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Abstract

The bene�ts of a deep understanding of the technological and industrial processes
of our world are unquestionable. Optimization, inverse analysis or simulation-based
control are some of the procedures that can be carried out once the above
knowledge is transformed into value for companies. This brings better technologies
that end up greatly bene�ting society. Think of a routine activity for many
people today, such as taking a plane. All the above procedures are carried
out in the plane design, on-board control and maintenance, culminating in a
technologically resource-e�cient product. This strong added value is what is driving
Simulation Based Engineering Science (SBES) to make major improvements in these
procedures, leading to noticeable breakthroughs in a wide variety of sectors (e.g.
Healthcare, Telecommunications or Engineering, to cite only a few).

However, SBES is currently confronting several di�culties to provide accurate
results in complex industrial scenarios. One is the high computational cost
associated with many industrial problems which severely limits or even disables
the key processes described above. Another problem is that in other applications,
the more accurate (and also more highly-time consuming) models are not able to
take into account all the details that govern the physical system under study, with
observed deviations that seem to escape our understanding.

Therefore, in this context, novel numerical strategies and techniques are
proposed throughout this manuscript to deal with the challenges that SBES is facing.
To do that, di�erent industrial scenarios are analyzed

The above panorama also brings a perfect opportunity to the so-called Dynamic
Data Driven Application Systems (DDDAS), whose main objective is to merge
classical simulation algorithms with data coming from experimental measures. This
concept is envisaged thanks to the exhaustive development in Data Science. Within
this scenario, data and simulations would no longer be uncoupled but rather they
would form a symbiotic relationship which would achieve milestones inconceivable
until these days. Indeed, data will no longer be understood as a static calibration
of a given constitutive model but rather the model will be corrected dynamically as
soon as experimental data and simulations tend to diverge.

For this reason, the present dissertation placed a particular emphasis on
Model Order Reduction (MOR) techniques, as they are not only a tool to
reduce computational complexity, but also a key element in meeting the real time
constraints arising from the DDDAS framework.

Furthermore, this thesis presents new data-driven methodologies to enrich the
so-called Hybrid Twin paradigm. A paradigm which is motivated because it
makes DDDAS possible. How? by combining parametric solutions and the MOR
framework with �on-the-�y� data-driven (i.e. machine learning) correction models.
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Résumé

Les avantages d'une compréhension approfondie des processus technologiques et
industriels de notre monde sont indiscutables. L'optimisation, l'analyse inverse ou
le contrôle par simulation sont quelques-unes des procédures qui peuvent être mises
en ÷uvre lorsque les connaissances susmentionnées sont transformées en valeur pour
les entreprises. Il en résulte de meilleures technologies qui �nissent par pro�ter
grandement à la société. Pensez à une activité quotidienne pour de nombreuses
personnes aujourd'hui, comme prendre l'avion. Toutes les procédures évoquées
ci-dessus sont mises en ÷uvre dans la conception de l'avion, tel que le contrôle
à bord et la maintenance, pour aboutir à un produit technologiquement e�cace en
termes de ressources. Cette forte valeur ajoutée est ce qui pousse les sciences de
l'ingénieur basées sur la simulation (Simulation Based Engineering Science, SBES)
à apporter des améliorations majeures à ces procédures, conduisant à des percées
notables dans une grande variété de secteurs (comme par exemple la santé, les
télécommunications ou l'ingénierie).

Cependant, les SBES sont actuellement confrontées à plusieurs di�cultés pour
fournir des résultats précis dans des scénarios industriels complexes. L'une d'elles
est le coût de calcul élevé associé à de nombreux problèmes industriels, qui limite
fortement, voire rend impossible, les processus clés décrits ci-dessus. Un autre
problème apparaît dans d'autres applications, où les modèles plus précis (et aussi
plus gourmands en temps) ne sont pas capables de prendre en compte tous les détails
qui régissent le système physique étudié, avec des déviations observées qui semblent
échapper à notre compréhension.

C'est pourquoi, dans ce contexte, de nouvelles stratégies et techniques
numériques sont proposées tout au long de ce manuscrit pour relever les dé�s
auxquels les SBES sont confrontées avec l'étude de di�érentes applications.

Le panorama ci-dessus o�re également une opportunité parfaite pour les
Dynamic Data Driven Application Systems (DDDAS), dont l'objectif principal est
de fusionner les algorithmes de simulation classiques avec les données provenant
de mesures expérimentales. Ce concept est envisagé grâce au développement
exhaustif de la science des données. Dans ce scénario, les données et les
simulations ne seraient plus découplées, mais formeraient une relation symbiotique
qui permettrait d'atteindre des étapes inconcevables jusqu'à aujourd'hui. En e�et,
les données ne seront plus prises en compte pour un étalonnage statique d'un modèle
constitutif donné, mais plutôt comme une correction dynamique dès que les données
expérimentales et les simulations auront tendance à diverger.

C'est dans ce but que cette thèse met un accent particulier sur les techniques
de réduction de modèles, car elles ne sont pas seulement un outil pour réduire la
complexité de calcul, mais aussi un élément clé pour répondre aux contraintes de
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temps réel découlant du cadre des DDDAS.
En outre, cette thèse présente de nouvelles méthodologies axées sur les données

pour enrichir le paradigme dit des jumeaux hybrides. Un paradigme qui est motivé
parce qu'il rend les DDDAS possible. Comment ? En combinant des solutions
paramétriques et des techniques de réduction de modèles avec des corrections à la
volée basés sur les données experimentales
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Resumen

Los bene�cios de un conocimiento profundo de los procesos tecnológicos e
industriales de nuestro mundo son incuestionables. La optimización, el análisis
inverso o el control basado en la simulación son algunos de los procedimientos que
pueden llevarse a cabo una vez que los conocimientos anteriores se transforman en
valor para las empresas. Con ello se consiguen mejores tecnologías que acaban
bene�ciando enormemente a la sociedad. Pensemos en una actividad rutinaria
para muchas personas hoy en día, como coger un avión. Todos los procedimientos
anteriores se llevan a cabo en el diseño del avión, en el control a bordo y en
el mantenimiento, lo que culmina en un producto tecnológicamente e�ciente en
cuanto a recursos. Este alto valor añadido es lo que está impulsando a la
Ciencia de la Ingeniería Basada en la Simulación (Simulation Based Engineering
Science, SBES) a introducir importantes mejoras en estos procedimientos, lo que ha
supuesto avances importantes en una gran variedad de sectores como la sanidad, las
telecomunicaciones o la ingeniería.

Sin embargo, la SBES se enfrenta actualmente a varias di�cultades para
proporcionar resultados precisos en escenarios industriales complejos. Una de ellas
es el elevado coste computacional asociado a muchos problemas industriales, que
limita seriamente o incluso inhabilita los procesos clave descritos anteriormente.
Otro problema es que, en otras aplicaciones, los modelos más precisos (que a su vez
son los más caros computacionalmente) no son capaces de tener en cuenta todos
los detalles que rigen el sistema físico estudiado, con desviaciones observadas que
parecen escapar de nuestro conocimiento.

Por lo tanto, en este contexto, a lo largo de este manuscrito se proponen
novedosas estrategias y técnicas numéricas para hacer frente a los retos a los que se
enfrenta la SBES. Para ello, se analizan diferentes aplicaciones industriales.

El panorama anterior junto con el exhaustivo desarrollo producido en la
Ciencia de Datos, brinda además una oportunidad perfecta para los denominados
Dynamic Data Driven Application Systems (DDDAS), cuyo objetivo principal es
fusionar los algoritmos clásicos de simulación con los datos procedentes de medidas
experimentales. En este escenario, los datos y las simulaciones ya no estarían
desacoplados, sino que formarían una relación simbiótica que alcanzaría hitos
inconcebibles hasta estos días. Más en detalle, los datos ya no se entenderán
como una calibración estática de un determinado modelo constitutivo, sino que
el modelo se corregirá dinámicamente tan pronto como los datos experimentales y
las simulaciones tiendan a diverger.

Por esta razón, la presente tesis ha hecho especial énfasis en las técnicas
de reducción de modelos, ya que no sólo son una herramienta para reducir la
complejidad computacional, sino también un elemento clave para cumplir con las
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restricciones de tiempo real que surgen del marco de los DDDAS.
Además, esta tesis presenta nuevas metodologías basadas en datos para

enriquecer el denominado paradigma Hybrid Twin. Un paradigma cuya motivación
radica en su habilidad de posibilitar los DDDAS. ¾Cómo? combinando soluciones
paramétricas y técnicas de reducción de modelos con correcciones dinámicas
generadas �al vuelo� basadas en los datos experimentales recogidos en cada instante.
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Introduction

Abstract The bene�ts of a deep understanding of the technological and industrial

processes of our world are unquestionable. Optimization, inverse analysis, simulation-based

control or uncertainty propagation are some of the procedures that can be carried out once

the above knowledge is transformed into value for companies and industries. This brings

new technologies and better products that end up greatly bene�ting society. Think of a

routine activity for many people today, such as taking a plane. All the above procedures

are carried out in the plane design, construction, on-board control and maintenance,

culminating in a technologically resource-e�cient product. This strong added value is what

is driving Simulation Based Engineering Science (SBES) to make major improvements in

these procedures, leading to noticeable breakthroughs in a wide variety of sectors and

industries (e.g. Healthcare, Telecommunications or Engineering, to cite only a few).

However, SBES is currently confronting several di�culties to provide accurate results

in complex industrial scenarios. One is the high computational cost associated with many

industrial problems which severely limits or even disables the key processes described above.

Another problem is that in other applications, the more accurate (and also more highly-time

consuming) models are not able to take into account all the details that govern the physical

system under study, with observed deviations that seem to escape our understanding.

Therefore, in this context, novel numerical strategies and techniques are proposed

throughout this manuscript to deal with the challenges that SBES is facing. To do that,

di�erent industrial scenarios are analyzed

The above panorama also brings a perfect opportunity to the so-called Dynamic

Data Driven Application Systems (DDDAS), whose main objective is to merge classical

simulation algorithms with data coming from experimental measures in a dynamic way.

This type of concepts can be envisaged thanks to the exhaustive development in both

data-acquisition and data-storage systems as well as the unceasingly growing interest in

concepts such as Big-Data, Machine Learning or Data-Analytics. Within this scenario,

data and simulations would no longer be uncoupled but rather they would form a symbiotic

relationship which would achieve milestones inconceivable until these days. Indeed, data

will no longer be understood as a static calibration of a given constitutive model but rather

the model will be corrected dynamically as soon as experimental data and simulations tend

to diverge.

For this reason, the present dissertation placed a particular emphasis on Model Order

Reduction (MOR) techniques, as they are not only a tool to reduce computational

complexity, but also a key element in meeting the real time constraints arising from the

DDDAS framework.

Furthermore, this thesis presents new data-driven methodologies to enrich the so-called

Hybrid Twin paradigm. A paradigm which is motivated because it makes DDDAS possible.

How? by combining parametric solutions and the MOR framework with �on-the-�y�

data-driven (i.e. machine learning) correction models.
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0.1. Context and Motivations

0.1 Context and Motivations

Simulation Based Engineering Science (SBES) [Panel 2006] has pushed the �eld of computer

simulation into a new era [Ibanez Pinillo 2019]. In fact, this discipline, which contains

branches such as High Performance Computing, mathematical modeling or computational

algorithms, has carried out major improvements in areas of industrial interest like

optimization, multi-scale modelling, control and inverse analysis. These remarkable

breakthroughs have been developed and applied in a wide variety of sectors such as

engineering, automotive and aeronautics industries, healthcare or augmented reality, to

cite only a few. However, despite the great success of SBES in a wide variety of �elds,

it currently faces several di�culties in providing accurate results in complex industrial

problems. Therefore, this thesis proposes solutions to some of these problems as well as

novel tools that will improve the performance and capabilities of the potential solutions to

deal with challenging scenarios.

Speci�cally, the thesis context is framed within the advances in numerical simulation

and data science. For this reason, the Model Order Reduction (MOR) framework as well

as the concepts of virtual, digital, and hybrid twins1 will now be brie�y reviewed, while

introducing the improvements, advances and challenges that have led to the emergence of

each technology.

First of all, special mention should be made of numerical simulation. Indeed, numerical

simulation constitues one of the three pillars of 20th century engineering, producing the age

coined as the third paradigm of science [Hey et al. 2009, Chinesta et al. 2020]. Among the

numerous numerical techniques; �nite element, �nite volume and �nite di�erence techniques

[Patankar 1980, Ida & Bastos 1992, Fish & Belytschko 2007] are worth mentioning as,

among other things, they are still widely used nowadays. Although they di�er in many

technical aspects, their common goal is to transform a given set of Partial Di�erential

Equations (PDEs) which describe a physical system into a discrete system of algebraic

equations that is perfectly understandable by a computer. And it was this process of

making the mathematical models understandable to computers that caused the revolution

of �virtual twins�. In this revolution, the �virtual twins� are numerical simulations which

emulate a physical system employing mathematical models to describe its complex behavior.

Nowadays, virtual twins are present in most scienti�c and engineering �elds, allowing

accurate designs and virtual evaluation of system responses, drastically reducing the

number of experimental tests [Chinesta et al. 2020]. For instance, to illustrate an industrial

scenario, imagine a crash test of a vehicle (See Figures 1 and 2). This test is a form of

destructive testing usually performed in order to ensure safe design standards in examining,

for instance, the ability of a structure to protect its occupants during an impact. Without

virtual twins, an entire vehicle must be designed, built and destroyed for every test you

want to run. As you can imagine this is extremely expensive. Fortunately, virtual twins

come to the rescue, greatly reducing the number of experimental tests and consequently

the costs for the company, which will generally only �destroy� the �nal design.

1There seems to be no consensus on the de�nition of the concepts of virtual, digital and hybrid

twins. In this thesis, one possible distinction is suggested according to the references employed to

write the manuscript as well as their respective characteristics. It is not the sole possibility and it

is not intended to create any controversy in this respect.
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Figure 1 � Image of a crash test in the automotive industry. The image is property of
the international company ESI group which authorised the di�usion in the present
thesis.

Figure 2 � Image of the simulation of a crash test in terms of passenger security.
The image is property of the international company ESI group which authorised the
di�usion in the present thesis.

Nevertheless, virtual twins have a disadvantage. Before solving a given problem, the

di�erent involved parameters must be introduced and the problem domain de�ned. Once

4
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the problem is solved, the di�erent quantities of interest can be then computed. What

does the above mean? It means that virtual twins are static [Quaranta 2019]: they

are employed in the design of complex systems as well as their components, but they

cannot accomodate or assimilate data in order to de�ne Dynamic Data-Driven Application

Systems (DDDAS) [Darema 2015]. Moreover, they rarely allow real-time feedback required

in some applications on account of the characteristic time of standard simulation techniques.

Furthermore, important industrial procedures such as optimization, inverse analysis or

uncertainty propagation require enhancing the e�ciency and computational cost of usual

strategies because of the many direct calculations needed.

To alleviate some of the limitations, for instance, transfer functions are usually employed

to achieve real-time control using an adapted representation of the system, appropriately

relating inputs and outputs. Although these methods guarantee real time, their modelling

of the system is too coarse compared to rich representations such as those carried out,

for example, by �nite elements (e.g. a 3D transient problem), which enable high-�delity

simulations. Nevertheless, as previously introduced, these rich modelling frameworks,

perfectly valuable, for instance, for the system understanding; do not allow real-time on

common computational platforms or deployed systems. And as mentioned earlier, they

often do not have a computational cost or speed suitable enough for industrial interests

such as optimisation or inverse analysis.

In this context, industry's desire for new simulation tools, as well as the need to speed

up calculations, led to the birth of novel system modelling and simulation methodologies

at the beginning of the 21st century. Here, one of major achievements are the model order

reduction (MOR) techniques [Quaranta 2019, Ibanez Pinillo 2019, Chinesta et al. 2017]. In

particular, they opened new possibilities to reach more e�cient simulations. The MOR

techniques which are being introduced here are called intrusive2. It is worth mentioning

that when these intrusive MOR techniques are successfully applied to physics-based

models, they continue to be well established and validated descriptions at hand. In

fact, they act by simplifying the solution procedure without practically any sacri�ce in

the model solution accuracy, in view of accomodating accurate and fast (and in many

cases real-time) predictions [Zlotnik et al. 2015, Chinesta et al. 2017, Quesada et al. 2018,

Chinesta et al. 2020].

To illustrate the possibilities, two alternatives of the intrusive MOR framework are

going to be described.

The �rst one consists in extracting o�-line the most signi�cant modes involved when

expressing the model solution3. To do that, standard simulation methodologies are

employed to see the main characteristics of the function. Then, the sought solution of similar

problems is projected on that reduced space. And this is the key point, as the number of

functions involved in the basis of the reduced space is usually low, just a few coe�cients

need to be computed for obtaining the problem solution. Therefore, at each iteration or

time step, a discrete problem of very small size has to be solved instead. This way, this type

of MOR techniques allow important time savings, of several orders of magnitude in some

cases, making possible in several industrial scenarios to accomodate real-time constraints

[Sempey et al. 2009, Ghnatios et al. 2012b, Chinesta & Ladevèze 2014, Nadal et al. 2015a,

Chinesta et al. 2017].

On the other hand, the other common alternative is to compute a parametric solution,

2Chapter 1 will explain in detail the reason for this name as well as the di�erences with

non-intrusive MOR techniques.
3For the unfamiliar reader, the modes can be understood as the main components for expressing

the solution in a reduced base.
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that is, a virtual chart that contains the solution of all possible scenarios. And not only

that, but these di�erent hypothetical cases can be particularized extremely fast for the given

set of parameter values de�ned by the user. The computation of this parametric solution is

performed in an o�-line stage while employing all necessary computational resources, e.g.

High Performance Computing (HPC), and available computing time. Once the parametric

solution is constructed, it can be particularized on-line for the desired scenario employing

light computatinal resources such as tablets or smartphones. This way, this strategy enables

to perform e�cient simulation, optimization, inverse analysis, uncertainty propagation and

simulation-based control. Furthermore, it has been proved that this type of solutions can

deal with real-time constraints in more than a few applications. And the main technique

which allows that is the Proper Generalized Decomposition (PGD) [Dumon et al. 2011,

Chinesta et al. 2011, Modesto et al. 2015, Chinesta et al. 2013b, Falco & Nouy 2012,

Henneron & Clenet 2014, Chinesta & Ladevèze 2014, Chinesta & Cueto 2014,

Cueto et al. 2016, Chinesta et al. 2013a, Bur et al. 2016, Chinesta et al. 2014]. In

addition, this type of also allow to assimilate data collected from measurements, e.g.

sensors, into the physics-based models.

To illustrate the capabilities of the aforementioned PGD technology, the example of

Figure 3 is shown [Quesada et al. 2018]. In particular, virtual reality in the framework

of computational surgery is explored to create a real-time, interactive simulation of tissue

tearing during laparoscopic surgery. This is a challenging scenario because of the di�culties

to obtain extremely fast feedback rates (500 Hz - 1 kHz) with physically realistic haptic

rendering. In other words, the problem is to be able to solve a complex non-linear solid

and/or �uids mechanic problem one thousand times per second. Therefore, to achieve the

above goal, a multidimensional parametric problem is formulated and solved by means of the

PGD method. Once the o�-line solution is built, the high-dimensional parametric solution

can be particularized with the aforementioned real-time constraints as well as being stored

e�ciently.

In parallel, the present century has also seen the data revolution in many �elds

including engineering. This way, massive data have been classi�ed, visualized, curated,

analyzed, ... with the aid of powerful methodologies developed in the �elds of Arti�cial

Intelligence (AI) and speci�cally, Machine Learning (ML). Great advancements has

been carried out in techniques such as linear and nonlinear dimensionality reduction

techniques based on manifold learning [Kambhatla & Leen 1997, Lee & Verleysen 2007,

Schölkopf et al. 1998, Schölkopf et al. 1999, Zhang & Zha 2003, Roweis & Saul 2000] and

data-driven models based on the use of decision threes [Breiman et al. 1984], random

forests [Breiman 2001], gradient-boosted decision trees, linear and nonlinear regressions,

and deep-learning techniques, among many others [Mallat 2016, LeCun et al. 2015,

Schapire 1990, Wu et al. 2008, Schwarz 1978, Anandkumar et al. 2014, Parsa et al. 2018,

Criminisi et al. 2011, Criminisi et al. 2012, Goodfellow et al. 2016, Raissi et al. 2017a,

Raissi et al. 2017b, Raissi et al. 2019, Moitra 2018] .

Therefore, all the mentioned data-driven techniques, among others, gave arise the

so-called digital twins. They can make possible, for instance, improved data-based

predictive maintenance, e�cient inspection and real-time decision making and/or control.

These data-driven concepts are specially appealing for their computational complexity and

consequently, when fast predictions are required. In particular, for applications requiring

real-time feedback. The digital twins have been applied with success in a wide range of

problems, but some issues appears in other industrial or scienti�c scenarios. Firstly, one

of the main drawbacks when considering this conceptualization is usually that considerable

time and e�orts are required to guarantee an as rich as possible learning stage. For example,
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Figure 3 � Image of the haptic simulator developed with the PGD methodology.
This simulator is able to provide the solution of a complex nonlinear mechanic
problem one thousand times per second. Special thanks to the Applied Mechanics
and Bioengineering group of the University of Zaragoza (speci�cally, Professor Elias
Cueto) which authorised the di�usion of the image in the present thesis.

sometimes there is not enough data available or data is too expensive. In others, data are

biased towards the dominant operating conditions extracted from measurements, thus losing

guarantees that the model will perform well outside these main operating areas described

by the experimental data. Therefore, the domain of applicability of the digital twins is

generally narrower when compared with their physics-based counterpart.

For this reason, a valuable route to deal with the aforementioned problems is the

following one: the employment of high-�delity physics-based models accelerated with the

MOR framework to ensure, for instance, real-time feedback. This way, the real-time solution

of physically-based models allows to assimilate data collected from sensors as well as to

calibrate them. Other advantage is that the produced model has usually a wider operating

range that the ones produced just with sensor data.

This idea of accelerating highly-accurate physics-based models using the MOR

framework has been tested and implemented successfully in many applications, often by

using deployed computing devices such as Programmable Logic Controllers (PLCs), thus

enabling better strategies for simulation-based control. In addition, to achieve the desired

time or computational cost reduction, the MOR framework is sometimes combined with

the previously introduced ML techniques (e.g. dimensionality reduction). Moreover,

if intrusive MOR techniques such as the PGD present di�culties to be applied or are

too intrusive4 for the industrial software, the non-intrusive MOR techniques can be

employed instead. This new type of MOR techniques was born in the following two

4In this work, the level of intrusiveness means the degree of changes required by the MOR

framework, with respect to standard simulation techniques, in the mathematical procedure to

solve an industrial problem. These changes should be programmed in softwares that are already

implemented in the market and therefore they already has the con�dence of the client as well as
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circumstances: digital revolution and companies' reluctance to make major changes to

their long-established software. One of the main characteristics of non-intrusive MOR

techniques is that, in this case, the model is built mainly considering a data-driven

approach, despite the fact that restrictions based on physical modelling can be incorporated.

Other key feature is that non-intrusive MOR techniques are usually fed with data from

high-�delity physics-based models (normally called snapshots) rather than experimental

data. This fact can sometimes be used to select the best snapshots to construct the

model. Examples of these techniques are the Sparse Subspace Learning (SSL) and

the s-PGD [Borzacchiello et al. 2019, Sapena-Bano et al. 2019, Ibáñez Pinillo et al. 2018].

Therefore, when they are employed, a careful selection of the snapshots from the highly

accurate physics-based model is carried out to ensure su�ciently accurate performance

and physics-based behaviour of the reduced order model (ROM). It has been proved that

powerful models can be constructed by following this approach. One of the reasons is that

data collected is not limited to the sensors but rather comes from the physical model, in

order to re�ect desired operation ranges that may not appear in experimental measurements.

As with the intrusive MOR techniques like the PGD, such non-intrusive approaches can also

be combined with other data-driven methodologies to boost performance (e.g. clustering

techniques).

In addition, it is worthy to mention some of the applications where the physics-based

models (accelerated with the MOR framework) and the data-driven methodologies are

combined, e.g. augmented reality. An example to illustrate this fact is the one from

[Badías et al. 2020b] (See Figure 4). Here, an augmented reality environment is set up

where the mechanical interaction between real and virtual objects is computed in real-time

with the precision of a high-�delity solver but working at the speed of a video sequence. In

this application, the MOR framework is employed to compute real-time physics predictions

while ML, computer vision and computer graphics tools are merged to create the �nal

augmented reality simulator. For the interested reader, other works considering augemented

reality can be found in [Badias et al. 2020a, Badías et al. 2020b, Badías et al. 2019].

Furthermore, spetial mention should be made to the e�orts to obtain data-driven

models by imposing physics-based constraints. This allows us to conduct the learning

stage towards compatible solutions derived from the physics knowledge. For instance, in

[Moya et al. 2019, Moya et al. 2020a, Moya et al. 2021], several learning strategies for �uid

sloshing problems based on data are described (See Figure 5). The key feature here is

that the MOR framework within the ML tools are combined with a thermodinamically

consistent integrator to guarantee the satisfaction of the laws of thermodynamics. In

[Hernandez et al. 2021a], the concept is extended to neural networks.

After discussing the above examples, we have just seen the wide range of possibilities

that the MOR framework open up for accelerating high-�delity physical models as well

as some innovative applications. However, problems have been reported when applied

to other scenarios. Indeed, despite the fact that it has been proved that high-�delity

models accelerated with MOR techniques can perform under real-time (or almost real-time)

by using reasonable computing platforms, unexpected di�culties can appear when they

are integrated into data-driven applications systems. In particular, signi�cant deviations

between the predicted and observed responses have been noticed, thus potentially limiting

their employment in many applications. In fact, the cause of this gap between measurements

and predictions can be assigned to factors such as inacuracies in the employed models (they

are not a perfectly description of the real system), in the determination of their parameters

or in their time evolution.

several years of improvement and development.
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Figure 4 � Image of the augmented reality environment developed with the
methodology described in [Badías et al. 2020b]. Here, an augmented reality
environment is set up where the mechanical interaction between real and virtual
objects is computed in real-time with the precision of a high-�delity solver (thanks to
the MOR framework) but working at the speed of a video sequence. Special thanks
to the Applied Mechanics and Bioengineering group of the University of Zaragoza
(speci�cally, Dr. Alberto Badias and Professor Elias Cueto) which authorised the
di�usion of the image in the present thesis.

Indeed, as stated in [Quaranta 2019], a certain part of the deviation (its unbiased

component in a statistical sense) can be considered as noise, but the remaining biased part

proves the existence of a hidden model that operates but escapes to our understanding. To

adress this issue, an appealing route can be proposed constructing �on-the-�y� data-driven

models which can correct the gap between model prediction and measurement.

As a consequence, a new technology arises to deal with the above di�culties: the Hybrid

Twin (HT) paradigm [Chinesta et al. 2020]. This technology combines physics-based

models within a MOR framework (for accommodating real-time feedback) and data-driven

models to correct the gap between predictions and measurements, thus enriching the

Hybrid Twin (HT) (See Figure 6). This way, for instance, control strategies can be

implemenged safely and more accurately since the HT concept enhance accuracy and allow

the possibility to adress complex physical phenomena (such as degradation) by triggering

data-driven corrections. Furthermore, this HT technology brings a perfect opportunity to

the aforementioned Dynamic Data Driven Application Systems (DDDAS), whose main goal

is to merge standard simulation algorithms with experimental data in a dynamic way. In

9
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Figure 5 � Image of an augmented reality environment where the methodology
described in [Moya et al. 2019, Moya et al. 2020a, Moya et al. 2021] is employed.
The proposed method recognizes the precise type of �uid from video sequences and
is able to predict future states of the dynamics for control and decision making. Note
that MOR framework is employed to achieve real-time feedback. Special thanks
to the Applied Mechanics and Bioengineering group of the University of Zaragoza
(speci�cally, Bea Moya and Professor Elias Cueto) which authorised the di�usion of
the image in the present thesis.
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Figure 6 � Figure to illustrate the Hybrid Twin (HT) concept. In this example,
the HT is employed when trying to predict the variable y. Here, the HT response
will be composed of the prediction of an accurate physics-based model, as well as
the modeled on-line correction to delete the biased gap between measurements and
predictions. As previously discussed, Reduced Order Models (ROMs) are used to
run fast enough the accurate physics-based models. Note: MORT refers to model
order reduction techniques

this context, as stated in [Ibanez Pinillo 2019], data and simulations would no longer be

uncoupled but rather they will create a symbiosis which can achieve milestones inconceivable

until these days. In fact, data will no longer be understood as a static calibration of a

given constitutive model but rather the model will be corrected dynamically as soon as

data coming from measurements and simulations start to diverge. In other words, the HT

makes DDDAS possible by combining HPC-based parametric solutions with �on-the-�y�

data-driven correction models.

Therefore, as stated in [Chinesta et al. 2020], the HT satis�es the three main

characteristics needed for a DDDAS:

� A simulation core able to solve complex mathematical problems representing physical

models under real-time constraints [Ghnatios et al. 2012b];

� Advanced strategies able to proceed with data-assimilation, data-curation and

data-driven modeling.

� A mechanism to online adapt the model to evolving environments.

Now, at this point, the review and introduction of the advances and challenges in the

SBES �eld is �nished. In particular, the technologies of virtual, digital, and hybrid twins as

well as the MOR framework and data-driven methodologies were introduced and discussed.
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And not only that but the motivations and industrial interests that led to the emergence

of each technology are been illustrated, even with particular examples and achievements.

Therefore, the motivation of the present thesis can already be clearly understood: to address

the new challenges faced by these technologies with a particular focus on current industrial

problems. To this end, new methodologies, algorithms and innovative solutions that can

provide the desired business indicators will be proposed.

0.2 Objectives

The main goal of this work is to employ, develop and research new tools enabling virtual,

digital and hybrid twins to address current industrial challenges. In other words, the core

of this thesis is the improvement, enhancing and boosting of these new technologies5. In

particular, the MOR and the Machine Learning (ML) framework will be explored, employed

and enlarged. By doing so, the following objectives are going to be achieved:

� Enabling fast and real-time simulations of highly-time consuming and accurate

physics-based models as well as developing advanced data-driven approaches in

current challenging scenarios.

� Providing tools to address current key topics such as optimization, inverse analysis,

uncertainty propagation and simulation-based control; which are enabled by the

above methodologies thanks to the high decrease in computational complexity.

� Improving the construction as well as developing new tools for the creation of digital

and hybrid twins, with a special emphasis on the latter.

� Enhancing a DDDAS framework by developing the HT concept in di�erent

applications.

These milestones are pursued by solving current industrial needs in challenging

scenarios. In particular:

� Electric Vehicle Industry. Here, two main topics are analyzed:

� Lithium-ion batteries.

* Development and research of Reduced Order Models (ROMs) and

data-driven models to enhance and construct the new required generation

of Battery Management Systems (BMS) for the automotive industry as

well as to address currently demanded applications.

* Development of the �rst (to our knowledge) HT of a Li-ion battery.

* Development of an innovative planning algorithm to make decisions as well

as to adapt the driving behaviour based on predictions of the whole Electric

Vehicle (EV). The micro-scale state of battery cells is wanted to be inferred

� Electric motors. Development of novel MOR techniques to achieve fast and

real-time predictions as well as high-dimensional parametric solutions for

the electromagnetic �eld and force. This will help the design, analysis of

performance and implementation of electric machines concerning industrial

applications such as the noise, vibration, and harshness (NVH) in electric

motors.

5In the previous section (Section 0.1), a detailed summary about the bene�ts of developing

these technologies is caried out.
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� Aeronautics industry. Development of a HT for the air distribution system of an

aircraft. In this case, the model is constructed from real data supplied by Dassault

Aviation. This work was done in the context of a project as part of the PEA MMT

(Plan d'Etudes Amont Man Machine Teaming) �nanced by the DGA (Direction

Générale de l'Armement).

� Radar-based Advanced Driver Assistant Systems (ADAS). Development of

parametric solutions for electromagnetic wave propagation in radar applications

as well as a suitable interpolation method for complex-valued �elds which allows

reducing the computational cost of this type of simulations by a great factor.

A more detailed description of the speci�c objectives for each industrial case as well

as the achievements and proposed solutions are addressed in the corresponding chapter for

each application.

In addition, in parallel:

� Research and development (R&D) of novel MOR techniques, algorithms and

data-driven models. The objective is to improve the results when the current

techniques su�er and to extend methodologies to new areas of interest.

Furthermore, the tools o�ered will lead to a competitive advantage which will boost

competitiveness in a continuously growing industry. In fact, some the improvements of the

present work can be also framed in the new Industry 4.0.

0.3 Structure of the thesis

As indicated in Section 0.1, there is an unceasingly growing interest in merging �elds such as

data science and science-based simulation engineering to derive knowledge from information

and ultimately transform this knowledge into decision making. Furthermore, in this context,

digital and hybrid twins are becoming increasingly popular to address current industrial

needs such as optimization, inverse analysis or the new appealing routes like the ones coming

from the DDDAS framework.

For this reason, and as further detailed in Section 0.2, the core of this thesis is the

improvement, enhancing and boosting of this new technologies. And to do that, new

non-intrusive MOR techniques and data-driven approximations are proposed to later, being

applied in di�erent scenarios to examine its viability and performance. In addition, a

particular focus is given to the data-driven approaches enabling the HT.

Consequently, this work will be structured in the following three main parts, each of

them composed of di�erent chapters.

� Part I. Fundamentals: Review of the main intrusive MOR techniques.

� Chapter 1: Advanced numerical techniques: intrusive Model Order Reduction

techniques.

� Part II. Fundamentals: Presentation of novel non-intrusive and data-driven

techniques.

� Chapter 2: Novel reduced order formulations, algorithms and

hybridation/dynamic techniques.

� Chapter 3: Novel PGD strategies: PGD-based advanced nonlinear

multiparametric regressions for constructing metamodels at the scarce-data limit
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� Part III. Industrial and Practical Applications

� Chapter 4: Advanced Multi-Parametric models for Electric Machines.

� Chapter 5: Parametric electromagnetic analysis of radar based Advanced

Driver Assistant Systems.

