14 research outputs found

    Cascade Optimisation of Battery Electric Vehicle Powertrains

    Get PDF
    Motivated by challenges in the motor manufacturing industry, a solution to reduce computation time and improve minimisation performance in the context of optimisation of battery electric vehicle powertrain is presented. We propose a cascade optimisation method that takes advantage of two different vehicle models: the proprietary YASA MATLAB® vehicle model and a Python machine learning-based vehicle model derived from the proprietary model. Gearbox type, powertrain configuration and motor parameters are included as input variables to the objective function explored in this work while constraints related to acceleration time and top speed must be met. The combination of these two models in a constrained optimisation genetic algorithm managed to both reduce the amount of computation time required and achieve more optimal target values relating to minimising vehicle total cost than either the proprietary or machine learning model alone. The coarse-to-fine approach utilised in the cascade optimisation was proven to be mainly responsible for the improved optimisation result. By using the final population of the machine learning vehicle model optimisation as the initial population of the following simulation-based minimisation, the initial time-consuming search to produce a population satisfying all domain constraints was practically eliminated. The obtained results showed that the cascade optimisation was able to reduce the computation time by 53% and still achieve a minimisation value 14% lower when compared to the YASA Vehicle Model Optimisation

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    ME-EM 2016-17 Annual Report

    Get PDF
    Table of Contents Undergrad Features Graduate Features Enrollment & Degrees Graduates Faculty & Staff Department News Alumni Donors Contracts & Grants Patents & Publicationshttps://digitalcommons.mtu.edu/mechanical-annualreports/1002/thumbnail.jp

    Volume 1 – Symposium: Tuesday, March 8

    Get PDF
    Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Components:Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Component

    Hybrid Twin in Complex System Settings

    Get PDF
    Los beneficios de un conocimiento profundo de los procesos tecnológicos e industriales de nuestro mundo son incuestionables. La optimización, el análisis inverso o el control basado en la simulación son algunos de los procedimientos que pueden llevarse a cabo una vez que los conocimientos anteriores se transforman en valor para las empresas. Con ello se consiguen mejores tecnologías que acaban beneficiando enormemente a la sociedad. Pensemos en una actividad rutinaria para muchas personas hoy en día, como coger un avión. Todos los procedimientos anteriores se llevan a cabo en el diseño del avión, en el control a bordo y en el mantenimiento, lo que culmina en un producto tecnológicamente eficiente en cuanto a recursos. Este alto valor añadido es lo que está impulsando a la Ciencia de la Ingeniería Basada en la Simulación (Simulation Based Engineering Science, SBES) a introducir importantes mejoras en estos procedimientos, lo que ha supuesto avances importantes en una gran variedad de sectores como la sanidad, las telecomunicaciones o la ingeniería.Sin embargo, la SBES se enfrenta actualmente a varias dificultades para proporcionar resultados precisos en escenarios industriales complejos. Una de ellas es el elevado coste computacional asociado a muchos problemas industriales, que limita seriamente o incluso inhabilita los procesos clave descritos anteriormente. Otro problema es que, en otras aplicaciones, los modelos más precisos (que a su vez son los más caros computacionalmente) no son capaces de tener en cuenta todos los detalles que rigen el sistema físico estudiado, con desviaciones observadas que parecen escapar de nuestro conocimiento.Por lo tanto, en este contexto, a lo largo de este manuscrito se proponen novedosas estrategias y técnicas numéricas para hacer frente a los retos a los que se enfrenta la SBES. Para ello, se analizan diferentes aplicaciones industriales.El panorama anterior junto con el exhaustivo desarrollo producido en la Ciencia de Datos, brinda además una oportunidad perfecta para los denominados Dynamic Data Driven Application Systems (DDDAS), cuyo objetivo principal es fusionar los algoritmos clásicos de simulación con los datos procedentes de medidas experimentales. En este escenario, los datos y las simulaciones ya no estarían desacoplados, sino que formarían una relación simbiótica que alcanzaría hitos inconcebibles hasta estos días. Más en detalle, los datos ya no se entenderán como una calibración estática de un determinado modelo constitutivo, sino que el modelo se corregirá dinámicamente tan pronto como los datos experimentales y las simulaciones tiendan a diverger.Por esta razón, la presente tesis ha hecho especial énfasis en las técnicas de reducción de modelos, ya que no sólo son una herramienta para reducir la complejidad computacional, sino también un elemento clave para cumplir con las restricciones de tiempo real que surgen del marco de los DDDAS.Además, esta tesis presenta nuevas metodologías basadas en datos para enriquecer el denominado paradigma Hybrid Twin. Un paradigma cuya motivación radica en su habilidad de posibilitar los DDDAS. ¿Cómo? combinando soluciones paramétricas y técnicas de reducción de modelos con correcciones dinámicas generadas “al vuelo'' basadas en los datos experimentales recogidos en cada instante.<br /

