhancement of 5G NR Multiband Radio over Fiber System Using Optimized Digital Predistortion

    Get PDF
    This paper presents an experimental realization of multiband 5G new radio (NR) optical front haul (OFH) based radio over fiber (RoF) system using digital predistortion (DPD). A novel magnitude-selective affine (MSA) based DPD method is proposed for the complexity reduction and performance enhancement of RoF link followed by its comparison with the canonical piece wise linearization (CPWL), decomposed vector rotation method (DVR) and generalized memory polynomial (GMP) methods. Similarly, a detailed study is shown followed by the implementation proposal of novel neural network (NN) for DPD followed by its comparison with MSA, CPWL, DVR and GMP methods. In the experimental testbed, 5G NR standard at 20 GHz with 50 MHz bandwidth and flexible-waveform signal at 3 GHz with 20 MHz bandwidth is used to cover enhanced mobile broad band and small cells scenarios. A dual drive Mach Zehnder Modulator having two distinct radio frequency signals modulates a 1310 nm optical carrier using distributed feedback laser for 22 km of standard single mode fiber. The experimental results are presented in terms of adjacent channel power ratio (ACPR), error vector magnitude (EVM), number of estimated coefficients and multiplications. The study aims to identify those novel methods such as MSA DPD are a good candidate to deploy in real time scenarios for DPD in comparison to NN based DPD which have a slightly better performance as compared to the proposed MSA method but has a higher complexity levels. Both, proposed methods, MSA and NN are meeting the 3GPP Release 17 requirements

    A V2X Integrated Positioning Methodology in Ultra-dense Networks

    Get PDF

    Evolution of Positioning Techniques in Cellular Networks, from 2G to 4G

    Get PDF

    Planning and dynamic spectrum management in heterogeneous mobile networks with QoE optimization

    Get PDF
    The radio and network planning and optimisation are continuous processes that do not end after the network has been launched. To achieve the best trade-offs, especially between quality and costs, operators make use of several coverage and capacity enhancement methods. The research from this thesis proposes methods such as the implementation of cell zooming and Relay Stations (RSs) with dynamic sleep modes and Carrier Aggregation (CA) for coverage and capacity enhancements. Initially, a survey is presented on ubiquitous mesh networks implementation scenarios and an updated characterization of requirements for services and applications is proposed. The performance targets for the key parameters, delay, delay variation, information loss and throughput have been addressed for all types of services. Furthermore, with the increased competition, mobile operator’s success does not only depend on how good the offered Quality of Service (QoS) is, but also if it meets the end user’s expectations, i.e., Quality of Experience (QoE). In this context, a model for the mapping between QoS parameters and QoE has been proposed for multimedia traffic. The planning and optimization of fixed Worldwide Interoperability for Microwave Access (WiMAX) networks with RSs in conjunction with cell zooming has been addressed. The challenging case of a propagation measurement-based scenario in the hilly region of Covilhã has been considered. A cost/revenue function has been developed by taking into account the cost of building and maintaining the infrastructure with the use of RSs. This part of the work also investigates the energy efficiency and economic implications of the use of power saving modes for RSs in conjunction with cell zooming. Assuming that the RSs can be switched-off or zoomed out to zero in periods when the traffic exchange is low, such as nights and weekends, it has been shown that energy consumption may be reduced whereas cellular coverage and capacity, as well as economic performance may be improved. An integrated Common Radio Resource Management (iCRRM) entity is proposed that implements inter-band CA by performing scheduling between two Long Term Evolution – Advanced (LTE-A) Component Carriers (CCs). Considering the bandwidths available in Portugal, the 800 MHz and 2.6 GHz CCs have been considered whilst mobile video traffic is addressed. Through extensive simulations it has been found that the proposed multi-band schedulers overcome the capacity of LTE systems without CA. Result shown a clear improvement of the QoS, QoE and economic trade-off with CA

    User-oriented mobility management in cellular wireless networks

    Get PDF
    2020 Spring.Includes bibliographical references.Mobility Management (MM) in wireless mobile networks is a vital process to keep an individual User Equipment (UE) connected while moving within the network coverage area—this is required to keep the network informed about the UE's mobility (i.e., location changes). The network must identify the exact serving cell of a specific UE for the purpose of data-packet delivery. The two MM procedures that are necessary to localize a specific UE and deliver data packets to that UE are known as Tracking Area Update (TAU) and Paging, which are burdensome not only to the network resources but also UE's battery—the UE and network always initiate the TAU and Paging, respectively. These two procedures are used in current Long Term Evolution (LTE) and its next generation (5G) networks despite the drawback that it consumes bandwidth and energy. Because of potentially very high-volume traffic and increasing density of high-mobility UEs, the TAU/Paging procedure incurs significant costs in terms of the signaling overhead and the power consumption in the battery-limited UE. This problem will become even worse in 5G, which is expected to accommodate exceptional services, such as supporting mission-critical systems (close-to-zero latency) and extending battery lifetime (10 times longer). This dissertation examines and discusses a variety of solution schemes for both the TAU and Paging, emphasizing a new key design to accommodate 5G use cases. However, ongoing efforts are still developing new schemes to provide seamless connections to the ever-increasing density of high-mobility UEs. In this context and toward achieving 5G use cases, we propose a novel solution to solve the MM issues, named gNB-based UE Mobility Tracking (gNB-based UeMT). This solution has four features aligned with achieving 5G goals. First, the mobile UE will no longer trigger the TAU to report their location changes, giving much more power savings with no signaling overhead. Instead, second, the network elements, gNBs, take over the responsibility of Tracking and Locating these UE, giving always-known UE locations. Third, our Paging procedure is markedly improved over the conventional one, providing very fast UE reachability with no Paging messages being sent simultaneously. Fourth, our solution guarantees lightweight signaling overhead with very low Paging delay; our simulation studies show that it achieves about 92% reduction in the corresponding signaling overhead. To realize these four features, this solution adds no implementation complexity. Instead, it exploits the already existing LTE/5G communication protocols, functions, and measurement reports. Our gNB-based UeMT solution by design has the potential to deal with mission-critical applications. In this context, we introduce a new approach for mission-critical and public-safety communications. Our approach aims at emergency situations (e.g., natural disasters) in which the mobile wireless network becomes dysfunctional, partially or completely. Specifically, this approach is intended to provide swift network recovery for Search-and-Rescue Operations (SAROs) to search for survivors after large-scale disasters, which we call UE-based SAROs. These SAROs are based on the fact that increasingly almost everyone carries wireless mobile devices (UEs), which serve as human-based wireless sensors on the ground. Our UE-based SAROs are aimed at accounting for limited UE battery power while providing critical information to first responders, as follows: 1) generate immediate crisis maps for the disaster-impacted areas, 2) provide vital information about where the majority of survivors are clustered/crowded, and 3) prioritize the impacted areas to identify regions that urgently need communication coverage. UE-based SAROs offer first responders a vital tool to prioritize and manage SAROs efficiently and effectively in a timely manner
    corecore