� Chapter 6: An aircraft Hybrid Twin: Learning stable reduced-order models for

hybrid twins.

� Chapter 7: From ROM of Electrochemistry to AI-based Battery Digital and

Hybrid Twin.

Chapter 1: Advanced numerical techniques: intrusive Model
Order Reduction techniques.

In this chapter, a review of the main intrusive MOR techniques employed in this

work are presented. Speci�cally, the Proper Orthogonal Decomposition (POD) and the

Proper Generalized Decomposition (PGD). These techniques are used to empower and

accelerate highly-time consuming physics-based models while maintaining good agreement.

In addition, the PGD enables the construction of accurate high-dimensional parametric

solutions, being able to construct virtual charts that can be particularized on-line under

real-time constraints. During the present work, both techniques will be used in the following

chapters to meet di�erent objectives:

� First, the POD will be used to accelerate a highly-accurate physics-based model of

a battery cell with an excellent agreement, thus enabling, among other targets, a

quicker snapshot computation. Later, these snapshots will be employed to construct

a ROM using more advanced MOR techniques discussed in Chapter 2.

� On the other hand, the intrusive PGD is used in Chapter 4 to construct a

high-dimensional parametric solution for electromagnetic �elds in synchronous

machines. In this context, the domain of simulation is not suitable for a PGD

separated representation, making its successful and e�cient application to the

problem challenging. However, in Chapter 4, a new suitable mapping is developed to

transform the motor geometry in one amenable for a separated representation within

the PGD framework.

Chapter 2. Novel reduced order formulations, algorithms and
hybridation/dynamic techniques.

In this Chapter, the novel non-intrusive techniques developed in this thesis to face the

industrial problems described in Chapters 4, 5, 6 and 7 are presented. In particular, the

theoretical basis of these data-driven methodologies is detailed. Other techniques, such as

those relevant to the understanding of the proposals presented, are also reviewed.

Firstly, this chapter begins by continuing and reviewing the theoretical foundations of

the sparse PGD (s-PGD) from a machine learning point of view. In the following chapters,

this technique will be employed to construct novel ROMs in di�erent industrial applications.

Furthermore, later on in Chapter 3, this framework will be taken as a basis for developing

novel PGD methodologies to overcome the limitations of the current state of the art in

challenging scenarios.

Secondly, this thesis introduces a novel sparse reduced order formulation combining the

s-PGD with a Reduced Basis (RB) approach. We will see (in Chapter 4) how the proposed
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strategy can be employed to capture complex and challenging physical phenomena as well

as to obtain a further data compression.

Next, a novel algorithm for phase-angle unwrapping for accurately addressing

interpolation of complex numbers is proposed. This new and e�ective strategy was

constructed during this thesis when addressing the problem encountered in Chapter 5 and

compared with state-of-the-art techniques as the ones implemented in Matlab software

[MathWorks 2020].

Subsequently, the techniques proposed for hybridization in the HT context are

presented. Speci�cally, this thesis proposes two novel methodologies, the practical

application of which is carried out in Chapters 6 and 7.

� The �rst one is a stabilization procedure for the Dynamic Mode Decomposition

(DMD) and Dynamic Mode Decomposition with control (DMDc) techniques. The

goal of this �rst technique is the computation of stable, fast and accurate corrections

in the Hybrid Twin framework, regarding the delicate and important problem of

stability.

� The second one is the DMD Dictionary strategy which allow us to address complex

non-linear behaviors within the DMD framework. Moreover, this method is able

to produce models that avoid over-�tting quite well, correcting only the operation

ranges with more error.

In addition, prior to the mentioned new strategies, a big picture of the HT is discussed and

the standard procedures for the DMD and DMDc are introduced.

To end up and to sum up, this chapter presents four disruptive and innovative

methodologies: the s-PGD + RB strategy, a novel unwrapping algorithm, the stabilized

DMD and DMDc techniques and the DMD Dictionary methodology.

Chapter 3. Novel PGD strategies: PGD-based advanced nonlinear
multiparametric regressions for constructing metamodels at the

scarce-data limit.

The following chapters (Chapters 4, 5, 6 and 7) will show the great results that can be

obtained using the proposed non-intrusive ROMs and data-driven techniques to enable and

improve digital and hybrid twins. The s-PGD technique deserves special mention because

it is often able to construct high-dimensional parametric functions in the low data limit.

This is crucial because, in many industrial applications, obtaining a large amount of data

is unfeasible because of the curse of dimensionality or because of the expensiveness of

data. However, in this framework, current techniques, such as the just referred s-PGD,

do not always achieve good results when addressing high-dimensionality at the low data

limit. The reason is that ensuring accuracy and avoiding over�tting constitutes a di�cult

challenge. Therefore, the present chapter aims at proposing and discussing di�erent

advanced regressions enabling and empowering the just referred features. In particular, this

thesis proposes 3 novel PGD-based non-intrusive ROMs where their results are analyzed

and discussed in this chapter:

� The �rst is based on an Elastic Net regularized formulation, called rs-PGD,

combining Ridge and Lasso regressions, that make use, respectively, of the L2 and

L1 norms. To avoid over�tting, the former favors speci�c solutions with smaller

coe�cients, while the last enforces the sparsest possible solution by retaining those

contributing the most to the solution approximation. This technique can be employed
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to use richer approximation basis when compared to the s-PGD as well as to increase

the generalization of the model when examining unseen scenarios

� Secondly, the doubly sparse regression, the so-called s2-PGD technique will be

introduced. The last makes use of the Lasso regularization (the one introduced

above that looks for the sparsest approximation through the use of the L1-norm)

while searching for the sparsest dimensions. This technique is able to identify sparse

solutions when their sparse structure is composed according to the separated PGD

representation.

� The third and last technique, the ANOVA-PGD, aims at allying orthogonal

hierarchical bases with a more favorable scaling (with respect to the SSL

[Borzacchiello et al. 2019]) of the amount of data with the approximation richness.

For that purpose, separated representations and sparse approximations (eventually

regularized) will be combined for addressing multiple correlation terms.

Discussions and results carried out will show that the proposed PGD-based

methodologies can empower state-of-art surrogate models in the complex system settings

described in the present chapter. Consequently, digital and hybrid twins will be improved

when dealing with this type of scenarios which are highly appealing for industries.

Chapter 4: Advanced Multi-Parametric models for Electric
Machines.

This chapter begins the third part of the thesis, which focuses on the application of the

techniques presented and discussed previously. Thus, the fourth chapter address the

creation of advanced and novel ROMs concerning rotating electric machines. In fact,

it addresses the current need of fast, accurate and parametric models in this context.

Nowadays, these solutions are highly demanded by the industry, especially with the recent

developments in the Electric Vehicle (EV).

The following areas of work are addressed:

� A novel Reduced Order Model is obtained employing the intrusive PGD to construct

a high-dimensional parametric solution for electromagnetic �elds in synchronous

machines. The proposed approach is capable to construct a virtual chart in a few

minutes of o�-line simulation and once constructed, a particular solution can be

particularized on-line in less than a second. In this context, the domain of simulation

is not suitable for a PGD separated representation, making its successful and e�cient

application to the problem challenging. However, in this Chapter 4, we develop a

new suitable mapping to transform the motor geometry. Thus, the resultant new

geometry will be more adapted to achieve good results within the PGD framework.

� A novel non-intrusive Model Order Reduction (MOR) strategy is employed to achieve

fast and real-time predictions as well as high-dimensional parametric solutions for

the electromagnetic force which will help the design, analysis of performance and

implementation of electric machines concerning industrial applications such as the

noise vibration and harshness (NVH) in electric motors. The approach allows to

avoid the long-time simulations needed to analyze the electric machine at di�erent

operation points. In addition, it can be easily extended to predict other quantities

of interest such as the torque or the �uxes. Moreover, it facilitates the computation

and coupling of the motor model in other physical subsystems. Furthermore, this

second proposal can also be used as an alternative of the �rst approach if an speci�c

machine presents problems in the formulation of the intrusive PGD.
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Chapter 5. Parametric electromagnetic analysis of radar based
Advanced Driver Assistant Systems

E�cient and optimal design of radar-based ADAS (Advanced Driver Assistant Systems)

requires performing a great number of electromagnetic simulations. Due to the nature of

the problem, very �ne meshes are required to accurately discretize the Partial Di�erential

Equations (PDEs) involved. Thus, the computational cost of each simulation for a given

choice of the design or operation parameters is highly time consuming (needing signi�cant

computational resources) compromising the e�ciency of standard optimization algorithms.

Making matters worse, another di�culty appears when non-intrusive MORs are applied in

radar engineering. This is the interpolation of the complex-valued electric and magnetic

�elds. If an interpolation is sought for real and imaginary parts independently, spurious

solutions appear. Therefore, it seems more reasonable to use the alternative formulation

based on the amplitude and phase because both amplitude and phase functions are

continuous in most practical cases. However, the use of an amplitude/phase description

faces the di�culty related to the phase de�nition. Speci�cally, the problem is that the

phase is not uniquely de�ned, and any other range ((k − 1)π, (k + 1)π] for k ∈ Z will be

a valid interval to represent any complex number. Therefore, it is important to determine

the interval ((k − 1)π, (k + 1)π] of each complex number where the phase function is

continuous. This way, methodologies which tries to �x the above issue are created (and

called �unwrapping strategies�). However, to be successful in the above strategies, sampling

has to be quite dense. This, together with the high computational cost of each simulation

put problems when constructing non-intrusive ROMs because of the amount of sampling

points needed.

To alleviate the above-mentioned di�culties, this chapter proposes:

� A novel and powerful phase-angle unwrapping strategy to compute non-intrusive

ROMs within the s-PGD rationale when sparse sampling is employed.

This is important because usual unwrapping algorithms only performs well

when the data sampling is dense enough, but they fail in the sparse sampling

case [Ben Abdallah & Abdelfattah 2015, Shanker & Zebker 2010, Costantini et al. 2012].

However, it is important to deal with this scenario because it is the framework involved

when constructing high-dimensional parametric functions. Therefore, the most important

achievement of this chapter is to propose a methodology able to conciliate unwrapping and

sparse sampling.

Due to the above fact, this technique will considerably reduce the needed number of

snapshots to create parametric ROMs with the s-PGD and thus accurately address the

electric and magnetic �elds interpolation.

Chapter 6. An aircraft Hybrid Twin: Learning stable
reduced-order models for hybrid twins

This chapter of the thesis is devoted to the development of the Hybrid Twin (HT)

methodology. Hybrid twins are a special type of digital twins able to learn and correct

themselves once signi�cant and persistent biases between data and predictions are found.

To achieve this goal, the hybrid twins combine HPC-based parametric model solutions

with �on-the-�y� data-driven constructed deviation-models, making DDDAS possible

[Chinesta et al. 2020].

In any case, when addressing dynamical systems in the HT framework, it is important

to guarantee the stability of the system when adding corrections to the physical model. It is
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worth noting that this is an important issue, because sometimes the best model, computed

with state-of-the-art algorithms, completely fails to obtain a stable time-integrator. For

example, when considering a dynamical model by the Dynamic Mode Decomposition

(DMD) approach [Kutz et al. 2016, Schmid 2010], the feasible region constrained by the

stability condition is nonconvex [Huang et al. 2016], and no general methodology exists to

solve it. Therefore, this chapter is focused on the computation of stable, fast and accurate

corrections in the Hybrid Twin framework. To do that and regarding the delicate and

important problem of stability, this thesis proposes a new approach (where its mathematical

details where introduced in Chapter 2), introducing several sub-variants and guaranteeing

a low computational cost as well as the achievement of a stable time-integration.

The system analyzed to apply the HT concept within the new technique is an air

distribution system of an aircraft. In this case, the model is constructed from real data

supplied by the international company Dassault Aviation.

Furthermore, this research work was done in the context of a project as part of the

PEA MMT (Plan d'Etudes Amont Man Machine Teaming) �nanced by the DGA (French

Government Defense procurement and technology agency) and managed by French aircraft

and jets manufacturer Dassault Aviation.

To end up, it is interesting to note that the �nal HT model was given to Dassault

Aviation which decided, after the good results obtained, continuing in the research to

implement the HT rationale in their systems.

Chapter 7. From ROM of Electrochemistry to AI-based Battery
Digital and Hybrid Twin

Automotive industry is requiring novel sophisticated Battery Management Systems (BMS)

to control and monitor the battery system to achieve bene�ts such as less battery

degradation, better performance and more lifetime. The key to improve the BMSs is to

employ more complex battery models on-board. However, they are highly-time consuming

to be used. Therefore, three di�erent methodologies are proposed to deal with the

above problem, achieving great results as well as conceptualizing the HT procedure to

follow when needed. These proposed techniques are applied to the most commonly used

physics-based model (Newman's pseudo-2D model: [Doyle et al. 1993, Fuller et al. 1994,

Doyle & Fuentes 2003]), each one for a di�erent range of application.

� First, a POD model is used to greatly reduce the simulation time and the

computational e�ort for the pseudo-2D model, while maintaining its accuracy. In

this way, cell design, optimization of parameters, and simulation of battery packs

can be done while saving time and computational resources. In addition, this model

will be also employed to obtain the snapshots to create the following ROM.

� Next, a model is constructed from data by using the sparse-Proper Generalized

Decomposition (s-PGD). It is shown that it achieves real-time performance for

the whole Electric Vehicle (EV) system with a battery pack. In addition, this

non-intrusive ROM can be used in a BMS without issues because of the simple

algebraic expression obtained. A simulation of the EV with the proposed approach

is demonstrated using the system simulation tool SimulationX [ESI ITI GmbH.

Dresden, Germany]. To sum up, since a reduction in computational cost that is

thousands of times lower is achieved with the s-PGD model (maintaining good

accuracy), we have no problem in using the discussed approach for the above

applications.
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� Thus, this fact allowed to develop an innovative planning algorithm to make decisions

based on predictions of the whole EV, taking into consideration this fast and accurate

battery model. For example, the best possible itinerary is computed considering

di�erent battery criteria (where several itineraries are quickly simulated to select the

best one). Or another example, the algorithm is also capable of proposing changes

in the driving behavior if an itinerary is maintained but it detects that battery

problems can arise. Moreover, the Digital Twin created using the s-PGD does not

only allow for real-time simulations, but it can also correct its predictions taking into

consideration the real driving conditions and the real driving cycle to change the

planning in real-time

� Finally, a novel data-driven model is developed to extract an on-line model that

corrects the gap between prediction and measurement, thus constructing the �rst

(to our knowledge) hybrid twin of a Li-ion battery able to self-correct from data. To

construct this data-driven model, this thesis proposes the novel procedure introduced

in Chapter 2: �The DMD Dictionary strategy�. In addition, thanks to this model,

the above gap can be corrected during the driving process, taking into consideration

real-time restrictions.

To sum up, this chapter provides three di�erent ROMs, covering di�erent ranges of

application as well as enabling the HT concept. Furthermore, an innovative planning

algorithm is proposed where its big success is being able to make fast decisions as well

as to adapt the driving behaviour employing the highly-accurate predictions provided by

the s-PGD cell model.

0.4 Scienti�c contributions

These thesis works have generated the following publications:
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1. A. Sancarlos, M. Cameron, A. Abel, E. Cueto, J.L. Duval, F. Chinesta, �From
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of Computational Methods in Engineering , vol. 28, pp. 979�1015, 2021. DOI:

https://doi.org/10.1007/s11831-020-09404-6.

2. S. Vermiglio, V. Champaney, A. Sancarlos, F. Daim, J.C. Kedzia, J.L. Duval,

P. Diez, F. Chinesta, �Parametric Electromagnetic Analysis of Radar-Based

Advanced Driver Assistant Systems,� Sensors, vol. 20, issue 19, 2020. DOI:

https://doi.org/10.3390/s20195686

3. A. Sancarlos, E. Cueto, F. Chinesta, J.L. Duval, �A novel sparse reduced order

formulation for modeling electromagnetic forces in electric motors,� SN Appl. Sci.,

vol. 3, issue 3, 2021. DOI: https://doi.org/10.1007/s42452-021-04310-3.

4. A. Sancarlos, C. Ghnatios, J.L. Duval, N. Zerbib, E. Cueto, F. Chinesta, � Fast

Computation of Multi-Parametric Electromagnetic Fields in Synchronous Machines

by Using PGD-Based Fully Separated Representations,� Energies, vol. 14, issue 5,

2021. DOI: https://doi.org/10.3390/en14051454

5. A. Sancarlos, V. Champaney, J.L. Duval, E. Cueto, F. Chinesta, �PGD-Based
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6. A. Sancarlos, M. Cameron, J.M. Le Peuvedic, J. Groulier, E. Cueto, F. Chinesta,

J.L. Duval, � Learning stable reduced-order models for hybrid twins,� Data-Centric

Engineering, In press.
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F. Chinesta, � Monitoring weeder robots and anticipating their functioning by using

advanced topological data analysis,� Frontiers in Arti�cial Intelligence, Submitted.

0.4.2 Papers in German magazines

This dissertation has generated the following publication in the magazine brand ATZ,

the world's leading specialist magazine for the automotive sector. In fact, ATZ is

the internationally distributed technology magazine for decision-makers in automotive

development and production and the must-read publication for technology-oriented

management in the automotive industry. Speci�cally, the article was published in the

magazine ATZextra dedicated to important topics focused on the German-speaking market:

1. F. Chinesta, A. Sancarlos, A. Abel, �Batteriemanagementsysteme mit Hybrid Twin

für Lithium-Ionen-Batterien,� ATZextra , Springer Vieweg, vol. 26, Edition: Special

issue 3/2021, pp. 20�23, Juni 2021. URL: https://www.springerprofessional.

de/batteriemanagementsysteme-mit-hybrid-twin-fuer-lithium-ionen-bat/

19313538.

Note:

� �Batteriemanagementsysteme mit Hybrid Twin für Lithium-Ionen-Batterien� is

translated into �Battery management systems for lithium-ion batteries with Hybrid

Twin�

� �Juni� is translated into �June�

0.4.3 Conference Proceedings

1. A. Sancarlos, P. De Miguel, M. Cameron, E. Cueto, F. Chinesta, J.L. Duval, �Battery

Hybrid Twin in Electrical Vehicle Monitoring and Planning ,� FISITA 2021 World

Congress � Conference Proceedings, 2021.

2. V. Champaney, A. Sancarlos, F. Chinesta, E. Cueto et al., �Hybrid Twins � a highway

towards a performance-based engineering. Part I: Advanced Model Order Reduction

enabling Real-Time Physics ,� ESAFORM Conference Proceedings, 2021. DOI:

10.25518/esaform21.2017.

0.4.4 International Conferences

1. A. Sancarlos, S. Clenet, T. Henneron, E. Cueto, F. Chinesta, J.L. Duval. Novel and

advanced numerical techniques for diagnosis and prognosis. Mechanistic Machine

Learning and Digital Twins for Computational Science, Engineering and Technology:

MMLDT-CSET 2021. Hyatt Regency Mission Bay, San Diego, CA, US. 2021

2. V. Champaney, A. Sancarlos, F. Chinesta, E. Cueto, J.L. Duval, A. Chambard.

Hybrid Twins for empowering performance-based engineering. Part I. Real-time

physics-based models. Mechanistic Machine Learning and Digital Twins for

Computational Science, Engineering and Technology: MMLDT-CSET 2021. Hyatt

Regency Mission Bay, San Diego, CA, US. 2021
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Hybrid Twins for empowering performance-based engineering. Part II. Real-time

data-driven models and hybridation. Mechanistic Machine Learning and Digital

Twins for Computational Science, Engineering and Technology: MMLDT-CSET

2021. Hyatt Regency Mission Bay, San Diego, CA, US. 2021

4. A. Sancarlos, P. De Miguel, M. Cameron, E. Cueto, F. Chinesta, J.L. Duval. Battery

Hybrid Twin in Electrical Vehicle Monitoring and Planning. FISITAWorld Congress.

Virtual Congress. 2021
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6. A. Sancarlos, K. Bouayed, N. Zerbib, E. Cueto, F. Chinesta, J.L. Duval. Fast

Computation in Electric Motors for Design, Optimization and Prediction of Noise,

Vibration and Harshness. IX International Conference on Couled Problems in Science

and Engineering: COUPLED. Virtual Congress. 2021

7. V. Champaney, A. Sancarlos, F. Chinesta, E. Cueto et al., Hybrid Twins � a highway

towards a performance-based engineering. Part I: Advanced Model Order Reduction

enabling Real-Time Physics. ESAFORM. Virtual Conference. 2021

8. A. Sancarlos, M. Cameron, E. Cueto, F. Chinesta, J.L. Duval. Towards

Battery Management Systems through Reduced Order Models and Machine Learning

Techniques. 14th World Congress in Computational Mechanics and ECCOMAS

Congress: 14th WCCM-ECCOMAS Congress. Virtual Congress. 2021

9. A. Sancarlos, F. Chinesta, E. Cueto, J.L. Duval et al., From Battery Cells Reduced

Order Modeling to Real-time Planning and System Integration. ADMOS. El Campello

(Alicante), Spain. 2019

10. A. Sancarlos, F. Chinesta, E. Cueto, J.L. Duval et al., Towards a Hybrid

Twin paradigm for battery management system. ECCM-ECFD 2018: 6th

European Conference on Computational Mechanics and 7th European Conference

on Computational Fluid Dynamics. Glasgow, UK. 2018

0.4.5 International ESI Conferences

1. A. Sancarlos, F. Chinesta, A. Abel.From Battery Cells Reduced Order Modeling to

Real-time Planning and System Integration. PUCA � ESI Users' Forum. Tokyo,

Japan. 2018

0.4.6 Batteries Europe Meetings

Nowadays, ESI Group is participating in the Batteries Europe project [Alliance 2019] which

aims to bring together all relevant stakeholders in the European batteries research and

innovation ecosystem in order to develop and support a competitive battery value chain

in Europe. In my case, due to the battery research done in the present thesis, I am a

representive of ESI Group in the following working groups:

1. WG1: New and Emerging Battery Technologies

2. WG3: Advanced Materials

21



Introduction

3. WG4: Manufacturing and Cell Design

In addition, I participated in the following european meetings organised by the European

Comission:

1. �WG1 Panel Meeting� of Batteries Europe which took place on October 4th 2019 in

Helmholtz Institute Ulm (HIU), Germany.

2. �WG1 Meeting� of Batteries Europe which took place on February 27th 2020 in the

European Comission, Brussels.

3. WG1-Batteries Europe web-meeting which took place on June 8th 2020.

0.4.7 Seminars given as a presenter

1. �Batteries & Model Order Reduction Techniques� which took place on January 20th

2020 in Lille, France. I gave this seminar of two hours in front of professors, post-docs

and PhD students of the research team L2EP (Laboratory of Electrical Engineering

and Power Electronics) and lead to fruitful discussion on model order reduction.

2. �Hybrid Twin Concept applied to Battery Management Systems� which took place

on the 10th, 11th and 12th of February 2020 in Madrid, Spain. I gave this seminar

of 27 hours to the Technical team ESI Group Hispania.S,L.

0.5 Scienti�c dissemination

Concerning the area of scienti�c dissemination, I participated in the French competition

entitled �Ma thèse en 180 secondes (MT180s)� which is inspired in the Three minute thesis

competition (3MT) founded by the University of Queensland (UQ). The idea is to cultivate

students' academic, presentation, and research communication skills as well as spreading the

research topics carried out during the PhD. In fact, I reached the ��nale HESAM Université

édition 2021�. The participation was broadcasted live and recorded. The link to re-watch

this thesis presentation on replay is: https://www.youtube.com/watch?v=bzeXt1tHnN4&

list=PL9j4_iHDzbySir44OHEuVocuVYHOvo5Pe&index=7
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Chapter 1

Advanced numerical techniques:

intrusive Model Order Reduction

techniques

Abstract Model order reduction (MOR) techniques are methodologies for reducing the

computational complexity of mathematical models in numerical simulations. They aim to

lower the aforementioned complexity when it is not practical or feasible the employment of

the full-order physics-based model to address the target needs (e.g. the set-up requirements

for a given industrial application or physics experimentation). For instance, imagine an

application where it is needed to compute the current torque of an electric motor in real-time

with the accuracy of a �nite element method (FEM) model. Thus, as the FEM model does

not allow real-time feedback, a MOR technique can then be employed to obtain a ROM

which satisfy the requirements for this application. Consequently, if an intrusive MOR

technique is selected (the type presented in this Chapter), the mathematical formulation

of the FEM model is changed accordingly. This way, we reached a key concept: instrusive

MOR techniques need to reformulate the set of PDEs which de�ne the prolem. Therefore,

the "intrusiveness" comes from the fact that the mathematical problem and solver must be

reformulated. Furthermore, these techniques have proven to be extremely powerful. They

achieved to run simulations or Design of Experiments (DoE), which would last years using

standard procedures (FEM or FDM for instance), in some minutes of o�-line simulation.

And not only that but, once the ROM is constructed, they can provide real-time feedback.

Worthy of special mention is the intrusive Proper Generalized Decomposition (PGD), which

allows to create virtual charts composed by high-dimensional parametric solutions while

maintining an excellent agreement with the full order model. Furthermore, the key and top

value of this technique is that it avoids the curse of dimensionality when computing this

type of parametric functions which, by the way, can usually be particularized in real-time.

In this work, we are going to focus on two intrusive MOR techniques: the Proper

Orthogonal Decomposition (POD) and the aforementioned PGD. Speci�cally, the goal of

this Chapter is to present the theoretical basis to employ the above techniques.

The reason is that they are going to be used in the following chapters (4, 5 and 7

respectively).
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1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.1 Introduction

Nowadays, numerical simulation is present in most scienti�c �elds and engineering domains,

making accurate designs and virtual evaluation of systems responses possible � drastically

cutting the number of experimental tests [Panel 2006, Chinesta et al. 2020]. In fact, the

success and wide range of application of techniques such as the FEM is undisputed.

However, in spite of this impressive progress made during the last decades in

mathematical modelling and techniques of scienti�c computing, many problems in

science and engineering remained and remain intractable [Panel 2006, Argerich 2020,

Quaranta 2019, Chinesta et al. 2013a].

In fact, standard numerical tools (e.g., FEM [Ida & Bastos 1992,

Fish & Belytschko 2007], FDM [Patankar 1980, Ida & Bastos 1992] or FVM

[Patankar 1980]) can present serious di�culties or directly fail under di�erent challenging

scenarios. Among them, we can cite [Chinesta et al. 2013a, Chinesta et al. 2017]:

� Those related to highdimensional models (e.g., in dynamics of complex �uids,

quantum chemistry), for which classical mesh-based approaches fail due to the

exponential increase of the number of degrees of freedom.

� Those requiring many direct solutions of a given problem. For instance, optimization,

inverse identi�cation or uncertainty quanti�cation. In this case, the computational

cost to carry out the high number of simulations to perform the aforementioned tasks

is limiting or prohibitive. This is further exacerbated when the accuracy of full order

models is strongly desired.

� Those needing very fast solutions (i.e., for real-time simulation, simulation-based

control). Here, the problem usually lies in the time cost of the full order or

high-�delity model which is far away from real-time constraints.

Therefore, we can conclude that standard numerical tools fail in some scenarios because

their numerical complexity, or the restrictions imposed by di�erent requirements (real-time

on deployed platforms, for instance) make them una�ordable.

In this context, the intrusive Model Order Reduction framework was borned as an

appeling route to o�er new simulation alternatives by circumventing, or at least alleviating,

otherwise intractable computational challenges.

In this Chapter, we present and describe the theoritical basis of two di�erent intrusive

MOR techniques.

Firstly, the Proper Orthogonal Decomposition is discussed as a general methodology for

extracting the most signi�cant characteristics of a system's behavior and representing them

in a set of "POD basis vectors." These basis vectors then provide an e�cient (typically

low-dimensional) representation of the key system behavior, which proves useful in a

variety of ways. The most common use is to project the system governing equations

onto the reduced-order subspace de�ned by the POD basis vectors. This yields an

explicit POD reduced model that can be solved in place of the original system. The

POD basis is also able to provide a low-dimensional description in which to compute

parametric interpolation as well as performing model adaptation. Due to its broad

applicability to linear and nonlinear systems, the POD has become widely used in many
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di�erent application domains. For instance, [Sempey et al. 2009, Carlberg & Farhat 2011,

Allery et al. 2004, Carlberg & Farhat 2008, Allery 2002]. Furthermore, the POD technique

has been developed and re-discovered in many branches of science under di�erent names

such as Principal Component Analysis (PCA) [F.R.S. 1901]. There is an extensive literature

and POD has seen broad application across �elds. Some review of POD and its applications

can be found in [Dowell & Hall 2001, Benner et al. 2015]

Secondly, the intrusive PGD within its theoretical framework is presented. This

methodology was borned as an excellent tool to handle the aforementioned list of features

which cannot be solved employing direct, traditional numerical strategies. The cornerstone

of the PGD is that it deals with the curse of dimensionality. Maybe, the reader unfamiliar

with this phenomenan is wondering what is. Imagine, for example, the solution sought

of a model de�ned in a space of dimension P using a standard mesh-based discretization

technique, wherein N nodes are used for discretizing each space coordinate. The resulting

number of nodes reaches the astronomical value of NP . With N = 103 (a coarse description

in practice) and P = 5 (a very simple model) the numerical complexity is 1015, which is

larger than the sum of the presumed number of stars contained in the Andromeda Galaxy

plus the presumed number of galaxies in the observable universe! Making matters worse,

imagine that you add the temporal dimension with the same discretization N : you will

have to deal with an incremental procedure that involves the solution of a boundary value

problem (BVP) of the above characteristics at each time step, that is, a total of 1000 BVP's

with 1015 nodes. This is the previously introduced concept of curse of dimensionality and its

e�ects are devastating in many areas of science and engineering. However, the PGD comes

to the rescue avoiding the exponential complexity with respect to the problem dimension

if the sought solution is well-expressed in the PGD framework. Speci�cally, the complexity

of the PGD grows linearly with the problem's dimension.

For this reason, the PGD has allowed to solve parametric problems in phase spaces

of one hundred dimensions with excellent agreement [Cueto et al. 2016]. Furthermore,

it enabled to concept of high-�delity parametric models de�ning virtual charts as a

powerful tool to e�cient optimization, inverse identi�cation and real-time simulation.

This parametric models follow an o�-line/on-line strategy in which a high-dimensional

parametric function is computed adding simulation settings (e.g., loads, boundary

conditions, initial conditions, material properties, ...) as a extra-coordinates of the

problem. Once the PGD solution is calculated in the o�-line step, its on-line employment

only requires particularizing the parametric solution for a desired set of parameter

values. Consequently, this task can be performed very fast and repeatedly in real-time,

by using light computing platforms such as smartphones or tablets [Bognet et al. 2012,

Ghnatios et al. 2012b, Chinesta et al. 2013a]. In addition, inverse methods were addressed

in [Gonzáles et al. 2012] in the context of real-time simulations and they were coupled with

control strategies in [Ghnatios et al. 2012b] as a �rst step towards DDDAS.

In contrast to POD, which is a posteriori MOR technique, PGD is a priori methodology.

For this reason, unlike a posteriori methods, PGD does not require snapshots or empirical

realisations of the problem at hand to construct the ROM. Speci�cally, The PGD builds,

by means of a successive enrichment strategy, a numerical approximation of the unknown

�elds in a separated form involving a priori unknown functions of individual or clustered

coordinates of the problem.

As stated in [Cueto et al. 2016], the origin of Proper Generalized Decompositions, can

be traced back to the so-called radial loading within the LATIN method [Ladeveze 1999]

as a space-time separated representation in non-incremental structural mechanics solvers.

Independently, Chinesta and coworkers in their seminal papers [Ammar et al. 2006,
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Ammar et al. 2007] developed a method for the solution of non-Newtonian �uid models

de�ned in high-dimensional phase spaces that were soon identi�ed as a generalization of

the work by P. Ladeveze. PGD is constructed indeed upon a very old idea, the method of

separation of variables or Fourier method for partial di�erential equations. But the main

novelty lies in the ability of PGD for the construction of sums of separated functions a

priori, i.e., without any prior knowledge on the solution nor the need for costly computer

experiments or snapshots.

In addition to the references already cited, the following examples are suggested

to the reader unfamiliar with the PGD for further research on the subject considering

the great capabilities o�ered by this technology. For instance, PGD has enabled the

development of e�cient surgery simulators with haptic response [Niroomandi et al. 2013,

Quesada et al. 2018] or it allowed complex simulations on handheld, deployed devices such

as smartphones or tablets [Ghnatios et al. 2012b]. Furthermore, the PGD technology has

important implications in augmented reality applications, paving the way to the possibility

to include real-time simulations of complex physics.

1.2 Proper Orthogonal Decomposition

POD model reduction follows an o�ine-online strategy, where the reduced model is built

once in the o�-line phase and then used in the on-line phase. The o�-line phase is

concerned about the extraction and computing of the POD basis vectors in order to infer

a low-dimensional description of the system. This involves:

� expensive simulations of the full model to generate the snapshots needed to compute

the POD basis.

� projection of the full model onto the reduced subspace de�ned by the POD basis.

� if applicable: strategies to e�ciently deal with nonlinear terms or/and parametric

dependence

The �rst point is adressed in Section 1.2.1 while he other ones are revisited in Section 1.2.2.

1.2.1 Method of snapshots: Obtaining the POD basis

The following general full system model is considered:

E(µ)
du

dt
+ G(µ)u = f(µ,u) (1.1)

where u ∈ Rn is the state vector of dimension n and µ ∈ Rnµ is a vector of nµ parameters.

The full model operators are G(µ) ∈ Rn×n, E(µ) ∈ Rn×n, and f(µ,u) ∈ Rn. The full

system was written as a system of nonlinear ODEs to emphasize the general applicability

of the POD technique.