    Automotive component product development enhancement through multi-attribute system design optimization in an integrated concurrent engineering framework

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, System Design & Management Program, 2005.Includes bibliographical references (p. 211-218).Automotive industry is facing a tough period. Production overcapacity and high fixed costs constrain companies' profits and challenge the very same existence of some corporations. Strangulated by the reduced cash availability and petrified by the organizational and products' complexity, companies find themselves more and more inadequate to stay in synch with the pace and the rate of change of consumers' and regulations' demands. To boost profits, nearly everyone pursue cost cutting. However, aggressive cost cutting as the sole approach to fattening margins results invariably in a reduction of operational capabilities which is likely to result in a decline in sales volume that leads to further cost reductions in a continuous death spiral. Long-term profitable growth requires, instead, a continuous flow of innovative products and processes. The focus should be, therefore, shifted from cost reduction to increased throughput. Automotive companies need to change their business model, morphing into new organizational entities based on systems thinking and change, which are agile and can swiftly adapt to the new business environment. The advancement of technology and the relentless increase in computing power will provide the necessary means for this radical transformation. This transformation cannot happen if the Product Development Process (PDP) does not break the iron gate of cycle time-product cost-development expenses-reduced product performance that constrains it. A new approach to PD should be applied to the early phases, where the leverage is higher, and should be targeted to dramatic reduction of the time taken to perform design iterations, which, by taking 50-70% of the total development time, are a burden of today's practice. Multi-disciplinary Design(cont.) Analysis and Optimization, enabled by an Integrated Concurrent Engineering virtual product development framework has the required characteristics and the potential to respond to today's and tomorrow's automotive challenges. In this new framework, the product or system is not defined by a rigid CAD model which is then manipulated by product team engineers, but by a parametric flexible architecture handled by optimization and analysis software, with limited user interaction. In this environment, design engineers govern computer programs, which automatically select appropriately combinations of geometry parameters and drive seamlessly the analyses software programs (structural, fluid dynamic, costing, etc) to compute the system's performance attributes. Optimization algorithms explore the design space, identifying the Pareto optimal set of designs that satisfy the multiple simultaneous objectives they are given and at the same time the problem's constraints. Examples of application of the MDO approach to automotive systems are multiplying. However, the number of disciplines and engineering aspects considered is still limited to few (two or three) thus not exploiting the full potential the approach deriving from multi-disciplinarity. In the present work, a prototype of an Enhanced Development Framework has been set up for a particular automotive subsystem: a maniverter (a combination of exhaust manifold and catalytic converter) for internal combustion engines ...by Massimo Usan.S.M

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Proceeding Of Mechanical Engineering Research Day 2016 (MERD’16)

    Get PDF
    This Open Access e-Proceeding contains a compilation of 105 selected papers from the Mechanical Engineering Research Day 2016 (MERD’16) event, which is held in Kampus Teknologi, Universiti Teknikal Malaysia Melaka (UTeM) - Melaka, Malaysia, on 31 March 2016. The theme chosen for this event is ‘IDEA. INSPIRE. INNOVATE’. It was gratifying to all of us when the response for MERD’16 is overwhelming as the technical committees received more than 200 submissions from various areas of mechanical engineering. After a peer-review process, the editors have accepted 105 papers for the e-proceeding that cover 7 main themes. This open access e-Proceeding can be viewed or downloaded at www3.utem.edu.my/care/proceedings. We hope that these proceeding will serve as a valuable reference for researchers. With the large number of submissions from the researchers in other faculties, the event has achieved its main objective which is to bring together educators, researchers and practitioners to share their findings and perhaps sustaining the research culture in the university. The topics of MERD’16 are based on a combination of fundamental researches, advanced research methodologies and application technologies. As the editor-in-chief, we would like to express our gratitude to the editorial board and fellow review members for their tireless effort in compiling and reviewing the selected papers for this proceeding. We would also like to extend our great appreciation to the members of the Publication Committee and Secretariat for their excellent cooperation in preparing the proceeding of MERD’16
    corecore