It is worthy to mention that models of interest usually come from discretization of

partial di�erential equations. For instance, if the following PDE is considered (with a

single spatial variable):

ut = Lu(x, t) +N (u, ux, uxx;µ) (1.2)

where L is a linear partial di�erential operator, N prescribes the generically non-linear

evolution and:

ut =
∂u

∂t
, ux =

∂u

∂x
, uxx =

∂

∂x

(∂u
∂x

)
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If a standard spatial discretization of Eq. (1.2) is carried out, evaluating the spatial variable

x at n >> 1 points:

uk = u(xk, t), for k = 1, . . . , n; ux =
uk+1 − uk−1

2∆x
; uxx =

uk+1 − 2uk + uk−1

∆x2

Using standard �nite-di�erence formulas, Eq. (1.2) is transformed in a equation which

follows the general form of Eq. (1.1).

du

dt
= Lu + N(u,µ) (1.3)

where: u =

u1

...

un

, L ∈ Rn and N(·) prescribes the generically non-linear evolution.

Next, consider a set of ns snapshots, y1, . . . ,yns , which are state solutions computed

at di�erent instants in time and/or di�erent parameter values. Here, yj = u(tj ;µj) denotes

the j-th snapshot, where tj and µj are respectively the time and parameter values for the

j-th snapshot.

In addition, let us consider Y as the matrix containing the ns snapshots collected for

our problem. Therefore, Y = [y1, . . . ,yns ] ∈ Rn×ns is a matrix with rank d ≤ min(n, ns),

where y1, . . . ,yns are column vectors. Further, let Y = ΞΣV> be its singular value

decomposition, where Ξ = [ξ1, . . . , ξn] ∈ Rn×n, V = [v1, . . . ,vns ] ∈ Rns×ns are orthogonal
matrices and the matrix Σ ∈ Rn×ns has the form given by Eq. (1.5). Then for any

r = {1, . . . , d} the solution to following constrained optimization problem:

max
ξ̃1,...,ξ̃l∈Rn

r∑
i=1

ns∑
j=1

∣∣∣〈yj , ξ̃i〉Rn ∣∣∣2,
subject to 〈ξ̃i, ξ̃j〉Rn = δij for 1 ≤ i, j ≤ r,

(1.4)

with the Kronecker Delta tensor de�ned as

δij =

{
1, if i = j,

0, if i 6= j,

is given by the singular vectors {ξi}ri=1, i.e., by the �rst r columns of Ξ. Moreover, the

maximum value of Eq.(1.4) is given by the sum of the �rst r singular values of the diagonal

matrix Σ,

Σ =

(
D 0

0 0

)
∈ Rn×ns ,

D = diag(σ1, ..., σd) ∈ Rd×d.
(1.5)

In Eq. (1.5), the diagonal entries are sorted in descending order.

The problem (1.4) consists in approximating all spatial coordinate vectors yi of Y by a

linear combination of normalized vectors as well as possible. The constraint of the problem

serves to normalize the functions ξi and thus ensure the uniqueness of the solution. It also

adds the property of orthonormality between the r functions which solves the problem.

The choice of r is usually based on heuristic considerations combined with observing

the ratio between the modeled energy to the total energy contained in the system Y, which

29



Chapter 1. Intrusive Model Order Reduction techniques

is expressed by:

ζ(r) =

r∑
i=1

λi

d∑
i=1

λi

. (1.6)

Note also that σ2
i = λi.

In the present work, the constraint 1 > ζ(r) > 0.9999 is considered to construct the

POD basis.

1.2.2 POD reduced order models

To derive the POD reduced model, the �rst step is to represent the full state in the reduced

basis obtained in the previous Section:

u ≈ Ξur (1.7)

where ur ∈ Rr is the reduced state vector containing the POD modal coe�cients and

Ξ ∈ Rn×r contains just the r columns employed to construct the POD model. Introducing

the above approximation Eq. (1.7) into the full model equations leads to a residual, since

generally the full order state will not lie exactly in the span of the reduced model basis.

A Galerkin projection imposes orthogonality between the residual and the POD basis.

Therefore, consider the Galerkin projection of the residual leading to the POD reduced

model:

Er(µ)
dur
dt

+ Gr(µ)ur = fr(µ,Ξur) (1.8)

where the reduced model operators are Gr = Ξ>G Ξ ∈ Rr×r, Er = Ξ>E Ξ ∈ Rr×r and
the nonlinear term is fr(µ,ur) = Ξ>f(µ,Ξur)

If the non-linear term does not exist or it can be linearized, there are already huge

advantages to be gained by using the above POD reduced model directly (Equation (1.8)).

This is the case of the POD model of Chapter 7.

On the other hand, if f exists, it can be observed from Eq. (1.8) that the evaluation of fr
requires computations that involve the large dimension n, which can increase signi�cantly

the computational complexity when solving the POD reduced model. To deal with this

problem, it is convenient to introduce an additional approximation that removes the direct

dependence of fr on Ξur. The most successful methods to achieve this combine selective

spatial sampling of f with an interpolation strategy. Among this class of methods, the

Missing Point Estimation [Astrid et al. 2008] and Gauss Newton with approximated tensors

(GNAT) [Carlberg et al. 2013] methods both build upon the gappy POD interpolation

method [Everson & Sirovich 1995], while the Empirical Interpolation Method (EIM) of

[Barrault et al. 2004] and its discrete variant, the Discrete Empirical Interpolation Method

(DEIM) of [Chaturantabut & Sorensen 2010], conduct interpolation on a low dimensional

basis for the nonlinear term. Furthermore, hyper-reduction methods are also developed

to reduce the dimensionality (degrees of freedom) as well as the number of integration

points of non-linear parameterized �nite element models, thus addressing the non-linear

term [Fritzen et al. 2016, Ryckelynck 2005, Hernández et al. 2014, Amsallem et al. 2014,

Farhat et al. 2015, Chapman et al. 2017]. For the unfamiliar reader, the reading of the

cited papers is suggested for a in-depth analysis of these methods.

To address an e�cient handling of POD reduced model parametric dependence, it is

also recommended the reading of [Benner et al. 2015] for a detailed discussion of the various

ways of handling parametric dependence in ROMs.
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It is also important to note that the selection of the snapshot set can a�ect

signi�cantly the POD basis and consequently, the resultant reduced order model.

Optimal snapshot selection for the case of a time-dependent system is considered in

[Kunisch, Karl & Volkwein, Stefan 2010], where the time locations of snapshots are chosen

to minimize the error between the POD solution and the trajectory of the original dynamical

system. In many cases the POD is used to create a ROM that targets a particular range

of system behavior; in those cases, the snapshot set is chosen based on a sampling criterion

of the full order model over the range of interest. Nevertheless, if the system depends on

more than two-three parameters, di�culties can arise concerning the feasibility to obtain

snapshots by brute-force sampling. In these scenarios, one can use sparse grid sampling

or greedy sampling. For instance, [Bui-Thanh et al. 2008] use greedy sampling to derive a

POD reduced model for a thermal problem with 21 parameters.

To end up, the reading of [Brunton & Kutz 2019] and [Chinesta et al. 2017] is strongly

recommended for further information about research, advances and development concerning

the POD.

1.3 Proper Generalized Decomposition

The cornerstone of the PGD is its ability to construct a solution composed of sums of

separated functions a priori, i.e., without any prior knowledge on the solution nor the

need for costly computer experiments or snapshots. To illustrate the PGD approach, the

following example is considered. The sought function of a given PDE whose solution (u)

is approximated in the PGD framework depending on space, time and a number nµ of

parameters, takes the form:

u(x, t, µ1, ..., µnµ) ≈ uM =

M∑
m=1

ϑxm(x) · ϑtm(t) · ϑ1
m(µ1) · · ·ϑnµm (µnµ) (1.9)

where the functions ϑpm are the ones determined during the PGD procedure and they

are unknown a priori, µi refers to the parameters in�uencing the solution and M is the

truncation level or number of modes.

In a more compact form, and considering a function with P dimensions (s1, ..., sP ), the

representation takes the form:

uM (s1, ..., sP ) =

M∑
m=1

P∏
p=1

ϑpm(sp), (1.10)

In fact, the PGD methodology can strongly alleviate the curse of dimensionality (by several

orders of magnitude) through solving a Partial Di�erential Equation (PDE) or a set of

PDEs in a high-dimensional space using the aforementioned separated representation. This

allows the creation of high-dimensional and highly accurate multiparametric solutions that

otherwise would be impossible to obtain.

To compute the above functions ϑpm, a non-linear problem must be formulated.

However, simple techniques have demonstrated to provide very good results

[Dumon et al. 2011, Modesto et al. 2015, Nadal et al. 2015a, Zlotnik et al. 2015,

Chinesta et al. 2010, Henneron & Clenet 2014, Chinesta et al. 2011, Cueto et al. 2016].

Usually, the approach is based on employing a greedy algorithm such that, once the

approximation up to order M − 1 is known, the new M -th order term is found using a

non-linear solver (Picard, Newton, for instance). As stated in [Cueto et al. 2016], naive

linearization strategies such as �xed point iterations usually provide very good results.
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To illustrate how PGD deals with the curse of dimensionality, consider the following

example. Imagine that N nodes are used to discretize each dimension Ωj . Calling P to the

total number of dimensions and M to the total number of modes (truncation level), the

total number of unknowns for the PGD algorithm is M ×N ×P instead of the NP degrees

of freedom involved in standard mesh-based discretizations. Furthermore, as stated in

[Chinesta et al. 2013a], all numerical experiments carried out show that the number of terms

M required to obtain an accurate solution is not a function of the problem dimension P ,

but it rather depends on the separable character of the exact solution. The PGD thus often

avoids the exponential complexity with respect to the problem dimension. Indeed, usually a

huge decrease in computational time is achieved to obtain highly accurate multi-parametric

models that would otherwise be unimaginable.

Concerning dynamic problems, it is interesting to note the remarkable di�erence

between the PGD strategy and traditional incremental time integration schemes. In fact,

the PGD enables for a non-incremental solution of time-dependent problems. This way,

time evolution is computed at the same time that the spatial response. In other words, the

solution along the spatial dimensions is computed in the whole time interval simultaneously.

This is signi�cantly di�erent from a standard, incremental solution procedure. If NT is

the total number of time steps needed to �nish the numerical simulation, an incremental

procedure involves the solution of a BVP in Ωx×Ωy ×Ωz at each time step, that is a total

of NT BVP's. This can be, in fact, a huge number as the time step ∆t must be selected

su�ciently small to guarantee the stability of the time-integration scheme. For this reason,

in the scenario concerning 3D transient PDEs, the time savings when employing the PGD

are able to be of many orders of magnitude.

Furthermore, it is worthy to mention that the PGD also allows additional features such

as parametric domains or the possibility to add to the parametric models unusual variables

such as loads, boundary condition or initial conditions, to cite only a few.

Next Section will detail the Separated representation constructor of the PGD.

1.3.1 Separated representation constructor

The problem formulation addressed in the present work (Section 4.2) involves the space

and parameters separated representation. For the sake of completeness, this Section aims

at illustrating in a simple case the construction of such a separated representation. This

way, the followed mathematical procedure of the PGD can be detailed for the unfamiliar

reader. For that purpose, we consider the 2D parametric problem

∇ · (∇u(x, y)) = g, (1.11)

with uniform source term g, and homogeneous Dirichlet boundary conditions, de�ned in

the separable domain Ω = Ωx × Ωy. We wish to compute at once a general solution of the

problem for all values of g in a given interval of values Ωg.

In the PGD framework, it is thus considered the source term g as an extra-coordinate,

in addition to the space coordinates x and y. The problem (1.11) is now de�ned for

(x, y, g) ∈ Ωx × Ωy × Ωg.

Thus, instead of solving a series of di�usion problems for di�erent discrete values of

the source term, we wish to solve at once a more general problem. The price to pay is of

course an increase of the problem dimensionality. This is not a major issue for the PGD,

whose computational complexity scales only linearly (and not exponentially) with the space

dimension. Moreover, being the domain Ω separable, a fully separated representation can be

envisaged, that reduces the parametric 2D problem to a sequence of three one-dimensional
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problems, the �rst involving the x-coordinate, the second the y-coordinate and the third

and last, the g-extra-coordinate, as described in what follows.

The extended weighted residual form of (1.11) reads∫
Ωx×Ωy×Ωg

u∗
(
∂2u

∂x2
+
∂2u

∂y2
− g
)
dx dy dg = 0, (1.12)

for all suitable test functions u∗.

The separated form of the searched solution reads

u(x, y, g) =

N∑
m=1

Xm(x)Ym(y)Gm(g), (1.13)

where each term will be computed one at a time, enriching the PGD solution until reaching

the convergence. Please note that, in order to facilitate the reading, the mathematical

notation of the separated representation has been simpli�ed in this example by doing Xm =

ϑ1
m, Ym = ϑ2

m and Gm = ϑ3
m.

At step M of the PGD algorithm, the following approximation is assumed already

calculated,

uM−1(x, y, g) =

M−1∑
m=1

Xm(x)Ym(y)Gm(g), (1.14)

and wish to compute the functions involved in the M -mode, XM (x), YM (y) and GM (g),

according to

uM = uM−1 +XM (x)YM (y)GM (g). (1.15)

The weighted residual form (1.12) de�nes a non-linear problem which is solved

iteratively. Each iteration k of the nonlinear solver consists of the three steps:

1. Compute Xk
M (x) from the other two functions taken at the previous nonlinear

iteration, i.e. Y k−1
M (y) and Gk−1

M (g);

2. Compute Y kM (y) from Xk
M (x) and Gk−1

M (g);

3. Compute GkM (g) from Xk
M (x) and Y kM (y).

In what follows these three calculations are detailed.

� Computing Xk
M (x) from Y k−1

M (y) and Gk−1
M (g)

With the trial and test functions given by

uM,k(x, y, g) =

M−1∑
m=1

Xm(x)Ym(y)Gm(g) +Xk
M (x)Y k−1

M (y)Gk−1
M (g), (1.16)

and

u∗(x, y, g) = X∗(x)Y k−1
M (y)Gk−1

M (g), (1.17)

respectively, the weighted residual formulation reads∫
Ωx×Ωy×Ωg

X∗(x)Y k−1
M (y)Gk−1

M (g)

(
d2Xk

M (x)

dx2
Y k−1
M (y)Gk−1

M (g) +Xk
M (x)

d2Y k−1
M (y)

dy2
Gk−1
M (g)

)
dx dy dg =
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∫
Ωx×Ωy×Ωg

X∗(x)Y k−1
M (y)Gk−1

M (g) RM−1 dx dy dg, (1.18)

where RM−1 is the residual related to uM−1(x, y, g),

RM−1 = g −
M−1∑
m=1

(
d2Xm(x)

dx2
Ym(y)Gm(g) +Xm(x)

d2Ym(y)

dy2
Gm(g)

)
. (1.19)

Since all functions of the y-coordinate and the source term g-extra-coordinate are

known, we can integrate (1.18) over Ωy × Ωg, to obtain∫
Ωx

X∗(x)

(
αx,k

d2Xk
M (x)

dx2
+ βx,kXk

M (x)− γx,k+

+

M−1∑
m=1

(
δx,km

d2Xm(x)

dx2
+ ξx,km Xm(x)

))
dx = 0, (1.20)

where coe�cients αx,k, βx,k, γx,k, δx,km and ξx,km result from the integrals in Ωy × Ωg
of the di�erent products of functions Ym(y), Gm(g), Y k−1

M (y) and Gk−1
M involved in

Eq. (1.18).

With Eq. (1.20) valid for any function X∗(x), we can extract its associated strong

form

αx,k
d2Xk

M (x)

dx2
+ βx,kXk

M (x) = γx,k −
M−1∑
m=1

(
δx,km

d2Xm(x)

dx2
+ ξx,km Xm(x)

)
, (1.21)

whose solution results in the searched function Xk
M (x).

� Computing Y kM (y) from Xk
M (x) and Gk−1

M (g)

With the test function given by

u∗(x, y, g) = Xk
M (x)Y ∗(y)Gk−1

M (g), (1.22)

and following the same rationale than previously, after integrating the weighted

residual form in Ωx × Ωg and extracting the resulting strong form, we obtain

αy,k
d2Y kM (y)

dy2
+ βy,kY kM (y) = γy,k −

M−1∑
m=1

(
δy,km

d2Ym(y)

dy2
+ ξy,km Ym(y)

)
. (1.23)

� Computing GkM (g) from Xk
M (x) and Y kM (y)

Finally, with the test function given by

u∗(x, y, g) = Xk
M (x)Y kM (y)G∗(g), (1.24)

and following the same rationale than previously, after integrating the weighted

residual form in Ωx × Ωy and extracting the resulting strong form, we obtain

βg,kGkM (g) = γg,kg −
M−1∑
m=1

ξg,km Gm(g). (1.25)
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The described alternating direction strategy can be started, for instance, from an arbitrary

initial guess (Y 0
M , K0

M ). Then, these non-linear iterations proceed until reaching a �xed

point within a user-speci�ed tolerance ε, i.e.:∥∥Xk
M (x) · Y kM (y) ·GkM (g)−Xk−1

M (x) · Y k−1
M (y) ·Gk−1

M (g)
∥∥ < ε

or ∥∥Xk
M (x) · Y kM (y) ·GkM (g)−Xk−1

M (x) · Y k−1
M (y) ·Gk−1

M (g)
∥∥∥∥Xk−1

M (x) · Y k−1
M (y) ·Gk−1

M (g)
∥∥ < ε

where ‖·‖ is a suitable norm. The enrichement stepM ends with the assignments XM (x)←
Xk
M (x), YM (y)← Y kM (y) and GM (g)← GkM (g). Furthermore, the enrichment process itself

stops when an appropiate measure of error E(M) becames small enough, i.e. E(M) < ε̃. As

an example, one can use:

E(M) =
‖XM (x) · YM (y) ·GM (g)‖
‖X1(x) · Y1(y) ·G1(g)‖

(1.26)

where ‖·‖ is a suitable norm. Selecting for example the L2-norm:

‖XM (x) · YM (y) ·GM (g)‖2 =

(∫
Ωx×Ωy×Ωg

(
XM · YM ·GM

)2

dx dy dg

) 1
2

=

(∫
Ωx

(
XM

)2

dx

) 1
2

·

(∫
Ωy

(
YM

)2

dy

) 1
2

·

(∫
Ωg

(
GM

)2

dg

) 1
2

The aforementioned criterion (Eq. (1.26)) is based on the fact that the PGD constructor

starts adding the most signi�cant modes by progressively decreasing their importance at

each enrichment. This way, the norm of the �rst mode (a priori, the most signi�cant one)

is compared with the current mode. If the norm of this newly computed mode is su�ciently

small, the enrichment step is considered over because its inclusion in the �nal solution will

not be signi�cant.

Furthermore, one can apply other stopping criteria discussed in

[Ladevèze & Chamoin 2011, Nadal et al. 2015b, de Almeida 2013, Chinesta et al. 2013a].

To end up, it is worthy to mention that following the same methodology, the discussed

procedure can easily be extended for more complex settings such as the consideration of

more parameters or the inclusion of the temporal dimension.

1.4 Summary

This chapter discussed the motivation of intrusive MOR techniques and it referenced its

development in relation to the two techniques employed in the present work: the POD and

the intrusive PGD. In additional, the achievements that can be obtained with the above

techniques were highlighted as well as their di�erences and range of application.

A special focus was made on the theoretical basis of both techniques to understand how

they are applied in Chapters 4, 5 and 7 of this thesis.

Concerning the POD, the method used to obtain the POD basis was shown in Section

1.2.1, and then its implementation in the mathematical equations was discussed in Section

1.2.2.

On the other hand, in Section 1.3.1, the PGD procedure is illustrated for a case which

involves the space and parameters separated representation, which is the scenario adressed

in Chapter 4.
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This way, the information presented in this Chapter is su�cient to understand and

follow the application of these techniques in the present work.

Furthermore, given the extensive literature and theory, references are also provided for

further knowledge and for an in-depth analysis for those readers who are interested.
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Fundamentals: Presentation of

novel non-intrusive and

data-driven techniques.
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Chapter 2

Novel reduced order formulations,

algorithms and

hybridation/dynamic techniques.

Abstract Non-intrusive MOR techniques are mainly employed to approximate the

numerical solution of parametric models. In fact, they are straightforwardly applicable to

challenging problems characterized by nonlinearity or non a�ne weak forms. In addition,

they can be interfaced with no particular e�ort to existing third party simulation software

making them particularly appealing and adapted to practical engineering problems of

industrial interest. They are also of crucial interest within the Dynamic Data Driven

Application Systems framework. These techniques usually must face problems related to

the expensiveness of data (economically or computationally). Speci�cally, data scarcity and

sparsity. Nowadays, moreover, the demand of this type of solutions is skyrocketing due to

the digital and data revolution and consequently novel approaches are being researched,

tested and proposed to deal with the increasingly number of challenging scenarios. Thus,

the present Chapter is going to present novel techniques to improve and enhance results in

such cases (with the exception of the novel PGD methodologies which will be described in

Chapter 3).

Furthermore, nowadays machine learning, arti�cial intelligence and Big Data are

cutting-edge topics applied in a wide variety of �elds. It becomes thus mandatory to explore

the bene�ts of applying some of these techniques in the framework of this dissertation. In

particular, this Chapter is going to present novel strategies to construct the HT paradigm.

Speci�cally, the proposed approaches guarantee the employement of stable time-integrators

to provide fast and accurate corrections as well as the ability to adress complex behaviours.

This will bring substantial improvements and better possibilities for the DDDAS framework.
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2.4.2.2 Comparing the proposed algorithm with traditional
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2.1 Introduction

The motivation, context and advances which led to the emergence of the non-intrusive and

data-driven techniques was exposed in Section 0.1 of the Introduction Chapter.

In this Chapter, the novel non-intrusive techniques developed during this dissertation to

face the industrial problems described in Chapters 4, 5, 6 and 7 are presented. In particular,

the theoretical basis of these data-driven methodologies is detailed. Other techniques, such

as those relevant to the understanding of the proposals presented, are also reviewed.

Firstly, this chapter begins by continuing and reviewing the theoretical foundations of

the sparse PGD (s-PGD) from a machine learning point of view. In the following chapters,

this technique will be employed to construct novel ROMs in di�erent industrial applications.

Furthermore, later on in Chapter 3, this framework will be taken as a basis for developing

novel PGD methodologies to overcome the limitations of the current state of the art in

challenging scenarios.

Secondly, this thesis introduces a novel sparse reduced order formulation combining the

s-PGD with a Reduced Basis (RB) approach. We will see (in Chapter 4) how the proposed

strategy can be employed to capture complex and challenging physical phenomena as well

as to obtain a further data compression.

Next, a novel algorithm for phase-angle unwrapping for accurately addressing

interpolation of complex numbers is proposed. This new and e�ective strategy was

constructed during this thesis when addressing the problem encountered in Chapter 5 and

compared with state-of-the-art techniques as the ones implemented in Matlab software

[MathWorks 2020].

Subsequently, the techniques proposed for hybridization in the HT context are

presented. Speci�cally, this thesis proposes two novel methodologies, the practical

application of which is carried out in Chapters 6 and 7.

� The �rst one is a stabilization procedure for the DMD and DMDc techniques.

The goal of this �rst methodology is the computation of stable, fast and accurate

corrections in the Hybrid Twin framework, regarding the delicate and important
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problem of stability. In addition, several sub-variants are introduced to guarantee a

low computational cost as well as the achievement of a stable time-integration.

� The second one is the DMD Dictionary strategy which allow us to address complex

non-linear behaviors within the DMD framework. Moreover, this method is able

to produce models that avoid over-�tting quite well, correcting only the operation

ranges with more error.

Moreover, prior to the mentioned new strategies, a big picture of the HT is discussed and

the standard procedures for the DMD and DMDc are introduced.

To end up and to sum up, this chapter presents four disruptive and innovative

methodologies:

� A novel sparse reduced order formulation combining the s-PGD with a Reduced Basis

(RB) approach: the s-PGD + RB strategy. (Section 2.3)

� A novel unwrapping algorithm for accurately addressing interpolation of complex

numbers. (Section 2.4)

� The stabilized DMD and DMDc techniques. (Section 2.5.3)

� The DMD Dictionary strategy. (Section 2.5.4)

These topics contain the theoretical part addressed in the following published articles,

which constitute this chapter:

1. A. Sancarlos, M. Cameron, A. Abel, E. Cueto, J.L. Duval, F. Chinesta, �From

ROM of Electrochemistry to AI-Based Battery Digital and Hybrid Twin,� Archives

of Computational Methods in Engineering , vol. 28, pp. 979�1015, 2021. DOI:

https://doi.org/10.1007/s11831-020-09404-6.

2. S. Vermiglio, V. Champaney, A. Sancarlos, F. Daim, J.C. Kedzia, J.L. Duval,

P. Diez, F. Chinesta, �Parametric Electromagnetic Analysis of Radar-Based

Advanced Driver Assistant Systems,� Sensors, vol. 20, issue 19, 2020. DOI:

https://doi.org/10.3390/s20195686

3. A. Sancarlos, E. Cueto, F. Chinesta, J.L. Duval, �A novel sparse reduced order

formulation for modeling electromagnetic forces in electric motors,� SN Appl. Sci.,

vol. 3, issue 3, 2021. DOI: https://doi.org/10.1007/s42452-021-04310-3.

4. A. Sancarlos, M. Cameron, J.M. Le Peuvedic, J. Groulier, E. Cueto, F. Chinesta,

J.L. Duval, � Learning stable reduced-order models for hybrid twins,� Data-Centric

Engineering, Submitted.

2.2 The Sparse Proper Generalized Decomposition

2.2.1 Introduction

This Section presents an overview of the sparse Proper Generalized Decomposition (s-PGD

in what follows) to generate response surface based on scattered data. This type of

methodologies are of crucial importance within the data-driven framework whenever the

data has to be interpolated/extrapolated to infer behaviours at locations where there are

no experimental measurements. Initially, the s-PGD was presented as a combination

of the PGD rationale together with a collocation procedure [Ibáñez Pinillo et al. 2018,

Ibanez Pinillo 2019]. However, in this dissertation, we present this technique in a di�erent
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way, that is, from a machine learning point of view. This will allow us to lay the groundwork

for developing new PGD techniques (see Chapter 3) to boost performance in challenging

scenarios. It is worthy to mention that this technique is employed when constructing

high-dimensional parametric models. In fact, if an usual response surface-like approach is

chosen under this setting, a large sampling e�ort is to be expected, that grows exponentially

with the number of parameters. For this reason, a method able to circumvent the so-called

curse of dimensionality should be used [Laughlin & Pines 2000]. This is one of the contexts

where the s-PGD has one of its greatest strengths. The reason is that this methology

alleviates the curse of dimensionality by means of the separation of variables and it makes

use of the data only at the experimental sample points.

2.2.2 s-PGD methodology: Basis of the technique

The reader unfamiliar with the standard Proper Generalized Decomposition (PGD) method

for solving PDEs, is directed to review the Chapter 1 of the present thesis. In this Section a

brief exposition of the s-PGD is presented from a regression point of view. After discussing

the s-PGD basis, the novel approach will be presented in Section 2.3. Here, let us consider

an unknown function:

f(s1, ..., sP ) : Ω ⊂ RP → R,

which depends on P di�erent variables, considered as dimensions of the state space sp,

p = 1, . . . , P .

The sparse PGD (s-PGD) approach tries to approximate the function f using a

separated (tensor) representation. As in standard PGD procedures, it expresses the function

f using a sum of products of one-dimensional functions each one involving one dimension.

Each sum is called a mode.

In the context of regression problems, the goal is to �nd a function f̃ which minimizes

the distance to the sought function

f̃ = arg min
f∗

nt∑
i=1

‖f(si)− f∗(si)‖ , (2.1)

and that takes the separated form

f̃(s1, ..., sP ) =

M∑
m=1

P∏
p=1

ϑpm(sp), (2.2)

where M is the number of modes and ϑpm is the one-dimensional function of the mode m

and dimension p. nt is the number of sampling points to perform the regression and si are

the di�erent vectors which contain the data points of the training set. ‖·‖ is the chosen

norm to measure the distance between two points.

The other objective is that the function f̃ has to perform as well in the training set as in

other possible test sets. This second goal is more di�cult to achieve, yet is more important

because this evaluates the predictive ability of the model f̃ , that is, the capacity to have

good predictions when the model is fed with untrained data. Achieving this is particularly

di�cult when confronted with a high-dimensional problem, which provides sparse data.

The s-PGD methodology is based on creating a function f̃ with the separated form

expressed by (2.2). Then, the functions {ϑpm}Mm=1 for each p are formed by a linear

combination of a set of basis functions:

ϑpm(sp) =

D∑
j=1

Np
j,m(sp)apj,m = (Np

m)>apm, (2.3)
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where D represents the degrees of freedom of the chosen approximation. In addition, Np
m is

a column vector with the set of basis functions for the p dimension and the m-th mode and

apm is a column vector with the coe�cients for the p dimension and the m-th mode. The

important issue here is to know which set of basis functions are best suited for the problem

at hand. For example, a Fourier basis or a polynomial basis can be selected.

The determination of the coe�cients in each one-dimensional function for each mode

m = 1, . . . ,M is done by employing a greedy algorithm such that, once the approximation

up to order M − 1 is known, the new M -th order term is found using a non-linear solver

(Picard, Newton, for instance):

f̃M =

M−1∑
m=1

P∏
p=1

ϑpm(sp) +

P∏
p=1

ϑpM (sp). (2.4)

A standard choice is to select the same basis for each one of the modes:

Np
1 = Np

2 = . . . = Np
M , for p = 1, . . . , P. (2.5)

This choice may seem reasonable, however it may not be appropriate when dealing with

non-structured sparse data.

It is known that the cardinality of the interpolation basis must not exceed the maximum

rank provided by the training set. Indeed, this constraint, which provides an upper bound

to build the interpolation basis, only guarantees that the minimization is satis�ed by the

training set, without saying anything of the other points. Hence, if there is not an abundance

of sampling points in the training set, in the low-data limit, high oscillations may appear

out of these measured points because of the increased risk of over�tting. Usually, this is

an undesirable e�ect because it a�ects the predictive ability of the constructed regression

model.

In order to tackle this problem, the s-PGD uses the Modal Adaptivity Strategy (MAS)

to take advantage of the greedy PGD algorithm. The idea is to minimize spurious

oscillations out of the training set by starting the PGD algorithm looking for modes with

low order degree. When it is observed that the residual decreases slowly or stagnates, higher

order approximation functions are introduced. By doing this, oscillations are reduced, since

a higher-order basis will try to capture only what remains in the residual.

To deploy the strategy, an indicator and a stopping criterion has to be de�ned. Many

di�erent strategies can be envisaged. Here, it is employed that de�ned in references

[Ibáñez Pinillo et al. 2018, Ibanez Pinillo 2019], where the methodology of the s-PGD is

deeply described. Following that reference, the following norm is used for the PGD residual

in the present work:

RMT =
1
√
nt

√√√√ nt∑
i=1

(
f(si)− f̃M (si)

)2

, (2.6)

where RMT is the residual of the PGD solution of M modes in the training set T and f̃M is

the PGD solution composed of M modes.

Then, for each f̃M , it is de�ned,

∆RMT = RMT −RM−1
T < εr, (2.7)

where εr is a tolerance de�ning the resilience of the s-PGD to increase the cardinality of

the interpolation basis. The lower εr is, the more resilient the method is to increase the

cardinality.

For the interested reader, the aforementioned reference [Ibanez Pinillo 2019] is

recommended for further information.
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2.3 A novel sparse reduced order formulation: the

s-PGD + RB strategy

Regarding the compactness, robustness and simplicity of the PGD models obtained by the

s-PGD technique, global polynomial basis are usually selected to use the s-PGD explained

in Section 2.2 (although other options such as Kriging interpolants are also employed).

As it is well known, polynomials are di�erentiable functions for all arguments.

Therefore, trying to capture a di�erentiable function using polynomials is, above all, a

consistent idea because the function which wants to be captured has the same properties

that the basis where is projected.

In fact, according to the Weierstrass approximation theorem, if f is a continuous

real-valued function on [a, b], for a given ε, then there exists a polynomial p on [a, b] such

that:

| f(x)− p(x) |< ε, (2.8)

for all x ∈ [a, b]. In words, any continuous function on a closed and bounded interval

can be uniformly approximated on that interval by polynomials to any degree of accuracy.

However, sometimes the function which is trying to be captured is not a di�erentiable

function in some points or even presents discontinuities.

In this case, global polynomials are far away to be the best choice to approach this

type of functions because they are, in fact, very poor at interpolating discontinuities. To

demonstrate this, Figure 2.1 shows the interpolation of the unit step function with 16 points

using a 15th-degree polynomial.

Two di�erent solutions to the problem can be envisaged. The �rst one is to use piecewise

polynomial interpolation. This way, we can use di�erent polynomials to approach the

function at the right and at the left of the discontinuity. For example, the step function of

the previous example will be composed of:

f(x) =

{
0 x ∈ [−1, 0],

1 x ∈ (0, 1],
(2.9)

which are zero degree polynomials. However, an issue of this type of approaches is its rank

de�ciency when combined with the sparsity used in the s-PGD [Ibáñez Pinillo et al. 2018].

Other possible solution is to use a basis (which can contain discontinuous functions)

whose linear combination produces the class of discontinuities of our problem in the right

places.

For instance, a basis composed of di�erent step functions can be used to approximate

the unitary step function discussed during this example.

In the industrial problem that the present work is dealing with in Chapter 4 (Section

4.3), discontinuities change their place in space when changing some values in the parameter

space. Therefore, the previous discussed basis approach is prefered to deal with the

discontinuity problem.

Other issue is that if we try to capture a non-regular function of this type without

having preliminary knowledge of the system, a lot of nodes are needed to detect where and

how these singular points are present in the dimension where this behaviour happens.

Therefore, to deal with the previous discussed issues, the following approach is proposed:

1. Find the spatial dimension(s) where singular points are placed.

2. Detect parameter(s) which can change location of the singular points along spatial

dimension/s.
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Figure 2.1 � Approximating a unitary step function using global polynomials. In
the �rst case, Chebyshev nodes are used to �t the polynomial. In the second case,
equidistant nodes are used.
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3. Construct a RB considering the non-regular dimensions found in steps one and two.

Not sparse sampling will be used along the dimension/s contained in the RB.

To insert the RB in the PGD procedure, we propose to reformulate the regression

problem in the following way, where without loss of generality only one dimension (s1) is

assumed causing troubles:

f̃(s1, ..., sP ) = β1(s2, . . . , sP ) ·N1(s1) + · · · + βr(s2, . . . , sP ) ·Nr(s1), (2.10)

where:

βj(s2, . . . , sP ) =

Mj∑
m=1

P∏
p=2

ϑpm,j(s
p), j = 1, 2, . . . , r. (2.11)

N1(s1), . . . , Nr(s
1) form the RB obtained with the SVD (see Section 1.2.1) along the

s1 dimension, the βj(s2, . . . , sP ) terms represent the unknown functions for the s-PGD

problem for a given Nj , Mj is the number of modes used to decompose βj and

r∑
j=1

Mj is

the total number of modes of the ROM.

The training set is then used to obtain the reduced basis as well as the value of the

βj coe�cients in the training points. In addition, once these points are obtained, the

s-PGD procedure is used to obtain the separated representation of these functions using

polynomial basis according to Eq.(2.11). To obtain the RB, the method of snapshots,

revisited in Section 1.2.1, is employed according to the discussion that follows.

De�ning zi as a point in the dimensions (s2, . . . , sP ) then, the set Y of one-dimensional

functions, created by the points belonging to the training set T , can be de�ned as:

Y = {f(s1, zi) : zi ∈ T }. (2.12)

Therefore, the set Y is created collecting the one-dimensional functions for the di�erent

points which are selected for the training set T to do the regression via s-PGD.

Consequently, the snapshots in Y are the ones used to construct the matrix Y (see

Section 1.2.1). Then, the SVD can be used to extract a reduced basis {Nm}rm=1, which

best approximates the set Y.
Furthermore, the methodology described above can also be applied to address other

types of problems. For instance, if one wants to create a parametric model for a crash

test (See Figure 1), the solution in spatial coordinates may be hardly separable in the

PGD framework. In these cases, a more interesting route is to not separate the spatial

dimensions and create a reduced basis for compressing the snapshot information along these

coordinates. In this case, the procedure described in Eq. (2.10) would also be employed

with a reduced basis for the spatial dimensions.

To end up, an important issue is the choice of arguments of the parametric model.

They must be independent or poorly correlated to avoid increasing the redundancy and the

complexity of the model without necessity.

Industrial and technical knowledge can be used to determine the appropriate choice of

variables as it is the case in this work. If not, a Manifold Learning (such as kernel-PCA,

[Schölkopf et al. 1999]) or a dimensionality reduction technique (viz. Topological Data

Analysis, [Wasserman 2018]) can be applied to reduce unnecessary variables. In addition,

the ANOVA analysis can also be carried out to determine the importance of each input to

keep the most relevant ones.
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Figure 2.2 � Example of successful phase unwrapping

2.4 A novel unwrapping algorithm for accurately

addressing interpolation of complex numbers

2.4.1 Introduction to phase unwrapping

Let ψ(θ) be a complex function which depends on a parameter θ and let Arg(·) be the

function which returns the phase value of a complex number in the interval (−π, π]. Note

that the argument of a complex number is not uniquely de�ned, and any other range

((k−1)π, (k+ 1)π] for k ∈ Z will be a valid interval. Usually, the phase value of the signal/

physics-system can be expressed, in most practical cases, as a continuous function φ(θ).

However, the Arg(·) function will keep the phase in (−π, π] even if the sought phase values

leaves it, creating strange discontinuities. Consequently, trying to interpolate the phase

function when such discontinuities happen results in a poor interpolation performance.

Therefore, the term phase unwrapping refers to the reconstruction of a

"physically-meaningful" representation of the phase (as a function of the parameter θ) by

adding multiples of 2π to some of its values in order to make it a continuous function. This

step is very important because it determines the number of periods between two successive

values of θ, regardless of the interpolation method used. Then, the unwrapped phase can

be de�ned as the unique representation of the phase which can lead to a correct continuous

interpolation. Unwrapping has been extensively addressed, the interested reader is referred

to [Costantini et al. 2012, Shanker & Zebker 2010] and the numerous references therein.

The goal is to �nd a sequence (kn)1≤n≤Nθ ∈ ZNθ , such that the unwrapped phase

φ ∈ RNθ veri�es:
∀n ∈ [1, Nθ], φn = Arg(ψ(θn)) + 2knπ

under some regularity constraint. Note that in the above expression Nθ refers to the number

of points in the θ discretization.

2.4.2 Proposed approach. Part I: Phase unwrapping in smooth
parametric settings.

2.4.2.1 Description

The proposed solution consists of assuming the derivative of the phase does not vary too

much, or, to put it another way, that the second derivative remains small. The selection

47
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Figure 2.3 � Thought experiment: the function y(x) is wanted to be unwrapped.
Which of the possible blue points would you give as valid phase value for y4?

of this criterion can be interpreted as a way to impose smoothness on the reconstructed

construction, as smoothing splines do when penalizing the second derivative. Then, the

reason of this choice is straightforward: smooth solutions can be interpolated more easily

and with fewer data points.

The above hypothesis leads to a minimization of the variation of the derivative using a

�nite di�erences scheme to compute sequentially the values of the unwrapped phase:

k1 = 0,

k2 = argmin
k∈Z

|Arg(ψ(θ2)) + 2kπ − φ1| ,

∀n ≥ 3, kn = argmin
k∈Z

∣∣∣∣Arg(ψ(θn+1)) + 2kπ − φn
θn+1 − θn

− φn − φn−1

θn − θn−1

∣∣∣∣ .
(2.13)

Note that θ2 must be chosen close enough to θ1 to ensure |φ2−φ1| < π. This algorithm

can also be run in descending n order, for example to avoid initialization in a noisy area.

Imagine the following thought experiment to better understand conceptually the idea of

the algorithm. Assume that the function y(x) of the Figure 2.3 is wanted to be unwrapped.

Which of the possible blue points would you give as valid phase value for y4? Intuitively,

we would select the middle one, that is, the one that minimizes the change of the �rst

derivative in the function.

The proposed phase unwrapping algorithm, once applied to a problem, produces a very

smooth curve, which allows great performance for interpolation (Fig. 2.2).

2.4.2.2 Comparing the proposed algorithm with traditional unwrapping

To illustrate the advantages of the just introduced methodology, the function having as

unwrapped form

φ = (θ + 10)(θ − 90)(θ − 45)/kf (2.14)

with kf = 3000, is considered.

Figure 2.4 depicts the wrapped counterpart of the above function. For unwrapping it,

the proposed algorithm is compared with the standard procedure included in the commercial
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Figure 2.4 � Original wrapped function
.

software Matlab, the unwrap() function. The Matlab function applies when the di�erence

between consecutive angles is greater than π, and shifts the angles by adding multiples of

±2π until the di�erence becomes less than π [MathWorks 2020]. As noticed that function

achieves a good unwrapping if a �ne enough mesh is used (involving more than 35 nodes).

However, the Matlab function fails to perform correctly in the case of coarser meshes (less

than 30 nodes).

On the other hand, the procedure proposed in this dissertation achieves good results

with only 15 nodes, as it can be seen in Figure 2.5, with the associated computing time

saving.

In order to check the performances when the derivatives involved in the solution increase,

the previous function is considered while increasing the factor 1/kf of 20 % and 50 %, with

the same coarse mesh consisting of 15 nodes. The comparison is shown in Figures 2.6 and

2.7. As it can be noticed, the proposed procedure seems quite robust when compared with

traditional unwrapping.

2.4.2.3 Robustness issues

We have just seen how the proposed algorithm can improve the results of standard

commercial libraries. In fact, it performs extremely well on relatively smooth data. However

the robustness can be improved when dealing with more di�cult scenarios. For instance:

1. Even with very regular data, the phase can have a chaotic behavior when the

magnitude is close to zero, which means that the hypothesis on the regularity of

the phase is not valid.

2. Since the di�erent phase values are computed sequentially using the previous ones,

local irregularities result in high global error.

However, because a failure of the method is caused by the invalidity of the hypothesis,
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Figure 2.5 � Comparison of the proposed unwrapping procedure and the standard
unwrapping function implemented in Matlab, in a coarse mesh consisting of 15
nodes.

.

Figure 2.6 � Comparison of the proposed procedure and the Matlab unwrapping
function in a coarse mesh consisting of 15 nodes with the 1/kf factor 20% higher

.
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Figure 2.7 � Comparison of the proposed procedure and the Matlab unwrapping
function in a coarse mesh consisting of 15 nodes with the 1/kf factor 50% higher

computing the �nite di�erences approximation of the second derivative of the phase is a

good way to detect when the unwrapping fails.

To end up, next section is going to add improvements and increase the robustness of

the methodology by focusing on the industrial problem addressed in Chapter 5.

2.4.3 Proposed approach. Part II: Improving the robustness of
phase unwrapping

2.4.3.1 Introduction

Imagine a three-dimensional spatial problem where a complex function is de�ned for each

point in space. The proposed phase unwrapping can be attempted on all N points in the

spatial discretization and accepted or rejected by setting a threshold for the values of the

second derivative as described in Section 2.4.2.

Thus, a part of the geometry has therefore been dealt with. In this section, it is discussed

how to use these solved points to correct the phase unwrapping in the rest of the geometry.

Moreover, the improvement discussed in this section can be also employed to deal with

di�cult functions when it is known that the solution can be expressed in a certain basis.

2.4.3.2 Reduced basis of the search space

The proposed algorithm is based on computing the phase unwrapping in a reduced search

space. To do that, a reduced basis must be extracted. Taking as a reference the

three-dimensional example described in the previous section 2.4.3.1 , the following process

can be employed to obtain the reduced basis.

Note that for the process which is going to be described, the complex function to unwrap

will be the electromagnetic �eld.
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Firstly, the geometry can be divided into subdomains inside which the variations of the

electromagnetic �eld are small. In each subdomain, the search space is reduced using the

proper orthogonalized decomposition (POD) computed with the method of the snapshots

where the snapshots are the unwrapped phases from the points in the subdomain which

are already solved. As it will be checked in the application addressed in Chapter 5, the

local coherence of the electromagnetic �eld allows the POD to have a very low dimension,

typically 2 or 3, denoted in the following as r.

2.4.3.3 Phase unwrapping in the reduced search space

Out of all the possible con�gurations of the phase, we are looking for the one closest to the

reduced search space. This can be expressed as a minimization problem:

min
k ∈ ZNθ
α ∈ Rr

∥∥∥∥∥Arg(ψ) + 2πk −
r∑
i=1

αiwi

∥∥∥∥∥ , (2.15)

where (wi)i=1..r are the basis vectors of the search space and (αi)i=1..r are the vector

coe�cients with respect to this base.

The search of k can easily be limited to [k−, k+]Nθ ⊂ ZNθ , k− and k+ being two integers

which depend on the size of the unwrapping. However, this problem can still be very hard

to solve hence we will approximate the resolution.

The proposed algorithm to work around this high complexity follows three main steps:

1. Using only a few of the raw phase values, generate a discrete subset of the search

space which is likely to be close to the optimal solution.

2. Fit the rest of the phase values to each curve of this subset by adding or subtracting

multiples of 2π.

3. Select the con�guration which allowed for the best �t.

Thus, r points (θn1
, ..., θnr ) are chosen from the θ discretization. For (kn1

, ..., knr ) ∈
[k−, k+]r, we can �nd the unique curve in the search space which can be �t to the r points

(Arg(ψn1
) + 2πkn1

, ...,Arg(ψnr ) + 2πknr ), by solving for the coe�cients αi:

∀j ∈ J1, rK,
r∑
i=1

αiwi(θnj ) = Arg(ψnj ) + 2πknj (2.16)

In practice, we choose the nr-tuple (θn1
, ..., θnr ) minimizing the condition number of

the linear system represented by Equation (2.16). Let αi : (kn1
, ..., knr ) 7→ αi(kn1

, ..., knr )

be the function that associates with each con�guration the vector coe�cients solution to

the linear system (2.16). We can now solve instead of (2.15) the following problem:

min
(kn1

,...,knr )∈[k−,k+]r
min
k∈ZNθ

∥∥∥∥∥Arg(ψ) + 2πk −
r∑
i=1

αi(kn1
, ..., knr )wi

∥∥∥∥∥ . (2.17)

2.4.3.4 Validation of the optimization procedure

We consider the following phase function:

φ(θ) = 8π sin(4θ)− 4.5π sin(8θ) + sin(12θ)

involving 30 points in the discretization of the θ parametric coordinate.
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Figure 2.8 � Comparison of reduced-basis based unwrapping versus second derivative
minimization based unwrapping on a test case exhibiting fast variations of the phase

Once it is arti�cially wrapped, both the standard unwrapping algorithm and the

procedure proposed in this chapter based on the second derivative, fail to unwrap it.

Assuming we have computed the reduced basis consisting of the three functions

(sin(4θ), sin(8θ), sin(12θ)), we attempt to unwrap Arg
(
eiφ(θ)+N (0,0.5)

)
using the just

described optimization procedure. The unwrapped phase is exactly the sum of φ(θ) and

the added noise, as Figure (2.8) proves.

2.4.4 Convergence

Since the simulations of radar devices of Chapter 5 are too expensive, in this section we

consider a simpler problem able to provide the required data for performing the convergence

analysis.

Thus, we consider the Helmholtz problem with damping in a 2D rectangular domain

Ω, that looks for u(x, y) verifying{
∆u+ (iνω − ω2)u = f in Ω

∂u

∂n
= 0 on ∂Ω

(2.18)

where Ω = [0, 9]× [0, 2], ω = 10, ν = 1 and f(x, y; θ) = e120i(cos(θ)x+sin(θ)y).

We discretize and solve this problem using the Finite Element Method for a number of

values of θ and interpolate the solution (complex �eld) for θ = 3◦.

Then, we compare the phase of the interpolated �eld to the phase of the solution

obtained with the FEM, whose di�erence is depicted in Fig. 2.9).

The previous �gure proves the convergence of the proposed strategy when enriching

the sampling. It can also be noticed that a quite sparse sampling su�ces for reaching an

acceptable accuracy.
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Figure 2.9 � Evolution of the phase error with the parameter sampling re�nement.

2.5 Novel hybridation and dynamic strategies

2.5.1 Introduction.

In Section 0.1, the importance of the development of the HT paradigm was discussed as

well as its applications. This methodology is not only a way to better predict the evolution

of complex dynamical systems but is one of the cornerstones for the implementation of

DDDAS nowadays. For these reasons, it is so important to have the right numerical tools

to make the previous paradigm a reality.

Consequently, in the following sections, two novel techniques for hybridization are

proposed to address di�erent scenarios in the HT framework. These methodologies learn

e�ciently dynamic systems from data. Therefore, precisely speaking, they can also be used

outside the HT concept. Nevertheless, in the present dissertation, these methodologies are

focused on obtaining the dynamically evolving correction model of the HT. The proposed

techniques are:

� The stabilized DMD and DMDc techniques. The goal here is the computation

of stable, fast and accurate corrections in the Hybrid Twin framework, regarding

the delicate and important problem of stability. In addition, several sub-variants are

introduced to guarantee a low computational cost as well as the achievement of a

stable time-integration.

� The DMD Dictionary strategy. This method allow us to address complex

non-linear behaviors within the DMD framework. Moreover, this method is able

to produce models that avoid over-�tting quite well, correcting only the operation

ranges with more error.

Now, before presenting the aforementioned techniques, a more detailed mathematical

presentation of the HT is given in the following section.
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2.5.2 Hybrid Twins. The big picture.

Each dynamical system can be characterized by the time evolution of its state vector, that

is, the vector which contains the value of the variables needed to describe the system. The

Hybrid Twin (HT) focuses on describing this evolution as well as possible, by taking into

consideration that the physics-based model does not always �t the measurements exactly.

HTs are based on the idea that biased deviations (between the model and the

measurements) show hidden physics�in other words, ignorance�and therefore, these

deviations require a particular treatment. They will be modeled on-line by assimilating

collected data. This correction on-the-�y is done using data-driven deviation models. On

the other hand, the unbiased deviation contribution is associated to noise and it is addressed

by using adequate �lters. The interested reader can consult [Gonzalez et al. 2018b] or

[Moya et al. 2019] for previous applications of this rationale.

In what follows the state vector at time t is denoted by z(t) and its time evolution by

ż(t). A HT can thus be represented then by the following equation:

ż(t) ≈ ż(t)model + ż(t)correction. (2.19)

In a HT framework [Chinesta et al. 2018] the dynamical evolution of the system will be

represented as

ż(t) = P(z, t;µ) + B(z, t) + E(z, t) + R(t), (2.20)

thus establishing that the rate of change of the state vector encompasses di�erent

contributions:

� The physics-based model P(z, t;µ), used to describe the dynamical system. Its

contribution depends on a number of model parameters µ. This can be cast in

the form of a ROM to ensure real-time feedback, namely, a PRM (Parametric

Reduced Model) where the values of the involved parameters are identi�ed from

the assimilated-data.

� A data-based model correction B(z, t), describing the gap between prediction and

measurement.

� External actions E(z, t), introduced into the system dynamics in order to drive the

model solution towards the desired target. It must be noted that the term E could

depend on the model parameters µ or it may not depend on z.

� The unbiased noise R(t), that has been traditionally addressed using appropriate

�lters [Chinesta et al. 2018] [González et al. 2017]. This terms also includes external

actions for which there is no possible prediction.

It is worth noting that the physics-based model P is calibrated on-line to adapt its output

to the measurements, and the data-driven model correction B is constructed on-the-�y.

In the above de�nition, the adjective Hybrid comes from B(z, t). The reason is that the

model is composed of two contributions: one, P, coming from a physics-based model�even

if it is calibrated from data�and the other, B, constructed from scratch from data. This

double nature distinguishes digital twins from their hybrid counterparts.

2.5.3 An e�ciently learning of dynamical systems: The stabilized
DMD and DMDc techniques.

Frequently, di�culties to learn stable models arise when learning linear dynamical systems,

specially when dealing with high-dimensional data. This is an important issue to deal with
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because of the growing importance of the data-driven approximations. For instance, it

is usual to search the best linear approach of a set of high-dimensional data to make,

for example, fast predictions of the system or to develop control strategies. In fact,

there is a growing success of techniques such as the DMD to discover dynamical systems

from high-dimensional data [Schmid 2010, Kutz et al. 2016]. This success steams from its

capability of providing an accurate decomposition of a complex system into spatiotemporal

coherent structures while constructing the model dynamics evolving on a low-rank subspace.

However, when operating in the above scenarios, sometimes the best model computed

with state-of-the-art algorithms fails to obtain a stable time-integration. In fact, for a given

set of data, the problem to guarantee a stable system is de�ned by Eq. (2.23) below but,

unfortunately, the feasible region constrained by the spectral radius is nonconvex and no

general methodology exists to solve it [Huang et al. 2016]. Moreover, if a fast procedure

is needed to obtain a correction model in a real-time application, this problem is further

exacerbated.

For these reasons, this dissertation proposes a methodology to compute a stable model

for a given dataset at low computational cost. The strategy is discussed for a DMD model

and for a DMD with control (DMDc) model. In addition, other strategies are discussed.

Let us assume the following dynamical systems de�ned in Eqs (2.21) and (2.22), the

�rst one without considering inputs,

zk+1 = Mzzk, (2.21)

and the second one considering inputs,

zk+1 =
[
Mz Mu

] [zk
uk

]
= M̃z̃k, (2.22)

where zk ∈ RDz is the vector representing the state of our dynamical system at time step

k, uk ∈ RDu is a vector with the inputs of the system at time step k, Mz ∈ RDz×Dz and

Mu ∈ RDu×Du are the matrices de�ning the time evolution of the system. To guarantee

stability in the above systems, the following condition must be satis�ed:

ρ(Mz) ≤ 1, (2.23)

where ρ(·) denotes the spectral radius.
Therefore, in relation to Eq. (2.22), the solution minimizes∥∥∥X1 − M̃X̃0

∥∥∥2

F
s.t. ρ(Mz) ≤ 1, (2.24)

with

X̃0 =
[
z̃0, z̃1, . . . , z̃ns−1

]
,

X1 =
[
z1, z2, . . . , zns

]
,

where ns is the number of di�erent snapshots for the training and the matrices X̃0 and X1

contain the data to construct the model. In them, each column corresponds to a snapshot

of the system at a given time instant.

Unfortunately, as already said, the feasible region constrained by ρ(Mz) ≤ 1 is

nonconvex and no general methodology exists to solve it [Huang et al. 2016]. This can

lead to the problems already discussed where an unstable model is obtained or, in other

cases, simply an extremely bad model is extracted due to a failure of the optimization

methodology employed.
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The proposed approach, which can always guarantee the creation of a stable model, is

based on an observation of the following inequality, which is satis�ed by any matrix norm:

ρ(A) ≤ ‖A‖ . (2.25)

To prove it, let ω be an eigenvalue of A, and let x 6= 0 be a corresponding eigenvector.

From Ax = ωx, we have:

AX = ωX,

where X = [x, · · · ,x].

It follows that

‖ωX‖ = |ω| ‖X‖ ,

and taking into account that

‖AX‖ ≤ ‖A‖ ‖X‖ ,

it follows that

|ω| ‖X‖ ≤ ‖A‖ ‖X‖ .

Simplifying the above expression by ‖X‖ (> 0) gives:

|ω| ≤ ‖A‖ ,

that taking the maximum over all eigenvalues ω gives the desired proof.

Taking for the reasoning the following induced norm,

‖A‖1 = max
1≤j≤m1

m2∑
i=1

|aij |,

where m1 is the number of columns, and m2 is the number of rows�which is simply the

maximum absolute column sum of the matrix. It can be observed that by decreasing the

absolute value of the matrix coe�cients, a smaller matrix norm is obtained, and if it is

decreased su�ciently, a smaller ρ(A) is got, because of Eq. (2.25).

Therefore, the idea to obtain a stable system is to shrink the matrix coe�cients of Mz.

In fact, this dissertation proposes to do so by using the ridge regression [Hastie et al. 2009],

also known as a special case of the Tikhonov regularization. Many advantages can be

obtained from this choice. For instance, a closed mathematical expression is obtained.

This implies that there is no need to use complex optimization procedures (that can fail

to converge). In addition, there is a low added computational cost when changing the

Ordinary Least Squares (OLS) problem to the ridge one.

This way, a new feature and use is proved for the ridge regression. Ridge

regression was employed in a certain way for regression of dynamical systems, see e.g.

[Erichson et al. 2019], but just to use the classical function of ridge: to deal with ill-posed

problems. Now, we have extended the employment of the technique to a broader problem

area: the construction of stable dynamical systems.

To reformulate the resolution of the systems (2.21) and (2.22), and then extend the

procedure for the DMDc (a more general version of the DMD considering control inputs),

two options are envisaged. The �rst one is solving the following problem:

M̂ = arg min
Mz

{
‖X1 −MzX0‖2F + λ2 ‖Mz‖2F

}
= arg min

Mz

∥∥[X1 0
]
−Mz

[
X0 λI

]∥∥2

F
= arg min

Mz

∥∥X̄1 −MzX̄01

∥∥2

F
, (2.26)
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where:

X0 =
[
z0, z1, ..., zns−1

]
,

X̄1 and X̄01 are the augmented matrices, I is an identity matrix of size Dz × Dz and 0 is a

zero matrix of size Dz × Dz.

The solution of the above problem can be computed using the Moore-Penrose

pseudoinverse, therefore:

M̂ = X̄1(X̄01)†,

where † is the the Moore-Penrose pseudoinverse.

A second procedure to solve Eq. (2.26) is to employ a ridge regression for each variable

to be predicted.

Concerning the system (2.22),

M̂ = arg min
M̃

{∥∥∥X1 − M̃X̃0

∥∥∥2

F
+ λ2 ‖Mz‖2F

}
= arg min

M̃

∥∥∥∥[X1 01

]
− M̃

[
X0 λI

U0 02

]∥∥∥∥2

F

= arg min
M̃

∥∥∥X̄1 − M̃X̄02

∥∥∥2

F
, (2.27)

where:

U0 =
[
u1, u2, . . . , uns−1

]
,

X̄1 and X̄02 are the augmented matrices, I is an identity matrix of size Dz×Dz, 01 is a zero

matrix of size Dz × Dz and 02 is a zero matrix of size Du × Dz.

In addition, the same procedures used to solve system (2.26) can be used to solve (2.27),

either the Moore-Penrose pseudoinverse or the individual ridge regressions.

The above model can be extended in the context of high-dimensional systems when

using the DMDc taking the formulation expressed in Eq. (2.27). To do that, we take the

Singular Value Decomposition (SVD) of matrix X̄02 = Ξ̃Σ̃Ṽ∗ (where the star symbol *

indicates the conjugate transpose). Therefore:

M̃ = X̄1(X̄02)† = X̄1ṼΣ̃−1Ξ̃∗.

Approximations of the operators Mz and Mu can be found as follows:

M̃ =
[
Mz, Mu

]
=
[
X̄1ṼΣ̃−1Ξ̃∗1, X̄1ṼΣ̃−1Ξ̃∗2

]
,

where r̃ is the truncation value of the SVD applied to decompose matrix X̄02 = Ξ̃Σ̃Ṽ∗,

Ξ̃∗ =
[
Ξ̃∗1, Ξ̃∗2

]
, and the sizes of Ξ̃∗1 and Ξ̃∗2 are r̃ × Dz and r̃ × Du respectively.

For high-dimensional systems (Dz � 1) a reduced-order approximation can be solved

for instead, leading to a more tractable computational model. Thus, a transformation to a

lower-dimensional subspace on which the dynamics evolve is sought.

The output space X̄1 is chosen to �nd the reduced-order subspace. Consequently, the

SVD of X̄1 is de�ned as

X̄1 = ΞΣV∗,

where the truncation value for this SVD will be denoted as r. Please note that usually both

SVDs will have di�erent truncation values.

Then, by employing the change of coordinates z = Ξ ẑ (or equivalently ẑ = Ξ∗ z), the

following reduced-order approximations can be obtained,

zk+1 = Mzzk + Muuk,
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Ξ ẑk+1 = Mz Ξ ẑk + Mu uk,

so that

ẑk+1 = M̂z ẑk + M̂u uk, (2.28)

where:

M̂z = Ξ∗X̄1ṼΣ̃−1Ξ̃∗1Ξ,

M̂u = Ξ∗X̄1ṼΣ̃−1Ξ̃∗2,

and the sizes of M̂z and M̂u are r × r and r × Du respectively.

To select the penalty factor, when the standard procedure leads to a matrix that violates

the stability condition, several options can be envisaged. Here, this thesis proposes to use

the bisection method (which guarantees convergence toward the solution) or the regula falsi

method (to speed up the process). Of course, faster algorithms can be used such as the

Illinois algorithm, but our experience suggests that the former ones are enough in practice.

For example, if the bisection method is selected, the zero of the following function is

sought:

f(λ) = ρdesired − ρ(Mz(λ)), (2.29)

where ρdesired is a chosen value very close to one, representing the target when the initial

constructed model violates the stability condition.

Taking into consideration that the bracketing interval at step k of the algorithm is

[λak, λ
b
k], then the Eq. (2.30) is employed to compute the new solution estimate for the

penalty λck at step k:

λck =
λak + λbk

2
. (2.30)

If f(λck) is satisfactory, the iteration stops. If this is not the case, the sign of f(λck) is

examinated and the bracking interval is updated for the following iteration so that there is

a zero crossing within the new interval.

2.5.4 The DMD Dictionary strategy

The Dictionary Model (DM) starts with the supposition that we are dealing with a nonlinear

dynamical system. So, we consider a nonlinear dynamical system:

ż(t) = f(u, z, t;µ), (2.31)

where z ∈ RDz is the vector representing the state of our dynamical system at time t, and µ

contains parameters of the system. u ∈ RDu is a vector with the inputs of the system, and

f represents the dynamics as a function of u, z, t and µ.

The discrete-time system is:

zk+1 = f(uk, zk, tk;µ). (2.32)

If we assume that the system is linear,

zk+1 = Mz(µ) · zk + Mu(µ) · uk, (2.33)

where zk ∈ RDz , uk ∈ RDu , Mz(µ) ∈ RDz×Dz and Mu(µ) ∈ RDz×Du . The operator Mz(µ)

describes the dynamics of the unforced system while the operator Mu(µ) characterizes the

impact of the input uk on the state zk+1.
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The idea of the DM is to approximate the nonlinear behavior of Eq. (2.32) with locally

linear approaches in terms of zk. To do this, the operators Mz and Mu of Eq. (2.33) must

depend on zk. Therefore, the dynamical system described by the DM is:

zk+1 = Mz(zk,µ) · zk + Mu(zk,µ) · uk. (2.34)

This implies that there is a set of matrices S that must be obtained to describe the nonlinear
behavior.

S = {Z1, ...,ZI} ;Zi =
{
Mi

z,M
i
u

}
. (2.35)

Please, note that the superscript in Mi
z and Mi

u does not indicate exponentation, but it

indicates the i-th matrix pair instead.

The set S is the �dictionary�, which allows us to reproduce a nonlinear model as a

combination of local linear approaches.

It must be noted that if a pair of operators
{
Mi

z,M
i
u

}
is needed for each zk, the

method can be unfeasible because of the large amount of memory needed to store S, and
also because of the large size of the training set needed to obtain S.

For this reason, this method will work well if each Zi can be used in a wide range

of state vectors zk. If this is not the case, it is useful to look for a transformation g(·),
which transforms the evolution of the state vectors in a more linear behaviour g(zk). The

Support Vector Machine (SVM) [Burges 1998] and kernel methods [Baudat & Anouar 2001,

Ham et al. 2004, Hofmann et al. 2008] provide a number of techniques for constructing the

feature space g(zk).

Here, a methodology based on the Dynamic Mode Decomposition (DMD) ideas

[Kutz et al. 2016] is proposed. The discrete equation for a local dynamical system must

be rewritten as:

zk+1 =
[
Mi

z Mi
u

]
·
[
zk
uk

]
= M̃i · z̃k. (2.36)

Then, if we have ns di�erent snapshots for a given local linear system, we de�ne the matrix

X̃0 ∈ R(Dz+Du)×(ns−1) and the matrix X1 ∈ R(Dz)×(ns−1) as:

X̃0 =
[
z̃1, z̃2, ..., z̃ns−1

]
, (2.37)

X1 =
[
z2, z3, ..., zns

]
, (2.38)

where each column corresponds to a snapshot. Therefore, the transition matrix M̃i is

learned to minimize the state reconstruction error:

min
∥∥∥X1 − M̃i · X̃0

∥∥∥2

F
. (2.39)

However, to guarantee stability, the Eq. (2.39) must be reformulated as:

min
∥∥∥X1 − M̃i · X̃0

∥∥∥2

F
s. t. ρ(Mz) ≤ 1 (2.40)

where ρ(·) denotes the spectral radius.
As it was discussed, the above problem can be e�ciently solved by means of the

technique proposed in Section 2.5.3. Further information about this type of problems can

be found in [Huang et al. 2016, Huang et al. 2017, Kawashima & Matsuyama 2005]

A training set T composed of a collection of snapshots
{
z̃1, . . . , z̃Nf

}
of di�erent

simulations must be obtained. To decide the snapshots to obtain each local linear dynamical

system, two methodologies are proposed.
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The �rst one is to split each simulation time in intervals (I1, ..., IN ), where the

linearization process is deemed good enough. Then, the collected snapshots {z̃1, . . . , z̃NI}
of each interval Ii are assigned to belong to the linear dynamical system obtained in their

interval Ii.
The second one is to use the k-means clustering [Arthur & Vassilvitskii 2007,

Lloyd 2006] algorithm to obtain the linear dynamical system of each cluster. In this second

approach, given a set of snapshots
{
z̃1, . . . , z̃Nf

}
, k-means clustering aims to partition

the Nf observations into Υ (Υ ≤ Nf ) sets K = {K1, . . . ,KΥ} so as to minimize the

within-cluster sum of squares:

arg min
K

k∑
i=1

∑
z̃∈Ki

‖z̃− νi‖2 , (2.41)

where νi is the mean of points in Ki.
Other techniques like the ones based on Hierarchical Clustering can be used. Here,

techniques such as k-means clustering are preferrred because they can be applied to large

volumes of data without di�culties.

2.6 Summary and Conclusions

After reviewing the s-PGD, this chapter introduced and discussed the theoretical basis for

four new non-intrusive strategies proposed in the present dissertation:

1. A novel sparse reduced order formulation combining the s-PGD with a Reduced Basis

(RB) approach: the s-PGD + RB.

2. A novel unwrapping algorithm for accurately addressing interpolation of complex

numbers.

3. The stabilized DMD and DMDc techniques.

4. The DMD Dictionary strategy.

where the motivation for each of the above proposals is also set out in the corresponding

section.

The �rst two methodologies are focused on obtaining parametric models while the last

two are focused on obtaining the evolution of dynamic systems.

In addition, a study and analysis of the novel unwrapping algorithm was carried out

in which a validation of the procedure, a comparison with traditional unwrapping and a

convergence analysis were discussed. The results showed that a great reduction in the

number of needed snapshots can be achieved. In addition, it was proved that the proposed

approach can outperform current commercial software as well as provide good results in

complex settings. Furthermore, Chapter 5 discusses an industrial application where the

advantages for a speci�c problem are observed.

The results of the other three methodologies will be observed in the next chapters,

where they will be directly analysed when applied to a concrete industrial problem.

On the other hand, the results of the methodologies three and four are addressed in the

Chapters 6 and 7, respectively. In particular, they are going to be employed inside the HT

framework
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Chapter 3

Novel PGD strategies:

PGD-based advanced nonlinear

multiparametric regressions for

constructing metamodels at the

scarce-data limit.

Abstract Regressions created from experimental or simulated data enable the

construction of metamodels, widely used in a variety of engineering applications.

Many engineering problems involve multi-parametric physics whose corresponding

multi-parametric solutions can be viewed as a sort of computational vademecum that,

once computed o�ine, can be then used in a variety of real-time engineering applications

including optimization, inverse analysis, uncertainty propagation or simulation based

control. Sometimes, these multi-parametric problems can be solved by using advanced

model order reduction �MOR� techniques. However, when the solution of these

multi-parametric problems becomes cumbersome, one possibility consists in solving the

problem for a sample of the parametric values, and then creating a regression from all the

computed solutions, to �nally infer the solution for any choice of the problem parameters.

However, addressing high-dimensionality at the low data limit, ensuring accuracy and

avoiding over�tting constitutes a di�cult challenge. The present chapter aims at proposing

and discussing di�erent PGD-based advanced regressions enabling the just referred features.
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3.1 Introduction

3.1.1 Chapter overview

This chapter starts by presenting an overview of di�erent methodologies to generate

response surfaces at the scarce-data limit and in the context of scattered data. These

methodologies are of crucial importance within the data-driven framework whenever the

data has to be interpolated/extrapolated to infer behaviours at locations where there

are no experimental measurements. For instance, many engineering problems require

the construction of multi-parametric solutions to address a wide variety of engineering

applications. In many cases, as discussed in the Introduction Chapter and in Chapter 2,

these solutions are computed employing non-intrusive procedures such as the s-PGD. In

fact, several chapters of this dissertation use this technique. However, industrial scenarios

are found where state-of-the-art techniques fail to provide a suitable solution. Therefore,

this chapter proposes and discusses novel PGD-based advanced regressions to improve the

model's quality under these di�cult circumstances.

Before starting the discussion, it is important to mention that the topic presented in

this chapter as well as its results correspond to the following submitted paper:

� A. Sancarlos, V. Champaney, J.L. Duval, E. Cueto, F. Chinesta, �PGD-Based

Advanced Nonlinear Multiparametric Regressions for Constructing Metamodels at

the Scarce-Data Limit,� SIAM Journal on Scienti�c Computing, Submitted.

3.1.2 Topic introduction

Model Order Reduction �MOR� techniques express the solution of a given problem

(expressed as a partial di�erential equation �PDE�, for instance) into a reduced basis

with strong physical or mathematical content. Very often, these bases are extracted from

solutions of the problem at hand obtained o�ine. This can be done, for instance, by

invoking the proper orthogonal decomposition �POD� or the reduced basis method

�RBM�[Chinesta et al. 2017]. When computing with a reduced basis, the solution

complexity scales with the size of this basis, which is in general much smaller than the

size of the multi-purpose approximation basis associated with the �nite element method

�FEM�, whose size scales with the number of nodes in the mesh.

Even if the use of a reduced basis implies a certain loss of generality, it enables impressive

computing time savings and, as soon as the problem solution continues living in the space

spanned by the reduced basis, the computed solution remains accurate enough. Obviously,
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as soon as one is interested in a solution that can not be accurately approximated within the

space spanned by that reduced basis, the solution will be computed fast, but its accuracy

is expected to be poor. To improve generality while ensuring accuracy, an appealing route

consists of constructing the reduced basis and solving the problem simultaneously, as the

Proper Generalized Decomposition �PGD� does [Chinesta et al. 2017]. However, this

option can become very intrusive in di�erent applications.

To alleviate intrusiveness, non-intrusive procedures were proposed. They proceed

by constructing the parametric solution of the parametric problem from a number of

high-�delity solutions performed o�ine. In general, these are very expensive from the

computing time viewpoint, for di�erent choices of the model parameters that constitutes

the design of experiments �DoE�.

Among these techniques we can mention standard polynomial approximations on

sparsely sampled parametric domains. Despite its simplicity, its use is not to be taken

lightly. The use of orthogonal polynomial bases, with their associated Gauss-Lobatto

points as DoE, allows us to obtain very accurate approximations. However, the sampling

(DoE) increases exponentially with either the number of dimensions of the considered

polynomial degree. Using randomly sampled DoE, or considering an approximation

too rich with respect to the available amount of data (underdetermined approximation

problem), results in noticeable over�tting e�ects. A way of attenuating these unfavorable

e�ects, consists in using an approximation basis avoiding over-oscillating phenomena, as

kriging approximations, for instance perform successfully [Papritz & Stein 1999], being a

major protagonist of the so-called surrogate models (or metamodels) [Forrester et al. 2008,

P. Jiang et al. 2020]. Another possibility consists in restricting polynomial approximations

to a low degree, e.g., linear or moderately nonlinear regressions.

Other tentatives concern the proper orthogonal decomposition with interpolation

�PODI�[Ly & Tran 2001], where usual regressions for expressing the dependence of

the modal coe�cients on the parameters are employed. Within the PGD rationale,

Sparse Subspace Learning �SSL�[Borzacchiello et al. 2019] interpolates the pre-computed

solutions related to the DoE associated to an structured grid (Gauss-Lobatto points)

over the whole parametric space, by considering a hierarchical approximation basis for

interpolating the precomputed solutions. This ensures the separated representation of the

interpolated parametric solution. A sparsely sampled counterpart, the so-called sparse

PGD, s-PGD, was proposed in [Ibáñez Pinillo et al. 2018].

The main limitations of SSL-based regression procedures is the volume of data, which

increases exponentially with the number of parameters involved in the model. Thus,

when considering P parameters, the lowest approximation level, the so-called 0-level, which

consists in a multi-linear approximation (the product of a linear approximation along each

parametric dimension), needs 2P data (each datum coming in fact from a high �delity

solution). On the other hand, s-PGD reduces the amount of required data, by considering

a sparse sampling. However, the fact of combining higher degree approximations (induced

by the separated representations) with very reduced amount of data, exacerbates the risk

of over�tting. To avoid over�tting, in [Ibáñez Pinillo et al. 2018] the authors proposed the

use of adaptive approximation bases, the so-called Modal adaptive Strategy �MAS�,

whose degree is kept to a minimum in the �rst PGD modes (�rst terms of the �nite sum

decomposition expressing the variables separation which is at the heart of the PGD). This

degree is then increased progressively for the calculation of higher level modes. Other choices

of the approximation bases were also considered for limiting these spurious over-oscillating

behaviors, as for example the employ of kriging. The s-PGD can thus be viewed as a

nonlinear regression that makes use of the separation of variables. This enables its use in
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multi-parametric settings.

Regressions are widely employed in arti�cial intelligence in general, and

more particularly in supervised scienti�c machine learning [Udrescu et al. 2020,

Brunton et al. 2016, Hernández et al. 2021b], in the development of cognitive or hybrid

digital twins [Moya et al. 2020b, Sancarlos et al. 2020, Chinesta et al. 2020] or even in

the �eld of neuroscience [Shi�rin et al. 2020]. Regression can thus be seen as the main

ingredient in the automatic construction of models of the surrounding physical reality. This

is of utmost importance in the construction of an arti�cial intelligence able to maneuver in

the physical world [Moya et al. 2020a, Moya et al. 2019].

The main issues related to the implementation of regression in the low-data limit concern

nonlinear behaviors in multi-parametric settings. This last factor leads to the so-called

curse of dimensionality, i.e., the exponential growth in the number of degrees of freedom

(equivalently, the number of necessary sampling points in the phase space) that is necessary

to obtain accurate results [Laughlin & Pines 2000].

When constructing models, it is always important to keep them as simple as

possible. In other words, parsimonious models are always preferable to more complex

ones. This principle, known as Occam's razor [Udrescu et al. 2020, Brunton et al. 2016],

implies that simpler explanations should be preferred among all the available ones to

explain any physical phenomenon. In the literature this is achieved by imposing sparsity

in the regression [Ibanez et al. 2019, Ibáñez Pinillo et al. 2018, Hernandez et al. 2021a,

Brunton et al. 2016]. To obtain parsimonious models able to address sparsity, it is thus

convenient to perform regression by combining L2 and L1 norms.

This chapter aims at proposing robust, general, frugal and accurate regression

methodologies able to operate in separated representation settings. For that purpose,

three techniques will be proposed and analyzed. The �rst is based on an Elastic Net

regularized formulation, called rs-PGD, combining Ridge and Lasso regressions, that make

use, respectively, of the L2 and L1 norms. Both use a rich approximation basis and, to

avoid over�tting, the former favors speci�c solutions with smaller coe�cients, while the

last enforces the sparsest possible solution by retaining those contributing the most to the

solution approximation.

Then, the doubly sparse regression, the so-called s2-PGD technique will be introduced.

The last makes use of the Lasso regularization (the one introduced above that looks for the

sparsest approximation through the use of the L1-norm) while searching for the sparsest

dimensions.

The third and last technique, the ANOVA-PGD, aims at allying orthogonal hierarchical

bases with a more favorable scaling (with respect to the SSL) of the amount of data

with the approximation richness. For that purpose, separated representations and sparse

approximations (eventually regularized) will be combined for addressing multiple correlation

terms.

Figure 5.2 sketches the just referred regression strategies, with the main sampling and

approximation features, their pros (emphasized in the green text) and the cons (in red). The

future works will address the scalability to address industrial problems involving extremely

large solutions as well as the general work�ow for allying them for the solution of a given

problem.
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Figure 3.1 � Non-intrusive MOR techniques with the main sampling and
approximation features, their pros (emphasized in the green text) and the cons
(in red).
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3.2 Regularized regressions: The regularized sparse

PGD (rs-PGD) and the doubly sparse PGD

(s2-PGD)

In this Section, the novel numerical techniques, the regularized sparse PGD (rs-PGD) and

the doubly-sparse PGD (s2-PGD), are presented and discussed. The content is divided

according to the following subsections:

� In subsection 3.2.1, the motivation from which the proposed methodologies are

developed, is presented.

� In subsection 3.2.2, the regularized PGD is presented starting from the concepts

discussed in Section 3.2.1 and Section 2.2 from Chapter 2.

� In subsection 3.2.3, the s2-PGD is presented starting from the concepts presented in

3.2.2, 3.2.1 and Section 2.2 from Chapter 2.

3.2.1 Motivation

The rs-PGD and the s2-PGD are constructed from the theoretical background of the s-PGD

in the context of regression problems. In addition, an overview of the s-PGD was presented

in Section 2.2.

As it was discussed, the objective of the s-PGD is a particular form of machine learning

where the �nal goal is to approximate the unknown parametric function f by the s-PGD

approach f̃ trained in some sampling points. The most challenging feature is to improve

the predictive ability of the model f̃ , that is, the capacity to provide good predictions when

the model is fed with previously unseen data. Achieving this is particularly di�cult when

confronted with a high-dimensional problem, for which data is nearly always sparse and/or

scarce.

Indeed, the regression problem described by Eq. (2.1) only guarantees that the

minimization is satis�ed by the training set, without saying anything at di�erent sampling

points. Hence, if there is not an abundance of sampling points in the training set, in the

low-data limit, high oscillations may appear out of these measured points because of the

increased risk of over�tting. Usually, this is an undesirable e�ect because it a�ects the

predictive ability of the constructed regression model.

In order to tackle this problem, the s-PGD uses the Modal Adaptivity Strategy (MAS)

to take advantage of the greedy PGD algorithm. The idea is to minimize spurious

oscillations out of the training set by starting the PGD algorithm looking for modes with low

degree. When it is observed that the residual decreases slowly or stagnates, higher order

approximation functions are introduced. By doing this, oscillations are reduced, since a

higher-order basis will try to capture only what remains in the residual.

The MAS has proved to be a good strategy to improve signi�cantly the s-PGD

performance in many problems, see for instance [Ibanez Pinillo 2019, Argerich 2020,

Sancarlos et al. 2020]. However, it has some limitations. For example, it has been observed

that the desired accuracy is not achieved before reaching over�tting or the algorithm stops

too early when using MAS in some cases. This last issue implies a PGD solution composed

of low order approximation functions, thus not getting an as rich as desired function.

In addition, in problems where just a few terms of the interpolation basis are present

(that is, there are just some sparse non-zero elements in the interpolation basis to be

determined), the strategy fails in recognizing the true model and therefore converging to

other one whose predictive performances are bad.
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To solve these di�culties, the rs-PGD and the s2-PGD are proposed in what follows.

Speci�cally, the �rst one is used to increase the predictive capacity beyond the s-PGD

capabilities and the second one is used to sparse identi�cation and variable selection to

construct parsimonious models with great explanatory and predictive capabilities.

3.2.2 rs-PGD

For the ease of the exposition and representation but without loss of generality, let us

continue by assuming that the unknown objective function f(x, y) lives in R2,

f(x, y) : Ω ⊂ R2 → R,

and that it is to be recovered from scarce data.

The goal is therefore to �nd a function f̃M which minimizes the distance to the sought

function:

f̃M = arg min
f∗

nt∑
i=1

‖f(xi, yi)− f∗(xi, yi)‖22 ,

and that takes the separated form

f̃M (x, y) =

M∑
m=1

Xm(x) · Ym(y) =

M∑
m=1

(
(Nx

m)>axm · (Ny
m)>aym

)
,

where nt is the number of sampling points employed to train the model (training set).

Here, the superscript M is employed to highlight the rank of the sought function. How to

determine the precise value of M will be detailed hereafter.

In the PGD framework, an iterative scheme based on an alternating direction strategy

is usually used to solve the resulting non-linear problem �note that we look for products

of one-dimensional functions� and compute axM and ayM . This strategy computes ax,kM
from ay,k−1

M and ay,kM from ax,kM where ay,kM indicates the values of ayM at iteration k of the

nonlinear iteration algorithm. The iterations proceed until reaching a �xed point according

to a user-speci�ed tolerance.

De�ning Nx
m(xi) and Ny

m(yi) as the vectors containing the evaluation of the

interpolation basis of the mth mode at xi and yi, respectively, we can write the following

matrix equations de�ning the systems to solve:

Mx · axM = r, (3.1)

My · ayM = r, (3.2)

where:

r =

 f(x1, y1)− f̃M−1(x1, y1)
...

f(xnt , ynt)− f̃M−1(xnt , ynt)

 ,

Mx =

 (Ny
M (y1))>ayM · (Nx

M (x1))>

...

(Ny
M (ynt))

>ayM · (Nx
M (xnt))

>

 ,

My =

 (Nx
M (x1))>axM · (N

y
M (y1))>

...

(Nx
M (xnt))

>axM · (N
y
M (ynt))

>

 .
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If Eq. (3.1) and (3.2) are solved in the Ordinary Least Squares (OLS) sense:

axM = (M>
x Mx)−1 ·M>

x r, (3.3)

ayM = (M>
y My)−1 ·M>

y r (3.4)

which give us the usual matrix equations in the OLS context.

The rs-PGD is based on putting a penalty term when solving (3.1) and (3.2) with the

following objectives:

� To reduce over�tting.

� To deal with strong multicollinearity, namely when the OLS regression problem is

ill-posed.

Note that the over�tting problem can easily arise in the s-PGD context when high-order

approximations (that separated representations exacerbate) are employed because of the

usual unstructured low data regime used to train the model. This issue strongly a�ects the

model's ability to perform on new, unseen sets. Therefore, the idea of using the penalty

term consists in improving the model's ability to perform on new samples at the cost of

increasing the bias or the error model in the training set for a given set of basis functions.

Di�erent regularizations can be envisaged depending on the properties of the problem

such as the Tikhonov regularization or the Elastic Net regularization.

For the sake of simplicity but without loss of generality, we start introducing the

ridge regression regularization (a special case of the Tikhonov regularization) that will

be generalized later to lead to the Elastic Net redularization.

For this purpose, we �rst rewrite Eqs. (3.3) and (3.4):

axM = (M>
x Mx − λI)−1 ·M>

x r (3.5)

ayM = (M>
y My − λI)−1 ·M>

y r, (3.6)

where λ is the penalty factor and I is the identity matrix. In this case, both dimensions

are equally penalized but di�erent penalty factors could be considered depending on the

considered dimension, as well as penalizing only the most con�ictive one.

The regularized problems associated to Eqs. (3.5) and (3.6) are:

axM = arg min
ax∗M

{
‖r−Mxa

x∗
M ‖

2
2 + λ ‖ax∗M ‖

2
2

}
, (3.7)

ayM = arg min
ay∗M

{∥∥r−Mya
y∗
M

∥∥2

2
+ λ

∥∥ay∗M∥∥2

2

}
, (3.8)

where the problem is divided in solving a ridge regression problem for each dimension when

computing axM and ayM during the alternate direction �xed point strategy.

The interpretation of employing Eqs. (3.7) and (3.8) during the PGD iterative scheme

can be thought of as an attempt of solving the following problem within the PGD rationale:

f̃M (axM ,a
y
M ) = arg min

ax∗M ,ay∗M

{∥∥∥f − f̃M (ax∗M ,a
y∗
M )
∥∥∥2

2
+ λ ‖ax∗M ‖

2
2 + λ

∥∥ay∗M∥∥2

2

}
, (3.9)

where ‖·‖2 is the Euclidean norm, and f̃M is the function de�ned in (2.4) where the new

M -th order term of the model is sought.

As the terminology used in this section shows, a regularization problem is formulated

at each enrichment step. Thus, we are looking for the best penalty factor at each updating
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stage, adapting the regularization whenever the approach is enriched. Other possibilities

can be envisaged but this one seems the one which o�ers the best results according to our

numerical experiments.

A null intercept term was assumed for axM and ayM in the deduction of equations (3.5),

(3.6), (3.7) and (3.8). If this term is going to be included, it can be treated as in standard

ridge procedures when solving the corresponding linear regularized regression problem for

each dimension during the alternating direction strategy.

As we are generally looking for the mode with best predictive abilities in each

enrichment, the proposed criterion to choose λ is to perform a k-fold cross-validation and

select the value of λ that minimizes the cross-validated sum of squared residuals (or some

other measure). It is also possible to use the �one-standard error� rule (heuristic) with

cross-validation, in which we choose the most penalized model whose error is no more than

one standard error above the error of the best model. Such a rule acknowledges the fact

that the tradeo� curve is estimated with error, and hence takes a conservative approach

[Hastie et al. 2009].

If enough data is available, the split of the training set in two subgroups is equally

a reasonable option to select λ and in addition, computationally less demanding. In this

case, one subgroup is employed for constructing the model and the other one to evaluate

the predictive ability and then to select λ accordingly.

The Elastic Net regularization results of including a L1-norm regularization, from which

Eqs. (3.7)-(3.8) and Eq. (3.9) become:

axM = arg min
ax∗M

{
‖r−Mxa

x∗
M ‖

2
2 + λ

[
(1− α) ‖ax∗M ‖

2
2 + α ‖ax∗M ‖1

]}
, (3.10)

ayM = arg min
ay∗M

{∥∥r−Mya
y∗
M

∥∥2

2
+ λ

[
(1− α)

∥∥ay∗M∥∥2

2
+ α

∥∥ay∗M∥∥1

]}
, (3.11)

and

f̃M (axM ,a
y
M ) = arg min

ax∗M ,ay∗M

{∥∥∥f − f̃M (ax∗M ,a
y∗
M )
∥∥∥2

2

+ λ
[
(1− α)

(
‖ax∗M ‖

2
2 +

∥∥ay∗M∥∥2

2

)
+ α

(
‖ax∗M ‖1 +

∥∥ay∗M∥∥1

)]}
, (3.12)

respectively, where α ∈ [0, 1) and λ are the penalty factors. These coe�cients could be

also di�erent for the di�erent dimensions, and as before, other appealing option consists on

penalizing only the most con�ictive dimension. The limit cases α = 0 and α = 1 result in

the Ridge and Lasso regressions respectively.

3.2.3 s2-PGD

For the ease of the exposition and representation but without loss of generality, let us

continue by assuming the same two-dimensional unknown function discussed in Section

3.2.2.

Here, we are dealing with a solution which admits a sparse solution for a certain basis

using the PGD separated form (2.2). In this case, the goal is to identify the correct non-zero

coe�cients at each enrichment step in order to guide the approach to the correct separated

representation.

Without a roadmap to select these nonzero coe�cients, the traditional s-PGD fails to

capture the true relationship between the model's features as well as its �nal response.
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Furthermore, if high-order terms appear in the searched function, this issues become even

worse leading to serious over�tting issues.

Let us consider the theory discussed in the previous section but now considering the

L1 regularization with the idea to promote sparsity in the overall solution of the nonlinear

regression problem:

f̃M (axM ,a
y
M ) = arg min

ax∗M ,ay∗M

{∥∥∥f − f̃M (ax∗M ,a
y∗
M )
∥∥∥2

2
+ λ ‖ax∗M ‖1 + λ

∥∥ay∗M∥∥1

}
. (3.13)

This formulation is convenient because the nonlinear problem can be solved using

the PGD constructor, with an alternate direction �xed point strategy, where a LASSO

regression problem is considered in each dimension.

Therefore, the regression problems for the iterative scheme will be:

axM = arg min
ax∗M

{
‖r−Mxa

x∗
M ‖

2
2 + λ ‖ax∗M ‖1

}
, (3.14)

ayM = arg min
ay∗M

{∥∥r−Mya
y∗
M

∥∥2

2
+ λ

∥∥ay∗M∥∥1

}
, (3.15)

that consists of solving a LASSO regression problem for each dimension when computing

axM and ayM within the alternate direction �xed point strategy. Moreover, as previously

discussed, in the present case again, both dimensions are equally penalized but di�erent

penalty factors could be envisaged.

As we are iteratively solving a LASSO problem, we will end up with sparse solutions

for each one-dimensional function choosing the right penalty factor. Again, a null itercept

term was assumed.

In case of looking for sparsity just in the x dimension, only Eq. (3.14) applies for

computing coe�cients axM , whereas coe�cients ayM are calculated by invoking the standard

s-PGD or the rs-PGD, addressed in the previous section.

To determine λ, we �rst refer the reader to the discussion of the previous section. Then,

the following considerations applied in the case of the doubly sparse PGD:

� Before selecting the model enrichment according to the predictive criterion, a �lter is

considered taking only the models with a minimum sparsity criterion ‖axM‖0 ≤ χ
lim
x .

If sparsity is also desired in y direction, χlimy will be de�ned accordingly. Note: We

de�ne ‖·‖0 by ‖x‖0 = #{i : xi 6= 0}. This notation is considered even if it is actually

not a norm.

� Once the aforementioned model selection is performed, the OLS methodology is

employed with the detected non-zero elements to obtain the correct mode update.

The reason of this step is that LASSO regression terms are in general not accurate,

and so it may be necessary to de-bias the obtained values. Remember that the LASSO

shrinkage causes the estimates of the non-zero coe�cients to be biased towards zero

and in general they are not consistent [Brunton & Kutz 2019] [Hastie et al. 2009].

3.3 The ANOVA-based sparse-PGD

The ANOVA decomposition of a function of P variables f(s1, . . . , sP ) : Ω ⊂ RP → R is an

orthogonal decomposition based on the analysis of variance, a statistical model designed

for data analysis. Thus, the function f(s) can be written as a sum of orthogonal functions:

f(s) = f0 +

P∑
i=1

fi(s
i) +

P∑
i1=1

P∑
i2=i1

fi1,i2(si1 , si2) + . . .+ f1,2,...d(s
1, s2, . . . , sP ), (3.16)
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satisfying

Ei(fi1,...,ik(si1 , . . . , xik)) = 0, (3.17)

where Ei refers to the expectation with respect to any coordinate i in the set (i1, . . . , ik),

1 ≤ k ≤ P . This property results in the orthogonality of functions involved in the previous

decomposition.

To prove it, consider for example a simple 2D case with, s = (x, y), f(s) ≡
f(x, y). Thus, with Ex(fx(x)) = 0, Ex(fx,y(x, y)) = 0 and Ey(fx,y(x, y)) = 0, we have

Ex,y(fx,y(x, y)fx(x)) = Ex{Ey(fx,y(x, y)) fx(x)} = 0.

The number of function involved in the decomposition (without considering the constant

term) is 2P − 1, and they can be parametrized by the integer n, n = 1, . . . , 2P − 1.

The di�erent functions involved in the ANOVA decomposition can be expressed from

expectations according to:
E(f(s)) = f0

E(f(s|si)) = fi(s
i) + f0

E(f(s|si, sj)) = fi,j(s
i, sj) + fi(s

i) + fj(s
j) + f0

...

(3.18)

where E(f(s|si)) refers to the integration on all the variables except si.

3.3.1 Sensitivity analysis: Sobol coe�cients

The variance of f(s), Var(f(s)), taking into account the orthogonality of the functions

involved in the ANOVA decomposition, reads

Var(f(s)) =

2P−1∑
n=1

E (fn(sn))
2

=

2P−1∑
n=0

Varn, (3.19)

that allows de�ning the so-called Sobol sensitivity coe�cients Sn

Sn =
Varn

Var(f(s))
. (3.20)

3.3.2 The anchored ANOVA

Multidimensional settings imply expensive calculations for computing the multidimensional

expectations. For alleviating those costly computations we introduce the so-called anchor

point c such that f0 = f(c). Then, in the de�nition of the functions involved in the ANOVA

decomposition, the expectations are replaced by f(c|sn), that is, the particularization of

the function in the anchor point, except for those coordinates involved in sn.

3.3.3 Combining the anchored-ANOVA with the sparse PGD

A valuable strategy consists in: (i) �rst, using the standard anchored-ANOVA for evaluating

the functions depending on each dimension fi(s
i), i = 1, . . . , P , by suing an adequate

sampling, a sort of multidimensional cross centered at the anchor point c. In each dimension,

fi(s
i) can be approximated by using any variable approximation, eventually the regularized

ones discussed in the previous sections. Then, (ii) one could compute the residual f ′(s):

f ′(s) = f(s)− f0 −
P∑
i=1

fi(s
i), (3.21)
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and �nally, (iii) using the rs-PGD, or the s2-PGD, for approximating that residual f ′(s)

that contains the di�erent correlations. In that case, an enhanced sparse-sampling can

be considered, trying to approach as much as possible the points involved in the sparse

sampling to the borders of the parametric domain.

3.4 Results

In this section, the results of using the above techniques are shown for di�erent cases.

First, in Section 3.4.1, the error reduction is shown when using the rs-PGD comparing

with the classical procedure (s-PGD). Then, in Section 3.4.2, sparse identi�cation and

error reduction is presented when using the s2-PGD comparing with the standard sparse

procedure (s-PGD). Finally, Section 3.4.3 employes the analysis of variance and combines it

with regularized approximations to de�ne an original and powerful regression methodology.

3.4.1 Results for the rs-PGD approach

The following examples considers the Elastic Net Regularization. For that purpose, an α

parameter is employed for combining the Ridge and Lasso regression. The α parameter is

selected by running the algorithm several times for di�erent α values, and then choosing

the one which has better predictive performances.

3.4.1.1 A �rst example involving a �ve dimensional polynomial

In the �rst example, we are trying to approximate the �ve-dimensional function

f(x1, x2, x3, x4, x5) = (8x3
1 − 6x1 − 0.5x2)2 + (4x3

3 − 3x3 − 0.25x4)2 + 0.1(2x2
5 − 1). (3.22)

The above function is intended to be reconstructed in the domain Ω = [−0.51, 0.51]5.

The sampling for the training set contains 160 points. Therefore, only these points are used

to construct the model either using the s-PGD or the rs-PGD methodology. In addition,

the Latin hypercube sampling (LHS) is used to generate this set of data.

On the other hand, a testing set of 54000 untrained points is considered to compare the

results between techniques when predicting unseen scenarios. This second set will be used

to study the predictive ability of both models once they are �nally constructed.

A standard MAS employing up to 4th degree polynomials for both the s-PGD and the

rs-PGD is considered. To measure the error of both methodologies in the testing set, the

following error criterion is used:

errpgd =
‖z− zpgd‖2
‖z‖2

; errrpgd =
‖z− zrpgd‖2
‖z‖2

;

where z is the vector containing the values of f(x1, x2, x3, x4, x5) in the testing set, zpgd
and zrpgd are the vectors containing the prediction in the testing set of both methodologies

(s-PGD and rs-PGD, respectively).

After employing the discussed techniques in the above conditions, we obtain in this

example that the error is reduced by 52.38 % using the rs-PGD with α = 0.1.

To perceive the improvements and the over�tting reduction, in Figure 3.2, we show a

plot of the original function f(x1, x2, x3 = 0, x4 = 0, x5 = 0.7071). It can be noticed that

the rs-PGD corrects the shape of the function in the indicated areas in Fig. 3.2, improving

the performance of the regression.

This improvement occurs over the whole �ve-dimensional domain. Other result is shown

in Figure 3.3 that depicts f(x1, x2, x3 = −0.17069, x4 = −0.17069, x5 = −0.015517).
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Figure 3.2 � Comparing the reference (Eq. (3.22)) and its associated s-PGD and
rs-PGD regressions, at points (x1, x2, x3 = 0, x4 = 0, x5 = 0.7071)

Figure 3.3 � Comparing the reference (Eq. (3.22)) and its associated s-PGD
and rs-PGD regressions, at points (x1, x2, x3 = −0.17069, x4 = −0.17069, x5 =

−0.015517)
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3.4.1.2 A second example involving �ve dimensions with trigonometric

and logarithmic functions

In this second example, we are trying to approximate the function:

f(x1, x2, x3, x4, x5) = cos(x1x2)
[(

sin(2x3)− 3.14
)

log(3x4 + 1.5) cos(x5)

+ exp(x4) cosh(x3) sinh(x5)
]
,

(3.23)

by using the rs-PGD with polynomials. The above function is intended to be reconstructed

in the domain Ω = [−1, 1]5.

In this case, the sampling for the training set contains 290 points. Therefore, only

these points are used to construct the model either by using the s-PGD or the rs-PGD

methodology. In addition, the Latin hypercube sampling is used to generate this set of

data.

On the other hand, a testing set of 2000 untrained points is available to compare the

results when predicting unseen scenarios. Again a standard MAS is employed reaching 4th

degree polynomials in both, the s-PGD and the rs-PGD. An error reduction of about 47%

is accomplished with α = 0.5.

3.4.1.3 Results on the chaotic Lorenz system.

As a last example, we consider a canonical model for chaotic dynamics, the Lorentz system

[Brunton et al. 2015, Lorenz 1963]:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

with parameters σ = 10, ρ = 28 and β = 8/3.

Data are collected using a sampling without replacement in the interval t ∈ [0, 20] until

completing a set of 102 points. These 102 points will be divided in two sets: the construction

set and the validation set. The �rst one will be used to compute the regression coe�cients

and the other one to select the hyperparameters. Furthermore, the ridge regularization is

employed as well as the MAS for the rs-PGD when identifying the dynamics. As in other

instances, the Chebyshev basis is used in the one-dimensional approximations.

The rs-PGD successfully detects the important non-zero coe�cients with an error below

0.02 % in the construction and validation set for the three variables. As an illustration, the

initial identi�ed coe�cients for ẋ are shown in Table 3.1. As we can observe, the theoretical

zero coe�cients are not always exactly zero but they are very small. However, we are

dealing with a chaotic dynamics where very small deviations on the identi�ed parameters

can produce huge deviations in the long-time predictions.

For this reason, once the rs-PGD solution is computed, a �lter based on the sequential

thresholded least-squares (STLS) can be applied on the remaining coe�cients, aiming at

removing the coe�cients below a given threshold, and then the least squares procedure

applies again to recompute the coe�cients, for obtaining a very accurate regression, as

Figs. 3.4 and 3.5 prove.

3.4.2 Checking the performances of s2-PGD when addressing
sparse solutions
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Figure 3.4 � True dynamics and dynamics identi�ed by the rs-PGD model

Figure 3.5 � Comparison between rs-PGD predictions and true dynamics on the
three-variable time evolution.
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ẋ

{' '} {[8.7112e− 04]}
{′x′} {[−9.9997]}
{′y′} {[9.9996]}
{′z′} {[0]}
{′xy′} {[−1.3783e− 05]}
{′xz′} {[0]}
{′yz′} {[0]}
{′xyz′} {[0]}

Table 3.1 � Initial rs-PGD model for ẋ

3.4.2.1 A �rst example involving sparsity in one dimension

In the �rst example of this Section, we are trying to approximate the function:

f(x1, x2, x3) = (sin(2x1)− 3.14)T5(x2) + exp(x3) cosh(x1), (3.24)

by using a Chebyshev basis for the one-dimensional functions of the PGD. The above

function is intended to be reconstructed in the domain Ω = [−1, 1]3.

Moreover, the sampling for the training set is created using a sparse grid based on the

Smolyak quadrature rule of level 3 based on the Clenshaw-Curtis univariate quadrature

rule [Kaarnioja 2013, Beddek 2012]. Therefore, only these points are used to construct the

model either using the s-PGD or the s2-PGD methodology. In �gure 3.6, the mesh used

for the training set is shown.

On the other hand, a testing set of 27000 untrained points is available to compare the

results between techniques when predicting unseen scenarios. This second set will be used

to study the predictive ability of both models once they are �nally constructed.

The conditions to employ the s2-PGD in this example are the following. A basis

reaching eighth-degree polynomials is chosen for the sparse dimension. Moreover, a

standard MAS-based s-PGD is used, reaching 4th degree polynomials along the non-sparse

dimensions.

In Figure 3.7, the results of the standard s-PGD are shown. In this case, we can see

that the predictions are bad because this methodology completely fails in �nding this type

of sparse solutions. This is one of the problems that the s-PGD is facing and we propose

to solve with the s2-PGD.

In addition, if we observe the s-PGD solution we can see that all the possible elements

are nonzero, so it fails in identifying the sparsity. To detect sparsity, three simulations of the

s2-PGD are carried out, penalizing a di�erent dimension at each iteration. Consequently,

the model with best predictive ability (out of the training set) will be the selected one. As

expected, the chosen model is the one obtained when penalizing the x2 dimension.

In Figure 3.8, the results of the s2-PGD are presented. As we can observe, predictions

are almost perfect. If we examine the solution, we can see that the model is correctly

identi�ed using four modes, that is, four sums of the PGD decomposition.

The errors concerning the s-PGD and the s2-PGD solutions are respectively errpgd =

141 % and errs2pgd = 0.56 %.
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Figure 3.6 � Plot of the original function and the training set (circles) used to
construct the PGD models.

Figure 3.7 � Problem de�ned in Eq. (3.24): Comparison of predicted s-PGD
values with the reference ones in the testing set (the black line represents a perfect
prediction)
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Figure 3.8 � Problem de�ned in Eq. (3.24): Comparison of predicted s2-PGD
values with the reference ones in the testing set (the black line represents a perfect
prediction)

3.4.2.2 A second example involving more dimensions

In this case we consider the approximations problem of function

f(x1, x2, x3, x4, x5) =
[
T5(x1) + 2T1(x1)

][
T2(x2) + 2T4(x2)

][(
sin(2x3)− 3.14

)
log(3x4 + 1.5) cos(x5) + exp(x4) cosh(x3) sinh(x5)

]
(3.25)

by using a Chebyshev approximation basis for the one-dimensional functions involved in

the PGD constructor.

The above function is intended to be reconstructed in the domain Ω = [−1, 1]5. The

sampling for the training set contains 290 points. In addition, the Latin hypercube sampling

is used to generate this random set of data.

On the other hand, a testing set of 2000 untrained points is available to compare the

results between techniques when predicting unseen scenarios. As in the previous examples,

this second set will be used to study the predictive ability of both models once they are

�nally constructed.

Concerning the s2-PGD a basis reaching sixth-degree polynomials is chosen for the

sparse dimensions. Moreover, a standard MAS is used, up-to 4th degree polynomials, in

the non-sparse dimensions.

In Figure 3.9, the results of the standard s-PGD are shown. In this case, we can see that

the predictions are bad. This is due to the wrong identi�cation of the non-zero elements in

the separated representation, which causes over�tting problems.

To detect sparsity, �ve di�erent simulations of the s2-PGD are carried out, penalizing

one di�erent dimension each time. Consequently, the model with best predictive ability

(out of the training set) will be the selected one. As expected, the chosen model is the one

obtained when penalizing the x1 dimension. The reason is that in this case, we observe

that the correct non-zero terms for x1 and x2 are identi�ed just penalizing x1.

80



3.4. Results

Figure 3.9 � Problem de�ned in Eq. (3.25): Comparison of predicted s-PGD
values with the reference ones in the testing set (the black line represents a perfect
prediction)

In Figure 3.10, the results of the s2-PGD are presented. An exellent agreement

between the real function and the proposed approach is observed. Furthermore, if we

examine the s2-PGD solution, we can see that the model have correctly identi�ed the

non-zero elements. In addition, this PGD solution needed 104 modes, that is, 104 sums

of the PGD decomposition, solution that can be re-compacted by invoking again the PGD

[Chinesta et al. 2013a].

Finally, the errors concerning the s-PGD and the s2-PGD solutions are respectively

errpgd = 46.39 % and errs2pgd = 2.4 %.

3.4.3 ANOVA-PGD numerical results

ANOVA-PGD regression consists of applying regression techniques (such as standard

interpolation, s-PGD, rs-PGD or s2-PGD) separately to the di�erent terms (or groups

of terms) in the ANOVA decomposition. This strategy suggests the MAS since it enforces

some simplicity in the �rst modes, even if here richer approximations can be envisaged,

but it also provides other bene�ts through the orthogonality of the decomposition and the

opportunity to work in a low dimension setting, as previously expossed.

Here, we consider the numerical test related to the 2D function

f(x, y) = −2 cos(3x1.75) + 10 log(y − 0.6)4 + 6 cos(x)(y − 0.3y2), (3.26)

that perfectly �ts the ANOVA structure, despite the functional complexity of the terms

involving the coordinates x and y, 2 cos(3x1.75) and 10 log(y − 0.6)4 respectively, and the

one coupling both coordinates, 6 cos(x)(y − 0.3y2).

When considering the ANOVA-based sampling consisting of the center point of the

parametric domain acting as the anchor c = (xc, yc), 10 additional points in the �rst
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Figure 3.10 � Problem de�ned in Eq. (3.25): Comparison of predicted s2-PGD
values with the reference ones in the testing set (the black line represents a perfect
prediction)

dimension (of the form (x, yc)) and 10 additional points in the second dimension (of the

form (xc, y)), functions fx(x) and fy(y) were calculated with a cubic spline interpolation.

Then, a standard 2D nonlinear regression using basis functions of the form (x− xc)m(y −
yc)

n, m, n ≥ 1 (due to the low dimensionality of the treated problem the employ of separated

representations is not needed) was employed for calculating the term fx,y(x, y) using 4

sample points.

The constructed solution is depicted in Fig. 3.11 where it is compared with the

exact solution as well as with the solution obtained by using the standard s-PGD (with a

Latin Hypercube Sampling containing 25 points), while Figs. 3.12 and 3.13 compare the

predictions and the reference values. From all these results, excellent performances of the

ANOVA-based regression can be stressed.

Figure 3.11 � Comparing s-PGD and ANOVA-PGD regressions
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Figure 3.12 � Problem de�ned in Eq. (3.26): Comparison of predicted s-PGD
values with the reference ones in the testing set (the black line represents a perfect
prediction)

Figure 3.13 � Problem de�ned in Eq. (3.26): Comparison of predicted ANOVA-PGD
values with the reference ones in the testing set (the black line represents a perfect
prediction)
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3.5 Conclusions

In this chapter, three di�erent data-driven regression techniques are introduced, the �rst

two, the so-called rs-PGD and s2-PGD, that consist of a regularization of the usual sparse

PGD, and the third, that combines analysis of variance features with sparse separated

representations. It has been shown and discussed, through di�erent examples, how they

can improve signi�cantly the existing sparse s-PGD performance, reducing over�tting and

achieving great explanatory predictive capabilities when dealing with unseen scenarios.

Furthermore, the s2-PGD can be employed to sparse identi�cation and variable selection

when the s-PGD fails. The comparison of Figures 3.7 and 3.8 is an example of the

substantial improvements under this rationale.

In addition, the suitability of the s-PGD to deal with the challenging scenarios

concerning the low-data regime context and high-dimensional parametric functions was

previously proved in [Ibáñez Pinillo et al. 2018] and [Ibanez Pinillo 2019]. Therefore, the

improvements carried out by these new techniques opens the door to construct better

high-performance ROMs in this di�cult context. Moreover, this is really appealing because

of the increasing industrial interest of obtaining accurate models under these circumstances.
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Chapter 4

Advanced Multi-Parametric

models for Electric Machines.

Abstract At present, industry is permanently looking for fast and accurate solutions in

electric machines such as electric motors and generators, and trends such as the Electric

Vehicle (EV) or the self-driving car are producing a lot of investment in that direction. The

reason for this seems clear: achieving these goals will improve the �nal design's performance

and economic competitiveness. In fact, a great portion of numerical simulations concerning

real-life problems face di�culties in design, optimization and control due to the complexity

of the system, high computational costs, and storage requirement. In order to deal with

the above issues, two reduced order models are proposed. Consequently, high-dimensional

parametric solutions are obtained to quickly determine the response of the electric machine

with accuracy. In this way, a huge bene�t is obtained when tasks such as optimization,

inverse analysis or simulation-based control are performed. Although the techniques

described here have a wide range of application, this work has a special focus on the

treatment of noise and vibration of electric motors in the EV, the industrial application

that motivated this work.
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4.1. Introduction

4.1 Introduction

4.1.1 Chapter overview

This chapter address an important industrial application nowadays: the need of fast,

accurate and parametric models for electric machines. These solutions are highly demanded

by the industry, especially with the recent developments in the Electric Vehicle (EV).

In this context, the following two areas of work are addressed:

� A novel Reduced Order Model is obtained employing the intrusive PGD to construct

a high-dimensional parametric solution for electromagnetic �elds in synchronous

machines (Section 4.2). The proposed approach is capable to construct this

parametric solution in a few minutes of o�-line simulation and once constructed, a

particular solution can be particularized on-line in less than a second. In particular,

the result is a virtual chart allowing real-time evaluation of the magnetic vector

potential as a function of the operation point of the motor, or even as a function of

constructive parameters, such as the remanent �ux in permanent magnets. This is

possible thanks to the use of a fully separated representation in which the solution is

written from a series of functions of the space and parameters coordinates, with full

space separation made possible by the use of an adapted geometrical mapping. In this

context, the domain of simulation is not suitable for a PGD separated representation,

making its successful and e�cient application to the problem challenging. However,

in this dissertation, a new suitable mapping is developed to transform the motor

geometry. Thus, the resultant new geometry will be more adapted to achieve good

results within the PGD framework.

� A novel non-intrusive Model Order Reduction (MOR) strategy is employed to achieve

fast and real-time predictions as well as high-dimensional parametric solutions for

the electromagnetic force which will help the design, analysis of performance and

implementation of electric machines concerning industrial applications such as the

noise, vibration, and harshness in electric motors (Section 4.3). The approach allows

to avoid the long-time simulations needed to analyze the electric machine at di�erent

operation points. In addition, it can be easily extended to predict other quantities

of interest such as the torque or the �uxes. Moreover, it facilitates the computation

and coupling of the motor model in other physical subsystems. Speci�cally, the

novel formulation employed is the one proposed in Section 2.3 of this dissertation.

Here, the sparse Proper Generalized Decomposition procedure is combined with a

Reduced Basis approach, which is used to �t correctly the Reduced Order Model

with the numerical simulations as well as to obtain a further data compression. This

technique can be applied to construct a regression model from high-dimensional data.

These data can come, for example, from Finite Element simulations.

As we have just introduced, two di�erent advanced ROMs are developed in this chapter

to meet current industrial requirements. The �rst one based on the intrusive PGD (Chapter

1) and the second one based on the novel reduced ordered formulation described in Section

2.3, that is, the s-PGD+RB strategy.

If two approaches are proposed one could wonder when we should use each one. The

�rst one (intrusive PGD) is recommended when possible or when the intrusiveness is not

an issue. On the other hand, the s-PGD+RB strategy is recommended when complex

geometries cannot be addressed by the proposed change of coordinates or when complex

geometrical parameters present di�culties in the formulation of the intrusive PGD. For

instance, eccentricity in the rotor can be an issue for the intrusive PGD.

89



Chapter 4. Advanced Multi-Parametric models for Electric Machines.

The chapter is divided into two main sections describing each technique (Section 4.2

and Section 4.3), as well as a concluding section that presents the overall conclusions of

the work. In addition, at the beginning of aforementioned Sections 4.2 and 4.3, the topic

and the content is introduced in detail for the corresponding ROM as well as showing the

internal structure of the section. In the aformentioned introductions, a special focus on the

topic of noise and vibration of electric motors is done becasue it is the industrial application

that motivated this work.

This chapter and all the results presented in it correspond to the published papers:

� A. Sancarlos, C. Ghnatios, J.L. Duval, N. Zerbib, E. Cueto, F. Chinesta, � Fast

Computation of Multi-Parametric Electromagnetic Fields in Synchronous Machines

by Using PGD-Based Fully Separated Representations,� Energies, vol. 14, issue 5,

2021. DOI: https://doi.org/10.3390/en14051454

� A. Sancarlos, E. Cueto, F. Chinesta, J.L. Duval, �A novel sparse reduced order

formulation for modeling electromagnetic forces in electric motors,� SN Appl. Sci.,

vol. 3, issue 3, 2021. DOI: https://doi.org/10.1007/s42452-021-04310-3.

4.2 Multi-Parametric Electromagnetic Fields in

Synchronous Machines by Using PGD-Based Fully

Separated Representations

4.2.1 Intrusive approach: Introduction

Numerical tools such as the Finite Element Method (FEM) or the Finite Di�erence

Method (FDM) are powerful and excellent methodologies for analyzing static and dynamical

systems. Despite this, a great portion of numerical simulations concerning real-life

problems face di�culties in design, optimization and control due to the complexity of

the system, high computational costs, and storage requirement [Farzamfar et al. 2016,

M. Sudheer Kumar & Apparao 2015].

At present, industry is permanently looking for fast and accurate solutions in electric

motors and generators, and trends such as the Electric Vehicle or the self-driving car are

producing a lot of investment in that direction. The reason for this seems clear: achieving

these goals will improve the �nal design's performance and economic competitiveness.

To address this need, a model order reduction technique that employs the Proper

Generalized Decomposition (PGD) is developed. This method alleviates the curse of

dimensionality through solving a Partial Di�erential Equation (PDE) or a set of PDEs

in a high-dimensional space within minutes, using a separated representation of the

multiparametric solution. Moreover, this technique has solved unfeasible high-dimensional

problems with high accuracy, and its abilities have been proven in many previous works

as discussed in Chapter 1 and the numerous references therein, where these parametric

solutions were employed for predicting, optimizing, propagating uncertainty, performing

inverse analysis and simulation-based control, all under the stringent real-time constraint.

For the sake of completeness, the intrusive PGD procedure for constructing spatial and

parametric separated representations was revisited in Section 1.3.1 of Chapter 1.

PGD was previously applied in electromagnetics, such as, for instance, design

of earthing systems [Pérez 2013], the computation of impedance in industrial busbar

systems [Sancarlos-González et al. 2017, Sancarlos 2017], the analysis of magnetoelectric

devices [Chaqués Herraiz 2015, Henneron & Clenet 2017] or simulation and optimization of
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smart grids [Malik 2017] . However, the complex non-separable geometry of electric motors

limited its use for e�ciently expressing the solution by separating the space coordinates.

Furthermore, there is also a numerical challenge when introducing the rotor movement as

a parameter in the PGD framework. In this Chapter, a framework to e�ciently employ

the PGD for a Permanent-Magnet Synchronous Motor (PMSM) is set up. To overcome the

complex geometries limitation, an adapted mapping of the real geometry into a suitable

separable domain is proposed. Such mappings were previously successfully employed to

deal with apparently non-separable domains [Ghnatios et al. 2021, Ghnatios et al. 2019a].

To evaluate the obtained PGD solutions, the �nite element software FEMM is employed

[Meeker 2018]. The main aim of using FEMM is twofold. First, it aims to make the

results more accessible to the community for checking, with FEMM being an open-source

�nite-element analysis software package. Second, it aims to have a good reference to rely

on. Furthermore, despite the fact that the PGD is currently a mature technique in the area

of computational mechanics, the application of PGD-based techniques in electromagnetism

constitutes a very active research area at present.

The main contributions of this �rst proposed ROM, developed in the present Sections

4.2.4 and 4.2.5 are: (i) the introduction of a very e�cient geometrical mapping, able

to separable render the motor geometry, enabling the application of the PGD-based

space-separated representation; (ii) the introduction of other parameters as model

extra-parameters, enabling the construction of parametric solutions to be e�ciently used in

a variety of engineering applications. The attained computational e�ciency is impressive,

attaining, thanks to the separated representation constructor, resolutions equivalent to 1023

FEM degrees of freedom, within few minutes, on a standard laptop, performances which

are unattainable when using more usual multi-purpose discretization techniques.

Therefore, the present Section is organized as follows. In subsection 4.2.2, the physical

equations are presented to focus on a two-dimensional steady-state analysis of a

PMSM. Next, in subsection 4.2.3, the simulated motor is presented where the main

parameters/features are introduced. Then, in subsection 4.2.4, the formulation for the

separated PGD representation in space is presented. Furthermore, in subsection 4.2.5,

the formulation to add the parameters as extra-coordinates in the PGD framework is shown.

Finally, in subsection 4.2.6 the results are shown and the conclusions will be addressed in

the conclusions of the Chapter, in Section 4.4.

4.2.2 Electromagnetic Equations

A two-dimensional steady-state analysis (magneto-static analysis) is employed to analyze

the synchronous machine.

In three-phase motors, as in the other polyphase con�gurations of the synchronous

machines, the stator-produced magnetomotive force (MMF) rotates at synchronous speed.

Since the rotor is also rotating at synchronous speed in the steady state, an observer on the

rotor experiences a constant �eld (∂B∂t = 0), and, therefore, there are no eddy currents on

the rotor.

On the other hand, an observer on the stator experiences a time-varying �eld with a

characteristic frequency. Since the stator is laminated and the stator windings are stranded

and transposed, the eddy currents are limited and can be neglected in the �eld computation.

Taking into consideration the above assumptions, let us start with Ampere's law

∇×H = J, (4.1)

where ∇ is the nabla operator, J is the electric current density and H is the magnetic

H-�eld. In addition, the magnetic �ux density (B-�eld) is related to the magnetic �eld
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strength (H-�eld) using

B = µ0 (µrH + M) , (4.2)

where M is the magnetization vector, µr is the relative magnetic permeability and µ0 is

the magnetic permeability of free space. Noting that ν = 1
µ0µr

and combining Equations

(4.1) and (4.2), one obtains

∇× (νB) = J +∇× (νµ0M) . (4.3)

Using the Helmholtz decomposition and noting that ∇ · B = 0, the B-�eld can be

expressed as

B = ∇×A, (4.4)

with A is the magnetic vector potential, leading to

∇× (ν∇×A) = J +∇× (νµ0M) . (4.5)

Note that eventhough the gauge condition should be de�ned for 3D, the condition is

automatically satis�ed for 2D problems. To de�ne the integral form of the problem, W is

used as the test function∫
Ω

∇× (ν∇×A− νµ0M) ·WdΩ =

∫
Ω

J ·WdΩ. (4.6)

As detailed in [Salon 1995], after using some vector identities and the divergence

theorem, the results are∫
Ω

ν (∇×A) · (∇×W) dΩ =

∫
Ω

νµ0M · (∇×W) dΩ +

∫
Ω

W · JdΩ, (4.7)

that in the 2D case reads∫
Ω

ν

(
∂Az
∂x

∂W

∂x
+
∂Az
∂y

∂W

∂y

)
dΩ =

∫
Ω

(
νµ0

(
Mx

∂W

∂y
−My

∂W

∂x

)
+ JzW

)
dΩ (4.8)

4.2.3 Description of the Analyzed Motor

As a proof of concept, the (Permanent-Magnet Synchronous Machine) PMSM with the

following characteristics is going to be analyzed:

� Three-phase supply. This is an eight-pole machine (i.e., p = 4).

� The winding con�guration for one pole of the machine is: A+, B−, C+ (the three

slots from 0 to 45 geometrical degrees).

� Turns/Slot: 46.

� In addition, the complete geometry of the machine is shown in Figure 4.1.

For the interested reader, further details of the machine parameters and materials can be

found in the Appendix B as well as in the FEMM software manual [Meeker 2018] where

this example is borrowed.
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Figure 4.1 � Electric machine to simulate. The green arrow in the permanent
magnets indicates the magnetization direction.

4.2.4 PGD Physical Space Separated Solution

The domain of simulation is not suitable for a PGD-separated representation using

Cartesian (x, y) coordinates because of the lack of plane symmetries (see Figure 4.1).

Previous techniques were developed to deal with such complexity using the PGD

framework [Ghnatios et al. 2012a]. However, in this work, a new suitable mapping to

transform the motor geometry into the one shown in Figures 4.2 and 4.3 is developed.

The advantage is that the resultant geometry is amenable for a separated representation

within the PGD framework.

The �rst step to achieving this goal is to perform a mapping to the polar coordinates

(R, θ) using {
R =

√
x2 + y2,

θ = arctg
(
y
x

)
,

(4.9)

where arctg is the inverse trigonometric function arctangent.

Then, a second mapping is used to transform the resulting non-fully separable domain

into a prismatic, easily separable one, (s, t), such as s ∈ [1, 7] and t ∈ [0, 2π), using the

following transformation, for i = 2, . . . , 7{
R(s ∈ [i− 1, i], t) = [s− (i− 1)] · (hi(t)− hi−1(t)) + hi−1(t)

θ(s, t ∈ [0, 2π)) = t
, (4.10)

where s and t are the new coordinates and i is computed rounding up the s value to the

next integer. In addition, the integers of the s coordinate are placed strategically, as shown

in Figure 4.4, and the de�nition of hi(t) functions is illustrated in Figure 4.5.

Using the associated Jacobians and the chain rule, one can rewrite the weak

form (4.8) into the (s, t) domain. More details about this technique can be found

in [Ghnatios et al. 2021, Ghnatios et al. 2019a, Ghnatios et al. 2019b].

The domain depicted in Figure 4.3 can be easily expressible by using a fully

space-separated representation within the PGD rationale, by expressing in the same way
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the material properties, e.g.,

ν(s, t) =

n∑
k=1

Sk(s)Tk(t), (4.11)

where n is the number of needed products.

By replacing the mapping into Equation (4.8), one may �nd the �nal weak form of

the problem by using the corresponding 1D-1D meshes de�ned in s and t one-dimensional

domains. The separated representations of the other known functions Jz and M is detailed

in the next section.

Figure 4.2 � Mapping from the original geometry into the calculation one.

Figure 4.3 � Fully separable domain used to compute the PGD solution laking use
of the mapping detailed in Equations (4.9) and (4.10).
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Figure 4.4 � The integer values of the new s coordinate are placed in the positions
shown in the �gure.

Figure 4.5 � The hi(t) functions are used to render separable the original
non-separable geometries.

4.2.5 PGD Parametric Solution

With the solution performance signi�cantly improved from the fully space-separated

representation (s, t), the next natural step within the PGD rationale consists of introducing

a number of model parameters as model extra-coordinates for calculating a multi-parametric

solution of the vector potential.

The chosen parameters to be added to the space coordinates s and t are ia, ib, ic, ρ

and Br, where Br indicates the modulus of the remanent magnetization in the permanent

magnets, with Br = µ0‖M‖, while ia, ib, ic are the currents of the three-phase system. In

addition, ρ indicates the rotor position of the machine. Moreover, for addressing the third
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dimension (the z-coordinate), when the 3D domain does not correspond to the 2D section

extrusion, an appropriate mapping should be considered. In what follows, an extruded 3D

domain, by extruding the 2D section along the z-coordinate axis, is considered.

Therefore, the �rst step is to obtain the parametric solution Az(s, t, z, ia, ib, ic, Br).

When applying the PGD procedure, this function is assumed to be expressed as a �nite

sum of products of one-dimensional functions

Az(s, t, z, ia, ib, ic, Br) =

M∑
m=1

ϑ1
m(s)ϑ2

m(t)ϑ3
m(z)ϑ4

m(ia)ϑ5
m(ib)ϑ

6
m(ic)ϑ

7
m(Br), (4.12)

where M is the total number of sums and {ϑ1
m, · · · , ϑ7

m} are the sought functions for the
mth mode.

In addition, a PGD solution was obtained for di�erent rotor positions, expressed

by the coordinate ρ. Thus, an additional discretization is associated to the ρ

coordinate. Speci�cally, 91 nodes are considered for discretizing the π/2 angular interval,

and, consequently, the corresponding number of solutions is performed.

Therefore, the �nal and most general parametric solution reads

Az(s, t, z, ia, ib, ic, Br, ρ) =


Az(s, t, z, ia, ib, ic, Br, ρ1), ρ = 0,

...

Az(s, t, z, ia, ib, ic, Br, ρ91), ρ = 90,

(4.13)

where the terms Az(s, t, z, ia, ib, ic, Br, ρk) are the di�erent computed PGD solutions. Only

ninety degrees of the rotation were simulated, as the rest can be found using the symmetry

of the problem.

On top of the physical space-separated solution, the electric current densities, as well as

the permanent magnets, are modeled as extra coordinates of the problem. To achieve the

required model, the electric current density Jz, as well as the modulus of the magnetization

vector M, are modeled as a function of the new space coordinates (s, t, z) as well as the

corresponding additional parameters. Therefore, Jz reads

Jz(s, t, z, ia, ib, ic, Br, ρk) =

6∑
i=1

φIi (s)ψ
I
i (t)Ji, (4.14)

where, according to Figures 4.6 and 4.7

φIi (s) =


0, if 1 ≤ s < 5,

1, if 5 ≤ s ≤ 6,

0, if 6 < s ≤ 7,

and

ψIi (t) =

{
1, for the corresponding winding position,

0, for the rest of the domain,

with Ji taking the corresponding values of Jz depending on the winding label: A, −B,
C, −A, B and −C. In addition, they are arranged in the following way: J1 and J4 are

one-dimensional functions depending on ic (with the relation J1 = −J4), J2 and J5 are

one-dimensional functions depending on ib (with the relation J2 = −J5) and J3 and J6

are one-dimensional functions depending on ia (with the relation J3 = −J6).
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Similarly, M can be expressed with a �nite sum involving the number of permanent

magnets NM , according to

M(s, t, z, ia, ib, ic, Br, ρk) =
Br
µ0

NM∑
i=1

φIIi (s)ψIIi (t)m̂i(s, t), (4.15)

where m̂i is the unit vector de�ning the magnetization direction of the i-magnet, according

to Figure 4.8, and the characteristic functions de�ning the location of each magnet read

φIIi (s) =


0, if 1 ≤ s < 2,

1, if 2 ≤ s ≤ 3,

0, if 3 < s ≤ 7,

ψIIi (t) =


1, within the magnet location in the even numbers of magnets,

−1, within the magnet location in the odd numbers of magnets.

0, for the rest of the domain.

Figure 4.6 � Illustration of φIi (s) functions involved in Equation (4.14).

Considering the coordinate transformation presented in Section 4.2.4 and the

approximations just introduced, the problem can be formulated and solved using the

standard PGD procedure described in Section 1.3.1. For the unfamiliar reader, further

information can be found in [Ghnatios 2012, Ghnatios et al. 2017, Cueto et al. 2014] and

the references therein.

97



Chapter 4. Advanced Multi-Parametric models for Electric Machines.

Figure 4.7 � Illustration of functions ψI
1(t) and ψI

2(t) involved in Equation (4.14).

Figure 4.8 � Functions φIIi (s) involved in Equation (4.15).

4.2.6 Results

This section aims to analyze the motor sketched in Figure 4.1, whose parameters were

reported in Section 4.2.3. As was indicated in the previous section (Equation (4.13)),

a PGD parametric solution is created for each discretized rotor position ρk (from ρ1 to

ρ91).
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The results focus on one of the industrial applications where this type of solution is

highly demanded: the evaluation of the electromagnetic force involved in noise and vibration

analysis of electric motors. Here, the solution is speci�cally sought in the air-gap area

to obtain the B-�eld in this region, and then estimate the magnetic pressure using the

Maxwell stress tensor.

As it will be discussed in Section 4.3.3, in the vibro-acoustic analysis, the following

expressions are usually employed [Pile et al. 2018, Xu et al. 2018, Haas & Ellermann 2017]:

Pn(α, t) =
1

2µ
B2
n(α, t), (4.16)

Pτ (α, t) ≈ 0, (4.17)

where P refers to the magnetic pressure, α is the angle of a polar coordinate system pointing

to the selected air-gap point, subscript n refers to the radial component in the air-gap

midline and the subscript τ refers to the tangential component in the air-gap midline.

Figure 4.9 shows the magnetic vector potential Az in a section of the simulated motor for

di�erent combinations of the input parameters ia, ib, ic, Br and ρ, illustrated in the physical

(x, y) domain. Figure 4.10 illustrates the 3D results in a section of the motor assumed a

simple section extrusion for a given combination of the parameters, to keep the 2D problem

formulation. Even if solving the 2D magnetic problem in the 3D domain does not contribute

to the solution, this remains invariant along the z-coordinate; its consideration here only

aims to prove that the fully space separation can very e�ciently address extremely rich

3D con�gurations.

Figures 4.11�4.13 compare the PGD solution with the one obtained by using the

open-source software FEMM (assuming the FEMM solution as the reference one). An

excellent agreement can be seen between the PGD-based mutli-parametric solution and the

reference one. However, each PGD-based parametric solution (for each rotor position, ρk)

is computed by using a standard laptop, in about 12 minutes, for a resolution equivalent

to 108 di�erent FEM simulations (the number of possible parameter choices), each of them

involving an equivalent spatial resolution of 175 million nodes (degrees of freedom). Solving

that number of extremely rich problems by using a standard �nite element discretization

becomes unreasonable. The computational e�ciency increases even more when considering

more parameters in the parametric solution. This constitutes the most appealing feature

of PGD-based separated representations; in the present case, concerning both the 3D space

(resulting in three one-dimensional approximations) and the model parameters assumed

here model extra-coordinates, and are also expressed in a separated form.

As indicated previously, once the �eld solution is obtained, the post-processing step

to obtain the magnetic pressure on the stator surface is performed, as Figures 4.14 and

4.15 reveal.

Furthermore, a comparison between the PGD and the FEMM solution is carried out

on the torque, which is one of the most important quantities of interest when analyzing,

for instance, the torque-speed curve. Random points of the parametric solution were

checked, observing that this error was below 2% (relative error computed considering the

FEMM solution as a reference).

This functionality is particularly valuable in electrical vehicles, when looking for a

compromise between the torque and the normal force applied on the stator (that causes

vibration and its induced noise).
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Figure 4.9 � Solution Az for di�erent combinations of the input parameters ia, ib,
ic, Br and ρ.

100



4.2. Multi-Parametric Electromagnetic Fields in Synchronous Machines by Using
PGD-Based Fully Separated Representations

Figure 4.10 � Magnetic vector potential Az in a section of the motor for ia = 1.5 A,
ib = 1.5 A, ic = −3 A, Br = 1.01 T and ρ = 0◦.
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Figure 4.11 � Relative error considering the PGD and the FEMM solution for the
case (s, t) ∈ (air gap), ia = ib = ic = 0 A, Br = 1.01 T, ρ = 0 (initial position).
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Figure 4.12 � Relative error considering the PGD and the FEMM solution for the
case (s, t) ∈ (air gap), ia = −1.5 A, ib = 3 A, ic = −1.5 A, Br = 1.01 T, ρ =

0 (initial position).

Figure 4.13 � Relative error considering the PGD and the FEMM solution for the
case (s, t) ∈ (air gap), ia = ib = ic = 0 A, Br = 1.01 T, ρ = 10 deg.
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Figure 4.14 � Magnetic pressure computed with the PGD solution for the case of
Figure 4.11.

Figure 4.15 � Fast Fourier Transform of the magnetic pressure depicted in
Figure 4.14.

The torque directly derives from the computed solution, as described in [Bianchi 2005],

according to

T =
D − g

2

L

µ0

∫
lg

BnBτdl, (4.18)

where Bn is the radial component of the �ux density (normal to the line lg), Bτ is the

azimuthal component of the �ux density (tangential to the air-gap midline lg), D is the

inner stator diameter, L is the active length of the rotor in the axial direction and g is

the air-gap.
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Finally, it is important to note that computing a derivative of the parametric solution

is easily done in the PGD framework as a pure solution post-processing, by simply taking

the derivatives of the one-dimensional functions involved in the separated representation.

For the interested reader, an application of this property is carried out in Section 4.3.5.4

where a sensitivity analysis of a PGD solution is performed.

4.3 A novel sparse reduced order formulation for

modeling electromagnetic forces in electric motors

4.3.1 Non-intrusive approach: Introduction

The electric powertrain is drastically growing its importance in industry, speci�cally in the

automotive one, because of di�erent reasons. One of them is the environmental and energy

regulations laid out in United Nations Climate Change Conference held in Paris in 2015

[Cli 2015, Kumar et al. 2017]. In addition, the development of technologies such as Electric

Vehicles (EVs), Hybrid Electric Vehicles (HEVs) or self-driving cars encourages even more

the research and development in this area.

Furthermore, an important e�ort of research in this direction of both companies and

national governments (such as USA or China) is carried out in the last years. For example,

in Europe, the creation of The European Technology & Innovation Platform (ETIP) on

batteries, named BatteRIes Europe [Alliance 2019], clari�es and envisages even more the

importance of the electric powertrain and the EVs in our next years.

Due to this interest, it is mandatory to analyze the Vehicle Noise, Vibration and

Harshness (NVH) because contrary to popular costumers' belief, EVs are not silent

at all. It is true that they can present lower overall levels comparing to Internal

Combustion Engines (ICEs) but unfortunately, they have high-frequency and tonal content

that makes the electric motor noise annoying if this issue is not addressed correctly

[Mazgaonkar et al. 2019, Dupont & Bouvet 2013].

The noise in the EV can be divided in 4 main sources: powertrain noise, wind noise,

tire/road noise, and ancillary noise (where the �rst is one of the most signi�cant). For this

reason, it is so important to analyze the electric powertrain, specially, the electric motor in

the NVH studies.

As it is shown in di�erent sources [Dupont & Saucy 2019, Bai 2018] , vibration and noise

produced by electrical machines can be divided into three categories [Gieras et al. 2006] :

electromagnetic vibration and noise, mechanical noise (related to the mechanical assembly,

in particular bearings) and aerodynamic noise (they are mainly caused by aerodynamic

forces in ventilation components of the motor).

Adding complexity to the analysis, the electromagnetic vibration and noise of electric

motors is a multi-physics problem, involving multiple �elds including electromagnetism,

structural dynamics and acoustics.

Electromagnetic-induced vibration and noise of an electric motor is mainly caused

by radial force waves [Bai 2018] on the stator surface as said in [Gieras et al. 2006] and

[Jean-Baptiste & Bouvet 2012]. [Xu et al. 2018] and [Haas & Ellermann 2017] also agree

on this. In addition, this calculation is one of the most highly-time consuming and

challenging. Consequently, Reduced Order Models (ROMs) are an appealing alternative to

compute these force waves which will be the input for the other stages of the NVH analysis,

as illustrated in Figure 4.16.

Contemporary electric motors are designed with higher magnetic �ux density in the air

gap which produces higher radial magnetic forces acting on the stator. This can lead to a
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Figure 4.16 � Conversion of electric energy into acoustic energy.

rise of vibration and acoustic problems. [Gieras et al. 2006, Bai 2018, Xu et al. 2018].

Even worse, the relatively small-size and lightweight design for motors, the large

electromagnetic forces as well as the poor rigidity of motor structures increase this

serious problem of electromagnetic vibration and noise which will a�ect the riding

comfort. Therefore, it is clearly justi�ed to incorporate in the design the requirements

of noise and vibration to avoid large retro�t expenses when the overall performance

is being optimized/balanced as said in [Gieras et al. 2006] and [Dupont & Saucy 2019].

[Jean-Baptiste & Bouvet 2012] and [Kumar et al. 2017] also agree on this.

A possible gateway for enabling more e�cient designs could be the simulation of complex

models of the electric machine. However, although it is a valid option in some cases, it can

be problematic when a detailed analysis of the machine is being carried out or the machine

is beeing simulated with the other physical systems which interact with it.

The reasons are the following ones. On the one hand, a lot of simulations are needed to

analyze the NVH behavior of a motor, thus being required faster simulations without losing

excessively accuracy. On the other hand, these complex models cannot be used to analyze

the whole EV system because of the di�culties to couple the machine model with the other

subsystems. Nevertheless, this system simulation is important in the analysis because the

real inputs for the motor are computed and the entire vehicle system is modeled (within the

so-called system engineering) obtaining the predictive responses of the di�erent subsystems

when interacting with each other.

Therefore, the main aim of the discussion of the following sections is to open the door

towards the use of simple, accurate and fast ROMs to predict the electromagnetic forces

on the stator surface which is one of the most challenging and highly time consuming steps

of the NVH analysis. For this reason, the methodology proposed in this Section 4.3 can

be used to compute these force waves in almost real-time (because of the simple algebraic

expression to be manipulated) and with accuracy respect to the �nite element model (FEM)

where it is based.

To get to the point, the ROM proposed here is based on the novel formulation

proposed in Section 2.3 of this dissertation: The s-PGD+RB strategy. Here, the sparse

Proper Generalized Decomposition [Ibáñez Pinillo et al. 2018] procedure is combined with
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a Reduced Basis approach, which is used to �t correctly the Reduced Order Model with

the numerical simulations as well as to obtain a further data compression.

The proposed technique can be applied to construct a regression model constructed from

data. This data can come for example from a Finite Element Method (FEM) software.

Moreover, it is perfectly suitable to create a high-dimensional function to give us the

electromagnetic force or pressure considering many parameters, including the geometric

ones.

Moreover, the s-PGD+RB strategy can easily be extended to other quantities of interest

(QoI) such as the torque or the �ux to obtain a complete ROM of the machine as it is

carried out in Section 4.2, where all the QoI can be computed from the PGD solution.

For this reason, the s-PGD+RB methodology is also presented as an alternative to the

aforementioned method proposed in 4.2 when it cannot be applied due to the issues discussed

in section 4.4.

One of the main advantages of this technique is that it deals with the well-known

course of dimensionality issue allowing to have good results with only few snapshots, that

is, high �delity solutions. This way, given some snapshots, the regression model can be

constructed using mainly polynomials, therefore once the model is constructed the responses

are computed immediately because of the simple expression obtained.

Furthermore, the non-intrusive methodology proposed in this chapter can easily be

extended to other type of motors and modeling frameworks as well as other industrial

problems.

To illustrate the process, the s-PGD-RB procedure is applied to construct three di�erent

ROMs. To compute them, two types of motor are analyzed: an induction motor and

a synchronous machine presented in Section 4.3.2. As in previous Section 4.2, the open

source software Finite Element Method Magnetics (FEMM) [Meeker 2018] is used to obtain

the pseudo experimental data. In Section 4.3.4, the proposed approach is presented and

discussed.

The results obtained as well as a comparison study between the s-PGD and FEMM

predictions are presented in Section 4.3.5 to evaluate the accuracy of the ROM.

Finally, in Section 4.4 the conclusions of the present work are discussed.

4.3.2 Analyzed motors

4.3.2.1 Induction motor

As a proof of concept, the induction motor with the following characteristics is going to be

analyzed:

� 2 HP motor, 50 Hz, 3-phase supply. It is a 4-pole machine (i.e., p = 2).

� The winding con�guration for one pole of the machine is: A+, A+, A+, C-, C-, C-,

B+, B+, B+ (the nine slots from 0 to 90 geometrical degrees).

� There are a total of 36 slots on the stator and 28 slots on the rotor. A total of 44

turns sit inside each stator slot.

� In addition, the complete geometry of the machine is shown in Figure 4.17.

For the interested reader, further details of the machine parameters and materials can be

found in the Appendix B as well as in the FEMM software manual [Meeker 2018] where

this example is borrowed.
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Figure 4.17 � Induction motor geometry.

In addition, the above machine is analyzed by employing a 2D current-based formulation

for a squirrel-cage induction motor. This way, the results are adapted and can be reproduced

using the free FEMM software and its capabilities.

For the interested reader, further details of the modeling framework employed by FEMM

can be found in Appendix C.

4.3.2.2 Synchronous motor

The synchronous machine previously described in Section 4.2.3 is also employed to test

the non-intrusive methodology. In addition, the formulation used to analyze this machine

was introduced in Section 4.2.2 when the weak form was presented to apply the intrusive

PGD. Moreover, the Appendix C is added detailing the strong form employed in FEMM as

well as the choice of certain modeling details according to the electric machine references

consulted.

In addition to the information given in Section 4.2.3, a screenshot of the complete

geometry is shown in Figure 4.18.

4.3.3 Post-processing step. Computation of the radial force
waves/magnetic pressure

As it was introduced in Section 4.3.1, the main goal is to obtain accurate and fast

ROMs to predict electromagnetic forces on the stator surface. For this reason, here the

post-processing step to obtain them is detailed.

Once the PDE describing the distribution and evolution of the magnetic vector potential

is solved, the B �eld must be obtained from the expression:

B = ∇×A, (4.19)

and then, the Maxwell stress tensor is used to compute the forces.
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Figure 4.18 � Synchronous machine: Complete geometry drawn in FEMM software.

In this work it is used, for the sake of simplicity, the approach applied to the path

at constant radius in the middle of the air gap [Sathyan et al. 2020]. Other possibilities

can be envisaged. For example, in [Pile et al. 2018], the Maxwell stress tensor is used and

compared under di�erent paths. However, it is important to highlight that using a more

complicated post-processing will not a�ect the fast computational features of the �nal ROM

obtained in this work.

The normal and tangential components of magnetic pressure are:

Pn(α, t) =
1

2µ

(
B2
n(α, t)−B2

τ (α, t)
)
, (4.20)

Pτ (α, t) =
1

µ
Bn(α, t)Bτ (α, t), (4.21)

where α is the angle of a polar coordinate system pointing to the selected air-gap point,

subscript n refers to the radial component in the air-gap midline and the subscript τ refers

to the tangential component in the air-gap midline.

In the vibro-acoustic context, simplifying assumptions are often added neglecting

the tangential terms. The reason is that the tangential component of the �ux

density is much smaller than the normal component [Pile et al. 2018, Xu et al. 2018,

Haas & Ellermann 2017]. This leads to:

Pn(α, t) =
1

2µ
B2
n(α, t), (4.22)

Pτ (α, t) ≈ 0. (4.23)
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4.3.4 Reduced order model

As already mentioned in Section 4.3.1, the ROM described here aims at proposing a

new methodology to obtain accurately the electromagnetic forces on the stator surface

(speci�cally the magnetic pressure) in almost real-time for any choice of a given set of

parameters. The reason is that this is one of the most challenging steps of the vibro-acoustic

analysis as it was discussed in Section 4.3.1.

In fact, the proposed approach allow us to obtain the force or magnetic pressure

immediately when changing di�erent parameters of the problem such as conductivities or

the operation point of the motor, for instance. This methodology opens the door to a more

e�cient vibro-acoustic analysis during the design and optimization process of the Electric

Machine as well as to improve the prediction capacities when the whole vehicle system is

considered. Furthermore, the procedure can be easily extended to other QoI to create the

desired ROM for the machine.

As it was introduced in Section 4.1.1 and 4.3.1, the ROM is made of a regression

combining both the s-PGD and the RB techniques. This new formulation is called the

s-PGD + RB strategy. In Section 2.2, the s-PGD technique is exposed. This methodology

will allow us to achieve excellent results when dealing with high-dimensional spaces and

sparse data. This technique is specially convenient because only sparse data is available

when dealing with high-dimensional problems [Ibáñez Pinillo et al. 2018]. This allows us

to cope with the curse of dimensionality.

Then, as it will be discussed in Section 2.3, because of the presence of localized behaviors

and discontinuities in the computed solutions, more than interpolating the solution itself,

we consider the construction of a RB which will be used for the regression procedure. The

RB is inserted in the s-PGD formulation, creating the ROM described in Section 2.3. In

the same section, the rationale for the use of such a formulation is detailed without losing

sight of the present industrial application.

Now, in the next section and in order to test the technique, di�erent ROMs will be

built with the proposed strategy for di�erent machines and modeling frameworks.

4.3.5 Results

In this section, the results of the proposed ROMs for each motor and modeling framework

are presented.

In addition, to illustrate some of the advantages concerning the separated representation

of the PGD, a sensitivity analysis is carried in Section 4.3.5.4 to measure the impact of each

variable.

Furthermore, a study comparing the error between the ROM and the FEM software

FEMM is carried out to check the accuracy of the proposed approach.

4.3.5.1 Induction Motor. Linear B-H

The approach shown is based on a current-based model where a balanced three-phase system

is supposed for both the fundamental and the harmonic component of the current. The

searched PGD function is:

Bn(α, f, s, Ip, fh, sh, Iph, γ); Bn ∈ C, (4.24)

where α refers to an angle pointing to a node in the air-gap midline, f is the supply

frequency, s is the slip, Ip is the current peak value of the fundamental frequency of

the source, fh is the harmonic frequency of the source, sh = fh−(1−s)f
fh

is a rede�ned
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slip concerning the harmonic component, Iph is the current peak value of the harmonic

component, and γ is the relative rotor position in relation to stator.

In this Section, the problematic dimensions discussed in Section 2.3 are γ and α.

Therefore, the RB procedure will be applied in these dimensions as explained in the

reformulation of Section 2.3.

To obtain the above function, a multi-PGD procedure is used to decompose the function

in more than one PGD solution. Consequently, the searched function is now:

Bn(α, f, s, Ip, fh, sh, Iph, γ) = f̃1(α, f, s, Ip, γ) + f̃2(α, fh, sh, Iph, γ), (4.25)

where the s-PGD technique will be used �rst for f̃1 and then for f̃2.

The �rst PGD search will focus on the range of parameters of the fundamental

component of the source and the second one regarding the harmonic one.

Considering the extraction of snapshots the following remark must be considered to

approach the problem.

As the system is considered linear (Linear B-H relationship), the total response is

the sum of the responses obtained from each source considered separately (superposition

theorem). Therefore, the chosen approach is to analyse harmonic content separately,

considering each source component independently and then adding each time response to

Bn. Finally, when the total Bn(t) is obtained, the post-processing of Eq. (4.22) must be

carried out.

To compare the results for di�erent zi along the α dimension, the following expressions

are used:

errreali =

∥∥real(BPGD
n (α, zi))− real(Bexp

n (α, zi))
∥∥

2

‖real(Bexp
n (α, zi))‖2

,

errimag
i =

∥∥imag(BPGD
n (α, zi))− imag(Bexp

n (α, zi))
∥∥

2

‖imag(Bexp
n (α, zi))‖2

,

(4.26)

where the superscript PGD denotes the results obtained by the s-PGD and the superscript

�exp� denotes the experimental measurements (pseudo-experimental results obtained in this

case by the FEMM software).

Furthermore, to sample the training set, di�erent Latin Hypercubes (LHs) are taken

using a grid composed of Chebyshev nodes along dimensions f, s, Ip, fh, sh, Iph. In addition,

eight hours are used to obtain the training set in the o�ine stage.

In Figure 4.19, a comparison between the expperimental and PGD results for a zi 6∈ T .
For this plot, the error measured as Eq. (4.26) is errreali = 0.000355, errimag

i = 0.000341; and

errreali = 0.000037, errimag
i = 0.000029 for the induction component caused by the harmonic.

On the other hand, the error in the training set measured as Eq. (4.26) is always lower

than 10−5.

In addition, the alternating force (speci�cally, the alternating magnetic pressure) for the

selection of parameters used in Figure 4.19 is shown in Figure 4.20. This force is obtained

combining the di�erent sine/cosine waves of the B-�eld in Eq. (4.22).

In Figures 4.21 and 4.22, the error for Eq. (4.24) for some zi 6∈ T can be seen. As it

can be noticed, an excellent agreement between FEMM and PGD results is achieved even

outside the training set. The main advantage is that the PGD model computes induction

and force for a given zi in less than 0.1 seconds independently of the computational cost of

the Finite Element solutions used for the snapshots.
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Figure 4.19 � Comparison between the s-PGD and FEMM model (linear B-H
relationship) for the parameters f = 40 Hz, s = 2.5 %, Ip = 3 A, fh = 5 · 40

Hz, sh = 80.50 %, Iph = 3/5 A, γ = 1 degree
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Figure 4.20 � Alternating force components obtained with the parameters f = 40

Hz, s = 2.5 %, Ip = 3 A, fh = 5 · 40 Hz, sh = 80.50 %, Iph = 3/5 A, γ = 1 degre
(linear B-H model).
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Figure 4.21 � Relative error of the s-PGD model (linear B-H relationship) to
determine the real part of Bn for di�erent untrained zi. Error criteria of Eq. (4.26)
is used.

Figure 4.22 � Relative error of the s-PGD model (linear B-H relationship) to
determine the imaginary part of Bn for di�erent untrained zi. Error criteria of
Eq. (4.26) is used.
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4.3.5.2 Induction Motor. Nonlinear B-H

The approach shown here is also based on a current based model. In addition, perfect sine

wave current functions are supposed for the balanced three-phase system. In this case, the

searched PGD function is:

Bn(α, f, s, Ip, σ, δ, γ); Bn ∈ C, (4.27)

where σ is the bar conductivity and δ is the air gap of the electric machine.

In this Section, the problematic dimensions described in Section 2.3 are α and γ.

Therefore, the RB procedure will be applied in this dimension as explained in the

reformulation of Section 2.3.

Furthermore, to sample the training set, di�erent Latin Hypercubes (LHs) are taken

using a grid composed of Chebyshev nodes along dimensions f, s, Ip, σ, δ. In addition, nine

hours are used to obtain the training set in the o�ine stage.

In Figure 4.23, a comparison for Eq. (4.27) is shown for a zi belonging to the training

set. For this plot, the error measured as Eq. (4.26) is errreali = 0.0008 and errimag
i = 0.001.

In Figure 4.24, a comparison between the FEMM and PGD results for a zi 6∈ T . For

this plot, the error measured as Eq. (4.26) is errreali = 0.009 and errimag
i = 0.012. In

addition, the alternating magnetic pressure related to this B-�eld can be seen.

In Figures 4.25 and 4.26, the error for Eq. (4.27) for some zi 6∈ T can be observed.

As it can be seen in these �gures, excellent agreement between FEMM and PGD results is

achieved outside the training set.

The main advantage is that the PGD model computes induction and force for a given

zi in less than 0.1 seconds indepentently of the computational cost of the Finite Element

solutions used for the snapshots.

It is important to highlight that the computational cost of the PGD model is

independent of the one of the FEM software used for the snapshots. Hence, if the

computational cost of the FEM software was some days, the time needed for the PGD

still would be less than 0.1 seconds.

4.3.5.3 Synchronous motor

The approach shown is based on a current based model. In addition, perfect sine wave

current functions are supposed for the balanced three-phase system. In addition, a nonlinear

B-H relationship is used for the materials.

The searched PGD function is:

Bn(α, γ, Ip, τ, ρ); Bn ∈ R, (4.28)

where α refers to an angle pointing to a node in the air-gap midline, γ is the relative rotor

position in relation to stator, Ip is the current peak value of the fundamental frequency

of the source, τ is the torque angle, namely, the phase di�erence between rotor and stator

magnetic �elds and ρ is a parameter de�ning the dynamic eccentricity of the machine

(ρ =
DOs,Or

δ ; where Os is the stator symmetry center which in this eccentricity is equals

to the rotor rotation center Ow, Or is the rotor symmetrical axis, DOs,Or is the distance

between Os and Or and δ is the uniform air-gap length when there is no eccentricity). The

above eccentricity parameters can be seen in Figure 4.27.

In this Section, the problematic dimensions described in Section 2.3 are α and γ.

Therefore, the RB procedure will be applied in these dimensions as explained in the

reformulation of Section 2.3.
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Figure 4.23 � Comparison between the s-PGD and FEMM model (nonlinear B-H
relationship) for a zi belonging to the training set. Parameters f = 10.4772 Hz,
s = 5 %, Ip = 3.3858 A, σ = 47.6537 MS/m, δ = 0.4876 mm, γ = 0 degrees. The
alternating force obtained during the post-processing step is also shown.
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Figure 4.24 � Comparison between the s-PGD and FEMM model (nonlinear B-H
relationship) for a zi 6∈ T . Parameters f = 50 Hz, s = 3 %, Ip = 3.5 A, σ = 40

MS/m, δ = 0.5 mm, γ = 0 degrees. The alternating force obtained during the
post-processing step is also shown.
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Figure 4.25 � Relative error of the s-PGD model (nonlinear B-H relationship) to
determine the real part of Bn for di�erent untrained zi. Error criteria of Eq. (4.26)
is used.
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Figure 4.26 � Relative error of the s-PGD model (nonlinear B-H relationship) to
determine the imaginary part of Bn for di�erent untrained zi. Error criteria of Eq.
(4.26) is used.
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Figure 4.27 � Sketch to visualize the parameters Os, Ow, Or and DOs,Or

Furthermore, to sample the training set, di�erent Latin Hypercubes (LHs) are taken

using a grid composed of Chebyshev nodes with the exception of γ (where it is preferred to

use equidistant nodes for each parameter combination to complete a 180-degree turn). In

addition, eight hours are used to obtain the training set in the o�ine stage.

In Figures 4.28 and 4.29, the induction and the magnetic pressure are depicted for two

points z1, z2 6∈ T . The error associated according to Eq. (4.26) is respectively errreal1 = 0.01

and errreal2 = 0.009.

In Figure 4.30, we can see the time evolution of the magnetic pressure of �gure 4.29

supposing a rotor and synchronous speed of N = 2000 rpm in steady state.

In Figure 4.31, a comparison of the results between FEMM and the PGD are shown to

analyze the error of the proposed ROM.

As it can be seen, the error analysis for this PGD solution has similar results to the

other PGD functions obtained for the induction motor.

Finally, as in the other cases, the big advantage is that the PGD model computes

induction and force for a given zi in less than 0.1 seconds and with accuracy indepentently

of the computational cost of the Finite Element solutions used for the snapshots.

4.3.5.4 Sensitivity analysis of the parametric solutions

Sensitivity analysis is often interesting in parametric models because of:

� the need to characterize how sensitive the response is with respect to uncertainties

in the input data; for example, manufacturing tolerances or material properties.

� the need to characterize how sensitive the response is in function of the operation

point of the system.

� the need to make changes to improve the performance of a design and want to �nd

out which changes that are most e�cient for attaining the expected goals.
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Figure 4.28 � Induction obtained with the s-PGD model for the parameters: γ = 0

degrees, Ip = 3 A, τ = π/2 rad, ρ = 0

Figure 4.29 � Radial force wave obtained with the s-PGD model for a set of
parameters: γ = 0 degrees, Ip = 13 A, τ = π/2 rad, ρ = 0.5
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Figure 4.30 � Time evolution of the magnetic pressure wave obtained with the s-PGD
supposing N = 2000 rpm. Set of parameters: γ = 0 degrees, Ip = 13 A, τ = π/2

rad, ρ = 0.5

As a result, it seems evident that the importance of doing this type of analysis arises

in industrial applications like the one treated in this chapter. The most appealing point

is that the ROMs constructed with the separated representation proposed in this work

make easier performing this analysis. The reason is that computing partial derivatives in

the separated representation is translated to compute the derivatives of one-dimensional

functions. As the vast part of the one-dimensional functions used in the ROMs are

polynomials, the computation remains quite simple and with low-computational cost

enabling online real-time calculations.

To illustrate the procedure, imagine a PGD solution concerning 3 parameters:

f̃M =

M∑
m=1

Xm(x)Θ1
m(θ1)Θ2

m(θ2)Θ3
m(θ3),

where we want to analyze the how sensitive is the solution around the nominal point θ1 =

a1, θ2 = a2, θ3 = a3. Then, the partial derivatives
∂f̃M

∂θ1
(x, a1, a2, a3), ∂f̃

M

∂θ2
(x, a1, a2, a3) and

∂f̃M

∂θ3
(x, a1, a2, a3) are computed as:

∂f̃M

∂θ1
(x, a1, a2, a3) =

M∑
m=1

Xm(x)
∂Θ1

m

∂θ1
(a1)Θ2

m(a2)Θ3
m(a3),

∂f̃M

∂θ2
(x, a1, a2, a3) =

M∑
m=1

Xm(x)Θ1
m(a1)

∂Θ2
m

∂θ2
(a2)Θ3

m(a3),

∂f̃M

∂θ3
(x, a1, a2, a3) =

M∑
m=1

Xm(x)Θ1
m(a1)Θ2

m(a2)
∂Θ3

m

∂θ3
(a3),
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Figure 4.31 � Comparison between s-PGD and FEMM results. Set of the parameters
(Top plot): γ = 0 degrees, Ip = 3 A, τ = π/2 rad, ρ = 0. Set of the parameters
(Bottom plot): γ = 0 degrees, Ip = 13 A, τ = π/2 rad, ρ = 0.5.
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where the magnitude of the partial derivative indicates the sensitivity of the solution for the

given parameter in the analysed point (higher magnitude corresponds to higher sensitivity).

In addition, the sign of the partial derivative indicates the direct or indirect relationship

between the function value and the parameter.

Higher-order derivatives and also derivatives concerning di�erent parameters are also

possible. It is important to note that the sensitivities are a �eld, o�ering large information,

beyond the behavior around the operating point.

Since the ROMs are based in the B-�eld, the sensitivity relation between magnetic

pressure and the B-�eld for a given parameter θi is (using Eq. (4.22)):

∂Pn
∂θi

(α) =
1

µ
·Bn

∂Bn
∂θi

(α). (4.29)

Now, as an example of use, some analysis that can be carried out with the extracted

ROMs are shown in di�erent regions of the domain. In the �rst example, we are going to

focus on the synchronous machine. Here, the sensitivity of the solution for the parameters

Ip and ρ is explored in an area of interest α ∈ [134.7, 224.8] deg. under the conditions: high

current and no eccentricity, high current and eccentricity, low current and no eccentricity,

and low current and eccentricity.

In Figures 4.32, 4.33, 4.34 and 4.35 the sensitivity is compared with two operating

points changing its Ip from 0.5 A to 20 A. Here, we can observe how much a little change

in the eccentricity or in the current peak value a�ects the magnetic pressure as well as the

B-�eld for both cases. In this operating points, adding eccentricities in the order of 0 - 0.25

mm does not change a lot the sensitivity behavior.

Figure 4.32 � Sensitivity of Bn and Pn for small changes in Ip. Operating point:
γ = 0 degrees, Ip = 0.5 A, τ = π/2 rad, ρ = 0.
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Figure 4.33 � Sensitivity of Bn and Pn for small changes in DOs,Or . Operating point:
γ = 0 degrees, Ip = 0.5 A, τ = π/2 rad, ρ = 0.

Figure 4.34 � Sensitivity of Bn and Pn for small changes in Ip. Operating point:
γ = 0 degrees, Ip = 20 A, τ = π/2 rad, ρ = 0
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Figure 4.35 � Sensitivity of Bn and Pn for small changes in DOs,Or . Operating point:
γ = 0 degrees, Ip = 20 A, τ = π/2 rad, ρ = 0.
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The second example is reported in �gure 4.36 concerning the induction motor. Here,

the sensitivity of the solution for �ve parameters is explored under a nominal operation

point. Also, the sensitivity of the conductivity when its value is not well known was studied

concluding that this uncertainty does not a�ect strongly the variables of interest.

Figure 4.36 � Sensitivity of Pn (the modulus of the alternating component) for small
changes in the parameters shown in the plot. The operating point is f = 50 Hz,
γ = 0 degrees, Ip = 3 A, s = 2.5 %, σ = 34.45 MS/m, δ = 0.375 mm. The region
explored is α ∈ [22.2, 53.8] deg. is explored.

4.4 Conclusions

Two di�erent advanced ROMs for rotating electrical machines are developed in this chapter

to meet current industrial requirements. The �rst one based on the intrusive PGD and the
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second one based on the s-PGD+RB strategy.

The �rst one is recommended when possible or when the intrusiveness is not an issue,

due to the fact that the equations are mathematically solved for all possible combinations

of the parameter values. On the other hand, the s-PGD+RB strategy is recommended

when complex geometries cannot be addressed by the proposed change of coordinates or

when complex geometrical parameters present di�culties in the formulation of the intrusive

PGD. For instance, eccentricity.

With respect to the PGD ROM, a double separation of variables, involving both the

space coordinates and the model parameters, was carried out within the PGD rationale,

and was applied to the analysis of electric motors, in particular, synchronous machines.

To test the proposal, a two-dimensional steady state analysis (magneto-static analysis) of a

PMSM was studied. In addition, an e�cient coordinate transformation was proposed, which

was able to proceed with a full space separation that reduced the 3D domain description

from a series of one-dimensional approximations.

In this study, an excellent agreement between the FEMM software and the PGD results

was noticed. The great bene�t of employing the PGD is that high-dimensional parametric

functions can be e�ciently constructed with low computational cost. Furthermore,

the proposed approach can empower the design, optimization or inverse analysis of this

type of machines because once the PGD solution is obtained in the o�-line stage, it can be

particularized online under the stringent real-time constraints.

On the other hand, with respect to the s-PGD+RB ROM, it can be observed that

the results of the FEMM software are reproduced with a high accuracy. A reduction in

the computational time and resources needed to obtain parametric electromagnetic forces

is achieved. In fact, the computational cost can be carried out by a standard laptop in

less than 0.1 seconds. Consequently, the saving in computational time and resources opens

a door for design, analysis, optimization and simulation of NVH in electric motors under

this rationale in the electromagnetic step. In addition, the proposed ROM facilitates the

integration and coupling of the force computation in electric motors to other systems (such

as the EV system) because of the simplicity of the obtained algebraic expression.

It is worthy to mention that the extremely low computational cost of the s-PGD+RB

ROM is independent of the complexity of the model used to o�ine obtain the snapshots.

In this work, the formulation available in the free software FEMM was employed.

Furthermore, richer �nite element models can be used to obtain the electromagnetic

forces to construct the ROM without major di�culties. Although it is true that using these

models to obtain the snapshots for the o�-line stage is more time consuming, the computing

time needed for the ROM once it is constructed (on-line stage) still would not be a�ected

(much smaller than a second).

127





Chapter 5

Parametric electromagnetic

analysis of radar based Advanced

Driver Assistant Systems

Abstract E�cient and optimal design of radar-based Advanced Driver Assistant

Systems (ADAS) needs the evaluation of many di�erent electromagnetic solutions for

evaluating the impact of the radome on the electromagnetic wave propagation. Because

of the very high frequency at which these devices operate, with the associated extremely

small wavelength, very �ne meshes are needed to accurately discretize the electromagnetic

equations. Thus, the computational cost of each numerical solution for a given choice of

the design or operation parameters, is high (CPU time consuming and needing signi�cant

computational resources) compromising the e�ciency of standard optimization algorithms.

In order to alleviate the just referred di�culties the present chapter proposes an approach

based on the use of reduced order modeling, in particular the construction of a parametric

solution by employing a non-intrusive formulation of the Proper Generalized Decomposition,

combined with a powerful phase-angle unwrapping strategy for accurately addressing the

electric and magnetic �elds interpolation, contributing to improve the design, the calibration

and the operational use of those systems.
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Chapter 5. Parametric electromagnetic analysis of radar based ADAS

5.1 Introduction

5.1.1 Chapter overview

This chapter presents an industrial application where the novel unwrapping algorithm

proposed in Section 2.4 is employed (Chapter 2). The main goal is to signi�cantly reduce the

number of snappshots needed to obtain a valid surrogate model for the radar application,

to allow, for instance, parametric models. Ful�lling the above objective has a very high

added value due to the high computational cost of obtaining the snapshots (i.e. simulations

are higly time-consuming).

Therefore, once the unwrappping is computed, non-intrusive MOR techniques can be

used to obtain a response surface. In particular, the s-PGD procedure is recommended in

this chapter to mitigate the curse of dimensionality as well as to reduce intrusiveness. An

analysis of the results is carried out to observe the improvements of the proposed strategy.

Before starting the discussion, it is important to mention that the industrial application

presented in this chapter as well as its results correspond to the second published paper

shown in Chapter 2 when presenting the unwrapping algorithm.

5.1.2 Topic introduction

Radar is a widely employed technology which relies on wave propagation to detect

surrounding objects. It consists in emitting a radio wave from a transmitter and measuring

the re�ected wave with a receiving antenna. The data collected from this measurement can

provide information about a detected object such as its location or its nature. An in-depth

analysis of the electromagnetic �eld may be necessary to ensure the information inferred

from the data is valid.

Radio waves are oscillations of the electromagnetic �eld and can therefore be computed

by solving Maxwell's equations. In the present work the electromagnetic problem is

solved using the Finite Di�erences Time Domain (FDTD) method implemented in CEM

One®, a commercial software provided by ESI Group, then computing the discrete Fourier

transform of the result to obtain the solution in the frequency domain.

The fundamentals of radar technology is nowadays used in many driver assistance

systems, needing for a precise quanti�cation of performances and limitations

[Winner et al. 2016]. Its design and use need addressing many topics, raging from

waveform design, propagation and pattern recognition [Rohling 2006, Stateczny et al. 2019,

Schnabel et al. 2013], with challenges and opportunities that are driving their evolution

[Steinbaeck et al. 2017]. However, its use is not limited to driver assistance,

this technology is nowadays largely employed in many domains like short-range localization

[Peng & Li 2019], monitoring worker activity [Cardillo & Caddemi 2019a], aids for visually

impaired people [Cardillo & Caddemi 2019b], physiological monitoring [Gao et al. 2016],

non-contact identity authentication [Islam et al. 2020], among many others. Signal

pollution is not excluded and sometimes it must be repaired before making use of it

[Rodriguez & Li 2019].

In outdoor applications, the transmitter and antenna are placed behind a radome,

a shell made of a dielectric material designed to protect the electric components against

the weather. Although dielectric materials are radio-wave transparent, they have an

altering e�ect on the electromagnetic �eld and must therefore be taken into account when

analyzing the data. Simulation of radio wave propagation through the radome provides

knowledge of the latter's precise in�uence on the system accuracy and performances.

Thus, an important issue concerns the e�ect of bumpers on the radar performances, topic
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that attracted great interest [Blöecher et al. 2012, Vasanelli et al. 2017, Harter et al. 2016,

Pfei�er & Biebl 2009, Buitrago et al. 2019, Norouzian et al. 2016]. In the just referred

works the coupling radar-radome e�ects (e.g., attenuation, signal pollution, . . . ) was

investigated but a parametric numerical modeling was not considered.

In the present chapter, we address precisely the analysis of that coupling, depending on

the radar orientation, however because of the high frequency, the spatial mesh resolution

for describing the solution of Maxwell equations leads to extremely �ne meshes, with the

consequent impact on the computing time. Simulation details are included in Section 5.3.

To alleviate that issue, we investigate the use of model order reduction (MOR)

techniques that successfully accomplished numerous parametric studies in other engineering

domains. Model order reduction has been successfully applied in problems involving

dynamics and waves within the so-called projection formulation, needing for a certain degree

of intrusiveness when using commercial softwares. Thus, the radial approximation proposed

in [Ladevèze 1989] was extended to mid-frequency dynamics within the so-called variational

theory of complex rays [Ladevèze et al. 2001]. In [Modesto et al. 2015], a parametric

solution of the Helmholtz equation was successfully obtained using the usual rank-one

greedy PGD constructor. In [Amsallem & Farhat 2008] authors proposed a consistent

reduced bases interpolation.

Non-intrusive formulations were proposed for constructing parametric solutions from

a number of high-�delity simulations performed for di�erent choices of the model

parameters, while trying to reduce as much as possible the size of the sampling for

addressing multi-parametric models [Chkifa et al. 2014, Borzacchiello et al. 2019]. In those

circumstances, usual surrogate models exhibit limitations when the number of parameters

increases, and alternative technologies combining two main ingredients, the separation of

variables and sparse sampling and approximations, appeared and proved their performances

[Borzacchiello et al. 2019, Ibáñez Pinillo et al. 2018].

When these techniques were employed in radar engineering di�erent di�culties

appeared. The �rst related to the fact that the sampling scales with the characteristic

length of the solution, that is with the wavelength, extremely small. On the other hand

interpolation of complex-valued electric and magnetic �elds produces spurious solutions.

Thus, for example, the average of 1 + 0i and −1 + 0i results 0 + 0i, even if one is expecting

having 0 + i (See Figure 5.1).

This limitation was solved by employing and alternative formulation based on the

amplitude and phase. For example, in the scenario just described, the average of 1|0 and

1|π results 1|π/2, result that seems more physically consistent.

However, the use of an amplitude/phase description faces the di�culty related to its 2π

periodicity, and the associated spurious discontinuities found when combining a phase close

to 2π, e.g., 2π − θ (θ > 0, very small), with another very close too, e.g., 2π + θ′ (θ′ > 0,

very small), but that being higher than 2π reduces to θ′, originating the just referred

spurious discontinuity: 2π − θ → θ′. Even if this issue was addressed in many works that

proposed the use of the so-called unwrapping, usual unwrapping algorithms only performs

well when the data sampling is dense enough, but they fail in the sparse sampling case

[Ben Abdallah & Abdelfattah 2015, Shanker & Zebker 2010, Costantini et al. 2012] .

The present chapter proposes a technique able to conciliate unwrapping and sparse

sampling.

Now, the problem statement and the proposed strategy are introduced in Section 5.2.
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Figure 5.1 � Example to illustrate the di�erences between Real-Imaginary and
Magnitude-Phase interpolation.

5.2 Parametric Electromagnetic Fields

In the present context, the transmitter emits waves at a constant frequency in a direction

denoted by an angle θ between 0◦ and 90◦. For each component of the electric and magnetic

�elds, the data generated by the simulations consists of an array of N ×Nθ values, N being

the number of points in the spatial discretization and Nθ the number of points in the

angular discretization. The aim of this work is to provide a method to determine through

the values of the electromagnetic �eld in all N discretized points in the geometry for any

value of θ between 0◦ and 90◦. In what follows, we will consider the problem of constructing

the interpolation of the z-component of the electric �eld, Ez, and the y-component of the

H-�eld, Hy, for all θ in the geometry points.

5.2.1 Real-Imaginary Interpolation Versus Magnitude-Phase
Interpolation

Since the solutions provided by the solver are in the frequency domain, they are

complex-valued functions. Complex numbers can be represented either by their real

and imaginary parts or by their magnitude and phase, therefore the interpolation of

complex-valued functions can be computed in multiple ways which are not equivalent.

The �rst option is to treat the real and imaginary parts as two real-valued functions,

interpolate them separately and combine the results. The second option is to treat the

magnitude and phase as two real-valued functions, interpolate them separately and combine

the results.

The performances of these two methods depend on the considered problem. In the

case studied in this chapter, the data from the simulation have real and imaginary parts
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oscillating quite fast compared to the sampling frequency (Figure 5.2), hence they are not

good candidates for interpolation. However the magnitude is much smoother which means

it may give trustworthy interpolation results. The phase looks more chaotic but it is not a

good indicator because of its natural 2π-periodicity that induced spurious discontinuities:

the phase needs to be �unwrapped� before being interpolated.

Figure 5.2 � Real and imaginary parts (top left and right respectively), magnitude
and phase of Ez (bottom left ad right respectively) as a function of θ in one point
of the geometry.

In �gure 2.2, it can be observed how the unwrapped function is more suitable to

interpolation and in Section 2.4.1, further details about the unwrapping problem were

introduced

5.2.2 Stratregy Proposed

The novel phase unwrapping proposed in Section 2.4 of Chapter 2 is applied to recover the

�unwrapped� electromagnetic signals. In the aforementioned Chapter, it was proved that

the new strategy is more robust and able to perform accurately with much less sampling

points. And not only that, but its performances were also demonstrated as well as compared

with current techniques (Sections 2.4.2, 2.4.3 and 2.4.4). Therefore, with the proposed

strategy, the number of snapshots is signi�cantly reduced, �nding a smooth space where

interpolation and parametric functions can be constructed. Then, a non-intrusive MOR

procedure, speci�cally the s-PGD introduced in Chapter 2 can be employed to construct

the parametric model.

5.3 Antena Modelling and Simulation Details

The simulation model discussed in this chapter is illustrated in Figure 5.3. This simpli�ed

mock-up represents the receiving part of a typical automotive radar device operating at 24

GHz and located behind a plastic bumper (Blind Spot Detection).

The antenna is made of 16×8 square array elements printed on a rectangular substrate

(thickness about 0.254 mm with a dielectric permittivity set equal to 2.2 and an electrical
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conductivity of 0.003 S/m). The average thickness of the plastic bumper is 7.5 mm and its

permittivity about 2.6 (its conductivity being negligible).

As mentioned in the during this chapter, computational results were obtained using the

CEM-TD product included in the CEM One® software package and based on the standard

FDTD simulation technique (Finite Di�erence Time Domain).

Once the device is illuminated by an external plane wave, electric and magnetic �eld

components can be thus accessed at the level of each basic antenna element and thus

expressed in frequency domain (modulus and phase) using a classical Fourier transform�see

for instance Figures 5.4 and 5.5.

With an incidence angle of the 24 GHz exciting wave ranging from 0◦ to 90◦ in

the horizontal plane (illustrated in Figure 5.3 for a given sample of the array antenna),

the spureous e�ect of the plastic bumper can be evaluated by comparing the �elds actually

received by the antenna with the reference signal obtained without any extra obstacle.

Figure 5.3 � Radar antenna and radome.

5.4 Results on the RADAR Problem

The electromagnetic �eld on a patch antenna (8×16 rectangular patches) has been computed

for 33 di�erent values of θ between 0◦ and 90◦, 32 of which are used to apply our method

and one as reference to compare the interpolation with the simulation. The reference

electromagnetic �eld corresponds to the parameter value θref = 79.8◦. The two closest

values of theta used to compute the interpolation are 76.8◦ and 82.4◦ hence θref lies in a

gap of size ∆θ = 82.4◦ − 76.8◦ = 5.6◦. The values of the electromagnetic �eld below 0.2

V/m for the electric component (E) and 0.5 mA/m for the magnetic component (H) are

not considered in this study because the signal is not considered signi�cant enough and the

phase cannot be studied because of its singularity (See Section 5.4.1). For this reason and

due to the polarization of the electromagnetic �eld, only the z-component of the electric

�eld Ez and y-component of the magnetic �eld Hy provide results. The absolute error

is calculated between the phase of the reference �eld and the phase of the interpolated

134



5.4. Results on the RADAR Problem

�eld. Then, �gures are shown with the mean error over each patch of the antenna using

the proposed method (Figures 5.4 and 5.5) and the classical unwrapping algorithm for

comparison (Figures 5.6 and 5.7).

Figure 5.4 � Mean absolute error on the phase (◦) of the Ez component over each
patch of the antenna using the proposed method.

Figure 5.5 � Mean absolute error on the phase (◦) of the Hy component over each
patch of the antenna using the proposed method.

Figure 5.6 � Mean absolute error on the phase (◦) of the Ez component over each
patch of the antenna using the classical unwrapping algorithm.

With the proposed method, the average error over the entire antenna is 1.6◦ for the

electric �eld and 1.4◦ for the magnetic �eld while with the standard unwrapping algorithm,

the average error over the entire antenna is 62.0◦ for the electric �eld and 63.7◦ for the
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magnetic �eld. In comparison, the average error on the phase when interpolating real and

imaginary parts is 166.8◦ for the electric �eld and 166.7◦ for the magnetic �eld.

The proposed approach is accurate and robust as the mean phase error is consistently

under 6◦ on the entire antenna for both the electric and magnetic �elds, whereas real and

imaginary parts interpolation completely fails when dealing with such a sparse discretization

of the parameter θ.

Figure 5.7 � Mean absolute error on the phase (◦) of the Hy component over each
patch of the antenna using the classical unwrapping algorithm.

5.4.1 Clari�cation. Phase Singularity

This additional section contains a clari�cation about the statement made during Section

5.4 concerning phase singularity.

The phase of a complex-valued function can have very fast variations when its magnitude

is close to zero, even if the function is very regular (Figure 5.8). This may induce large

error in the interpolation of the phase, which cannot be easily avoided. However since the

magnitude is very small, a large error on the phase does not have too much impact on the

complex number itself, which can usually simply be regarded as zero.

Figure 5.8 � Example of a smooth parametric curve on the complex plane (left) and
the phase as a function of the parameter (right).
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5.5 Conclusions

In this chapter, the computation of parametric solutions for electromagnetic wave

propagation in radar applications is addressed. These simulations currently require

hundreds of hours of computations to obtain suitable accuracy.

An interpolation method for complex-valued �elds which allows reducing the

computational cost signi�cantly is described. By exploiting the natural regularity of

electromagnetic �elds, we are able to retrieve highly accurate parametric solutions from

a very sparse set of simulations.

In addition, this is an example of the great advantages of the proposed unwrapping

algorithm of Section 2.4. In fact, in the aforementioned section, the results already showed

that a great reduction in the number of needed snapshots can be achieved. And not

only that, but it was proved that the novel unwrapping algorithm can outperform current

commercial software as well as provide good results in complex settings, such as the one

tackled in this chapter.
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Chapter 6

An aircraft Hybrid Twin:

Learning stable reduced-order

models for hybrid twins

Abstract The concept of �Hybrid Twin� (HT) has recently received a growing interest

thanks to the availability of powerful machine learning techniques. This twin concept

combines physics-based models within a model-order reduction framework�to obtain

real-time feedback rates�and data science. Thus, the main idea of the HT is to develop

on-the-�y data-driven models to correct possible deviations between measurements and

physics-based model predictions. This chapter is focused on the computation of stable,

fast and accurate corrections in the Hybrid Twin framework to address a real industrial

application. Furthermore, regarding the delicate and important problem of stability, the

novel approach presented in Chapter 2 of this dissertation is employed. Throughout this

chapter, a comparison between the full data-driven solution and the hybrid twin strategy

is also carried out. This way, the advantages of the hybrid strategy are analyzed.
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6.1 Introduction

6.1.1 Chapter overview

This chapter shows the thesis work done for a research project as part of the PEA MMT

(Plan d'Etudes Amont Man Machine Teaming) �nanced by the DGA (French Government

Defense procurement and technology agency) and managed by French aircraft and jets

manufacturer Dassault Aviation.

The goal is to employ the HT strategy to model an air distribution system of a

commercial aircraft from Dassault Aviation.

Moreover, one of the techniques proposed for hybridization in Chapter 2 is employed to

address this industrial application. Speci�cally, the stabilized DMDc technique proposed in

Section 2.5.3. In that section, the proposed strategy to obtain stable systems is described

as well as the sub-variants to deal with high-dimensional systems.

The methodology is tested for the aforementioned industrial case (detailed in Section

6.3.1), where an excellent agreement was observed when employing the HT approach.

The work is organized as follows: in Section 6.1.2, a brief introduction of the topic

is shown. Next, in Section 6.2, the system modeling with the HT concept is presented

and compared to the direct (so to speak, from scratch) data-driven approach. An

alternative approach that bene�ts from transfer learning, for instance, can be found in

[Guastoni et al. 2020]. Then, in Sections 6.3 and 6.4, the results and general conclusions of

the present work are discussed, respectively. In addition, throughout Sections 6.3.2, 6.3.3

and 6.3.4, a comparison between the full data-driven solution and the hybrid twin strategy

is carried out.

This chapter and all the results presented in it correspond to the following published

paper

� A. Sancarlos, M. Cameron, J.M. Le Peuvedic, J. Groulier, E. Cueto, F. Chinesta,

J.L. Duval, � Learning stable reduced-order models for hybrid twins,� Data-Centric

Engineering, Accepted, in press.

6.1.2 Topic introduction

The Hybrid Twin (HT) paradigm is a powerful tool to make better predictions, increase

control performance or improve decision-making [Chinesta et al. 2020, Martín et al. 2020].

The main idea, see Fig. 6.13, is to develop on-the-�y data-driven models to correct the gap

between data (i.e., measurements) and model predictions. In other words, there are two

main ingredients of a HT:

� The �rst one is to enrich physics description with data.

� The second one is to accelerate physics-based models using Model Order

Reduction (MOR) techniques, as in [Chinesta et al. 2017], [Chinesta et al. 2011], or

[Quaranta 2019].

In any case, when addressing dynamical systems in the HT framework, it is important to

guarantee the stability of the system when adding corrections to the physical model. It is

worth noting that this is an important issue, because sometimes the best model, computed

with state-of-the-art algorithms, completely fails to obtain a stable time-integrator. For

example, when considering a linear dynamical model by the Dynamic Mode Decomposition

(DMD) approach [Schmid 2010, Kutz et al. 2016], the feasible region constrained by the

stability condition is nonconvex [Huang et al. 2016], and no general methodology exists to

solve it.

140



6.2. System modeling

For this reason, this thesis proposes a new, fast and e�cient methodology, covering

several sub-variants and guaranteeing a low computational cost as well as the achievement of

a stable dynamical system. This technique will therefore be used to add a stable correction

term into the HT concept.

6.2 System modeling

In what follows, we consider the system as described by a vector z ∈ RDz (with Dz the

number of variables involved in the system evolution). The state (snapshot of the system)

at time tk = k∆t is stored at vectors zk, with k ≥ 0, with z0 assumed known. In addition,

Du control parameters are considered, giving rise to the input space u ∈ RDu .

We assume the existence of a model Mc(z,u) which we refer to as coarse, since we

assume that some form of enrichment is necessary. Often, this model is physics-based, it

arises from the corresponding PDEs governing the problem and can contain non-linearities.

Other times, it is based on MBSE (Model Based System Engineering) modelling. This

approximate representation of the reality is sought to be computable under real-time

constraints. These constraints depend on the context and can range from some seconds

to the order of milliseconds. If the complexity of the model does not allow to obtain such

a response under constraints, model order reduction techniques constitute an appealing

alternative. These, that can be linear or not, allow us to timely integrate the state of the

system.

Because of the simplifying hypotheses involved in the construction of the model Mc,

it is expected that model predictions zck di�er from measurements to some extent, i.e.,

‖zk − zck‖ > ε, for most time steps k, thus needing for a correction.

6.2.1 Extracting the model of the system from scratch

Several routes exist to construct a model for a given dynamical system. The �rst one

consists in performing a completely data-driven approach from experimental measurements

(zk,uk), k = 0, 1, . . . , ns A valuable option is to consider the so-called dynamic mode

decomposition (DMD) to extract a matrix model of a discrete linear system [Schmid 2010].

As suggested by several works, many di�erent systems can be well approximated using

this approach [Schmid 2011, Schmid et al. 2011]. If problems arise due to complex system

behaviours, the procedure of extending the state vector to a higher dimensional space can

often solve the problem [Kutz et al. 2016, Eivazi et al. 2021].

A second alternative could be the technique presented in Section 2.5.4 (or a variant of

this proposal), that consists in grouping all the states close to zk and the control parameters

close to uk into a set Ki. For the sake of clarity, in what follows K will refer to one of these

generic sets. A linear model for the set K, denoted MK, which in this case is simply a

matrix, is extracted from

M̄K = arg min
M̃K

∥∥∥X1 − M̃KX̃0

∥∥∥2

F
, (6.1)

with

z̃k =

[
zk
uk

]
,

X̃0 =
[
z̃0, z̃1, . . . , z̃ns−1

]
,

X1 =
[
z1, z2, . . . , zns

]
,
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if stability problems do not arise. Note that in this case the model is composed of local

matrices de�ning di�erent linear maps in each set.

Quite often, an issue can appear because of the di�culties to learn stable models when

constructing these dynamical systems. For this reason, in Section 2.5.3, a new methodology

is proposed when using these techniques to guarantee that the obtained systems remain

stable.

6.2.2 Enriching a physics-based model within the Hybrid Twin
framework

Constructing a model M of the physical system from scratch is not the most valuable route

as discussed in former works, cf. [Chinesta et al. 2020]. Purely data-driven, black-box

models are not popular in industry, due to the lack of interpretability and guaranteed

error estimators. Thus, a more valuable option consists of constructing corrections to

physics-based models�if these provide unsatisfactory results�from an additive correction

of this coarse prediction.

In fact, since the coarse model is expected to perform reasonably well for predicting

the state of the system, bias will in general remain reasonably small. If this is true, the

correction model will be much less nonlinear, and it will accept a more accurate description

from the same amount of data.

Thus, we de�ne the correction contribution ck (or, equivalently, the model enrichment)

as:

zk − zck = ck, (6.2)

where zck refers the model prediction.

Taking as a proof of concept a dynamic linear system with control inputs, the correction

term is searched as:

ck+1 = Mcck + Mucuk, (6.3)

where Mc and Muc are the matrices de�ning the time evolution of the correction term.

Thus, the total response of the system is �nally predicted by using

zk+1 ≈ zck+1 + Mcck + Mucuk. (6.4)

By taking into consideration that zc is stable and integrated independently of the

correction term, the stability condition of the system should apply just on the correction

term.

In next section, the novel strategy proposed in Section 2.5.3 to guarantee the

construction of stable systems with low computational cost is employed. In addition, this

technique can be used either to build models from scratch or the correction term of the HT

approach.

6.3 Application to a dynamical system: The aircraft

hybrid twin

6.3.1 System to model and types of data.

The modeled system corresponds to an air distribution system of an aircraft and is

characterized by eight variables de�ning the state of the system: six temperatures T ik,

i = 1, 2, . . . , 6, and two pressures pjk, j = 1, 2. The model should also take into account

three control variables uqk, q = 1, 2, 3, for each time instant k.
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With the knowledge and experience of Dassault Aviation, two models are constructed

with the help of the software Dymola [Dassault Systemes 2021]:

� A coarse model (CM). This model deliberately fails to provide accurate predictions

due to over-simpli�cation. It is important to note that in industry, this type of model

is often physics-based (although this is not mandatory) but still requires an important

computing time.

� A high-�delity model that will therefore be considered as the ground truth (GT),

which is consequently still more time consuming. This model is going to emulate in

this work the real state of the system.

Due to con�dentiality issues, Dassault Aviation simulated di�erent �ights with both models

and provided three di�erent types of pseudo-experimental data which are employed in the

present work:

� The CM data. These data correspond to the predictions of the CM for the given set

of simulated �ights.

� The GT data. These data correspond to the predictions of the GT model. It will be

considered in the present work for evaluation purposes.

� Pseudo-experimental data (PED). A white noise is added arti�cially to the GT

data. Consequently, these data will emulate experimental measurements including

experimental errors.

Additionally, in Figures 6.1 and 6.2, a comparison is shown between the three types of

data (CM, GT and PED) for a given �ight simulation.

At this point, three di�erent approaches were tested:

� Extracting a model from scratch from GT data (Section 6.3.2).

� Obtaining a model from scratch using the noisy pseudo-experimental data (PED)

(Section 6.3.3).

� Extracting a correction term to enrich the CM, thus constructing the Hybrid Twin

(Section 6.3.4).

Advantages and weaknesses of each approach will be discussed. The mathematical

details of the CM anf GT models are omitted for con�dentiality reasons. However, this

is not important for presenting, discussing and employing the proposed methodology and,

moreover, a successful outcome will be a sign that the proposed approach can address

current industrial needs.

6.3.2 Extracting a model from scratch using the GT data

6.3.2.1 Procedure and results

It is interesting to analyse whether the proposed approach presented in Section 2.5.3 is able

to learn a model from scratch employing the GT data. Therefore, this section is focused on

this goal. In next sections, it will be analysed if the approach is able to obtain similar results

when learning in the presence of noise (PED data) and �nally, we will see the advantages

of using the hybrid twin rational instead of the complete data-driven approach.

The technique is sketched in the diagram of Figure 6.3. As it can be noticed, the system

is characterized by eight variables de�ning the state of the system (six temperatures T ik,
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Figure 6.1 � Comparison of the state evolution z(t) = [p1, p2, T1, T2, T3, T4, T5, T6]

for a given �ight between the Coarse model (CM) and the Ground truth (GT)
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Figure 6.2 � Comparison of the system evolution, z(t) = [p1, p2, T1, T2, T3, T4, T5, T6],
for a given �ight between the Ground truth (GT) and the pseudo-experimental
(noisy) data, PED

Figure 6.3 � Diagram illustrating the inputs and the state vector of the proposed
DMDc model to reproduce the pruned data of the system.
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i = 1, 2, . . . , 6, and two pressures pjk, j = 1, 2) and three control variables uqk, q = 1, 2, 3 for

each time instant k.

In the present case, it is considered the simplest modeling approach in which the model

consists in a simple linear application that maps the present state and control parameters

zk and uk, respectively, onto the next system state zk+1.

The available data consist in F = 82 �ights, each one leading to eight time series zfk,

with f = 1, . . . , F, and k = 1, . . . , nf (the number of collected data depends on the �ight,

these having di�erent duration). It is important to note that, for any �ight tk+1− tk = ∆t,

with constant ∆t, for any component state and any �ight.

The extended state is de�ned as shown in Section 2.5.3:

z̃k =

(
zk
uk

)
. (6.5)

To learn the model, we select arbitrarily two �ights from the F available, f = r and

f = s, and de�ne the training matrices

X̃0 =

(
zr0 · · · zrnr−1 zs0 · · · zsns−1

ur
0 · · · ur

nr−1 us
0 · · · us

ns−1

)
, (6.6)

and

X1 =
[

zr1 · · · zrnr zs1 · · · zsns
]
, (6.7)

that allows extracting the model by solving the problem indicated in Eq. (2.27) or its

reduced counterpart (2.28).

Then, as soon as the model is extracted, we proceed to predict the state evolution

for each one of the F �ights, from their initial states, by simply writing at each time tk,

k = 1, . . . , nf,

z̃fk =

(
zfk
uf
k

)
, (6.8)

and applying the updating of Equations (2.22) or (2.28). Training data are composed of

two �ights while the other eighty are used to test the performance of the present approach.

Figure 6.4 compares the predicted states at each time instant by integrating the just

unveiled model from the initial condition. It employs a GT data series corresponding to

one particular, previously unseen �ight. It can be observed that the proposed approach

achieves an excellent agreement for variables p1, p2, T1, T2, T3 and T4.

On the other hand, although the error in variables T5 and T6 is larger it achieves to

follow the general trend, despite the fast time evolutions that these variables exhibit. The

same tendency is observed in all the �ights as Fig. 6.5 proves. To better capture the fast

evolutions of these two variables, the procedure described in Section 2.5.4 for addressing

nonlinear behaviors could be employed. However, in this work it is preferred to improve

the accuracy in the prediction of these special variables by employing a Hybrid approach,

for the reasons exposed in Section 6.3.4.

In Figure 6.6, it is observed that a similar accuracy is obtained for more than 85 % of

the �ights in the testing set (concerning variables p1, p2, T1 and T2). A similar conclusion

follows from Figure 6.7 for variables T3 and T4. Therefore, it is concluded that the model

has a good ability for generalization taking into consideration that just two �ights are

considered in the training.

However, the error in variables T5 and T6 can reach high values in a considerable part

of the testing set. To adress that, the HT rationale will be proposed and discussed.

Before that, we will see what happens if stability is not enforced when extracting the

GT model from scratch in the following subsection 6.3.2.2 as well as the improvements of

the proposed procedure.
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Figure 6.4 � Prediction of the GT data using the proposed technique for a �ight
which is not used in the training set. �GT" refers to GT data series described in
Section 6.3.1 and �Pred" refers to the stabilized DMDc model obtained with the
proposed approach discussed in Section 2.5.3
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Figure 6.5 � Error in the prediction of T3, T4, T5 and T6 for di�erent �ights which
are not in the training set. The prediction error in variables T5 and T6 is higher
than the other ones due to their fast time evolution
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Figure 6.6 � Error in the prediction of p1, p2, T1 and T2 of the proposed technique
for lights which are not in the training set
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Figure 6.7 � Error in the prediction of T3 and T4 of the proposed technique for �ights
which are not in the training set
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6.3.2.2 Checking explicitly the improvements of the proposed approach

to learn stable systems. Example when proceeding from the GT

data.

In the above Section, the results when modelling the GT data were shown when using the

stabilization procedure for the DMDc proposed in this work. However, it is interesting to

analyze whats happens when using other algorithms or by simply using standard procedures

to observe the bene�ts of the proposed stabilization.

To this end, the GT data for a particular �ight is considered. The time evolution of

the system can be observed in Figure 6.8.

The �rst objective is to see if we can approximate the dynamics of Figure 6.8 by

constructing a standard DMDc model without stabilizing it. Moreover, we are interested

in observing if stability issues arise.

Therefore, a model is constructed following the DMDc procedure with the state vector

and inputs exposed in Section 6.3.2.1.

As shown in Figure 6.9 below, the DMDc model reports stability issues giving useless

predictions.

Nevertheless, by applying the proposed stabilization approach to the DMDc algorithm

(as discussed in Section 2.5.3), a stable model is easily obtained quick and fast. The �ight

predicted by the proposed approach is shown in Figure 6.10. It is worth noting the great

improvement observed by comparing the standard non-stabilized DMDc model (Figure 6.9)

with the stabilized one (Figure 6.10) able to capture complex dynamics while completely

overcoming the stability issues.

Now, in the next section, we will examine the possibility of unveiling an accurate model

from noisy data. In this way, two important aspects will be analysed: the interest of

employing a Hybrid Twin approach and the ability of the proposed technique to �lter noise.

6.3.3 Extracting a model from scratch using noisy data (PED).

In this section, the goal is to unveil a model from scratch using noisy data. This will allow

us to study the robustness of the approach in the �ltering process.

After applying the technique in di�erent �ights and studying the reconstruction error

by considering di�erent extended states z̃, the proposed model is composed of:

z̃k =


zk
uk

uk−1

ωk
Wk

 , (6.9)

where:

ωk =

k∑
i=0

ui(ti+1 − ti),

and

Wk =

k∑
i=0

ωi(ti+1 − ti).

The same methodology of the previous Section is applied, by using the new extended

states z̃. This way, the more complex behavior of the noisy data can be addressed. In this

case, nine �ights of di�erent duration are used for the training set.
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Figure 6.8 � GT data for the example in Section 6.3.2.2
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6.3. Application to a dynamical system: The aircraft hybrid twin

Figure 6.9 � Prediction z(t) = [p1, p2, T1, T2, T3, T4, T5, T6] of the GT obtained
through DMDc. This prediction tries to reproduce the �ight of Figure 6.8 but
fails to provide with stable results
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Figure 6.10 � Comparison between the reference dynamics of Figure 6.8 and
the prediction of the modi�ed, stable DMDc model. Huge improvements are
observed when comparing with Figure 6.9. The state vector of the system is
z(t) = [p1, p2, T1, T2, T3, T4, T5, T6]
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Figure 6.11 � Comparison between the model obtained from scratch using PED data
and the PED data itself. In this �gure, the reconstruction of a �ight contained in
the training set is shown. �PED" refers to the pseudo-experimental data with noise
described in Section 6.3.1 and �Pred" refers to the stabilized DMDc model obtained
with the proposed approach discussed in Section 2.5.3. It can be observed that an
excellent agreement is obtained for every variable while �ltering the noise

In Fig. 6.11, a comparison is shown between the dynamics predicted by the DMDc

model obtained from scratch using the PED and the PED itself (see Section 6.3.1), for a

�ight contained in the training set. Here, it is observed that the model can capture the

dynamics of the system with an excellent accuracy, by just employing the initial state of

the system and the corresponding control inputs while �ltering the noise contained in the

training data.

In Fig. 6.12 a comparison is shown between the dynamics predicted by the DMDc

model obtained from scratch using the PED and the PED itself (see Section 6.3.1), for a

�ight contained in the testing set (never considered in the model construction). In these

plots, it is shown that a good agreement is obtained for all the variables with the exception

of T5 and T6. Similar results are reported in the other �ights of the testing set.

Variables T5 and T6 are more challenging to predict because of their fast time evolution.

Nevertheless, we are going to deal with them in the next section. Therefore, the Hybrid

Twin concept, which follows, is expected leading to more accurate results.
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Figure 6.12 � Comparison between the model obtained from scratch using PED data
and the PED data itself. In this �gure, the reconstruction of a �ight which is not
contained in the training set is shown. �PED" refers to the pseudo-experimental
data with noise described in Section 6.3.1 and �Pred" refers to the stabilized DMDc
model obtained with the proposed approach discussed in Section 2.5.3. It can be
observed that a good agreement is obtained for all the variables with the exception
of T5 and T6
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6.3.4 Extracting the correction model. Hybrid Twin paradigm.

As discussed in Section 6.2.2, constructing a model of the real system from scratch is not

the most valuable route when addressing complex systems. For the system analyzed in

the present work, outputs p1, p2, T1, T2, T3 and T4 are predicted to a great accuracy for

the approaches shown in Sections 6.3.2 and 6.3.3. On the other hand, outputs T5 and T6

present di�culties. In these cases, an interesting option consists in expressing the state of

the system from an additive correction of the coarse model. Therefore, in this case, the

proposed model is going to capture just the ignorance that the coarse model contains.

One of the advantages of this concept is that the main response is provided by the

physics-based model, thus guaranteeing that the model is going to exhibit a behavior

coherent with the physical phenomenon under scrutiny as well as being explained by

practitioners. In addition, the part of the response which has di�culties in being

modeled�for instance, the appearance of degradation of the system�can be approximated

by the data-driven model.

The Hybrid Twin (HT) concept is illustrated in Figure 6.13. Note that only the �rst

measurement is mandatory to run the model coined as the ∆M. Therefore, knowing the

initial state of the system, the real response can be reproduced adding the correction model

to the CM without further measurements.

Again, the extended state ∆z̃ for the discrepancy model is:

∆z̃k =


∆zk
uk

uk−1

ωk
Wk

 . (6.10)

Nine �ights are considered in the training set. As expected for a real-life application,

the measured data (that is, the PED) is employed to obtain the discrepancy to be modeled

within the HT concept.

Figures 6.14, 6.15 and 6.16 are obtained by just integrating from the initial state

of the system and by employing and enriching the CM prediction without any further

measurement. This proves the excellent agreement that can be achieved within the HT

rationale.

In Fig. 6.14, a comparison is shown between the HT prediction and the PED for

a previously unseen �ight. In these plots, an excellent agreement is noticed for all the

variables. Moreover, predictions �lter the noisy measurements.

An error criterion is de�ned to compare the prediction of the HT approach with the

accuracy of the measuring instruments:

erri(t) =
|zGTi (t)− zHTi (t)|

∆zmax,GT
i

, (6.11)

errmax
meas =

max
(
|zGTi − zmi |

)
∆zmax,GT

i

, (6.12)

where:

� i refers to the i-th variable zi of the state vector.

� zHTi is the predicted value of the HT for zi.
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Figure 6.13 � Diagram illustrating the HT concept. The HT is able to correct
the discrepancy between the coarse model (CM) and the pseudo-experimental data
(denoted by a superscript m, that is, the PED). Its prediction is here denoted by a
superscript HT whereas the enrichment model is denoted by ∆z. Note that zm can
be �ltered to have a better estimate of the GT when applying the HT approach.
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Figure 6.14 � Prediction of the HT approach considering a �ight in the testing set.
�PED" refers to the pseudo-experimental data with noise described in Section 6.3.1
and �HT Pred" refers to the HT approach whose correction term corresponds to a
stabilized DMDc model obtained with the methodology discussed in Section 2.5.3.
The correction term was constructed using the PED. It can be observed that an
excellent agreement is obtained for all the variables
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Figure 6.15 � Error of the HT approach (blue line) considering a �ight which is
not used for the training. The red line refers to the maximum error in the pseudo
measurements (PED). The error criterion is de�ned in Eqs (6.11) (blue line) and
(6.12) (red line)
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Figure 6.16 � Error of the HT approach (blue line) considering di�erent �ights which
are not used for the training. The red line refers to the maximum error in the pseudo
measurements. The error assigned to a �ight is the mean value of the error de�ned
in Eq. (6.11)
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Figure 6.17 � Sine wave with noise. In the plot, the maximum variation of the signal
is indicated as well as the deviation caused by the noise to illustrate the concept
used to de�ne the error criterion

� zmi is the measured value of zi. These data include the corresponding noise. In other

words, these data are the PED.

� zGTi is the true value of zi which is theoretically unknown and cannot be accessed by

an observer in a real application. This value is used for evaluation purposes.

� ∆zmax,GT
i is the di�erence between the maximum and the minimum value of zGTi

considering all the �ights.

Using Eqs. (6.11) and (6.12), it is possible to compare the accuracy of the HT with the

one obtained by measuring the data (that is, the PED). Moreover, the relative errors are

computed taking as a base the maximum variation of each variable when regarding all the

available �ights. Fig. 6.17 shows the maximum variation of a signal as well as the deviation

caused by the noise to illustrate the concept.

Observing Figs. 6.15 and 6.16, we can con�rm that the HT concept allow us to improve,

not only the accuracy of the CM but the accuracy of the measuring instruments regardless

of whether or not �ights come from training by �ltering the noise. In this way, two goals are

achieved at the same time: enriching the CM by learning the di�erence with the measured

data while �ltering the noise.

Therefore, the HT concept is a valuable route to enrich physics-based models with

data-driven corrections. It is important to note that for HT to be applied, the CM must

not be extremely bad, since in this case a direct data-driven or reduced-order modeling

approach would be preferred (because there is no point in correcting such a model).
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6.4 Conclusions

This work presents a fast and e�cient methodology, covering several variants to learn

dynamical models while guaranteeing a low computational cost as well as the achievement

of stable dynamical time integrations. This technique was used with success to predict a

practical scenario under the HT rationale, being able to impose stability in the correction

term. In addition, the proposed technique �lters noise improving the knowledge of the

system state.

We also compared the proposed technique in two scenarios: when it is employed to obtain

models from scratch versus when it is employed for an enrichment in the HT rationale.

We concluded that for more complex systems the HT paradigm seems advantageous for

two reasons. The �rst one is that more complex behaviors can be captured (as variables T5

and T6). The second one is that, in the HT, the main response is relied on the physics-based

model thus guaranteeing that the model is going to exhibit a behavior coherent with

the physical phenomenon at hand. Consequently, just the part of the response which

has di�culties in being modeled is carried out by the data-driven model, for instance,

degradation or aging.
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Chapter 7

From ROM of electrochemistry to

AI-based battery digital and

hybrid twin

Abstract Lithium-ion batteries are widely used in the automobile industry (electric

vehicles and hybrid electric vehicles) due to their high energy and power density. However,

this raises new safety and reliability challenges which require development of novel

sophisticated Battery Management Systems (BMS). A BMS ensures the safe and reliable

operation of a battery pack and to realize it a model must be solved. However, current

BMSs are not adapted to the speci�cations of the automotive industry, as they are unable

to give accurate results at real-time rates and during a wide operation range. For this

reason, the main focus of this work is to develop a Hybrid Twin, as introduced throughout

this dissertation, so as to meet the requirements of the new generation of BMS. To achieve

this, three Reduced Order Model (ROM) techniques are applied to the most commonly used

physics-based models, each one for a di�erent range of application. In addition to the above,

an innovative planning algorithm is developed to make decisions based on predictions of

the whole EV, taking into consideration the fast and accurate predictions of the proposed

ROMs. Furthermore, the algorithm is also capable of proposing changes in the driving

behavior if it detects that battery problems can arise.
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7.1 Introduction

7.1.1 Chapter overview

This chapter address an important industrial application nowadays: the need of fast an

accurate models for lithium-ion batteries. European projects strategically launched by

the European Comission, such as Batteries Europe [Alliance 2019], are a sign of the great

importance of this topic today.

In particular, three Reduced Order Model (ROM) techniques are applied to the most

commonly used physics-based models, each one for a di�erent range of application.

First, a POD model is used to greatly reduce the simulation time and the computational

e�ort for the Newman's pseudo-2D cell model, while maintaining its accuracy. In this way,

cell design, optimization of parameters, and simulation of battery packs can be done while

saving time and computational resources. In addition, its real-time performance has been

studied.

Next, a regression model is constructed from data by using the sparse-Proper

Generalized Decomposition (s-PGD). It is shown that it achieves real-time performance

for the whole Electric Vehicle (EV) system with a battery pack. In addition, this regression

model can be used in a BMS without issues because of the simple algebraic expression

obtained. Thanks to that, an innovative planning algorithm is developed to make decisions

based on predictions of the whole EV, taking into consideration the fast and accurate

s-PGD model. Furthermore, the algorithm is also capable of proposing changes in the

driving behavior if it detects that battery problems can arise.

Finally, the last ROM is a data-driven model based on the novel hybridation techniques

of Chapter 2. It is developed to extract an on-line model that corrects the gap between

prediction and measurement, thus constructing the �rst (to our knowledge) hybrid twin of

a Li-ion battery able to self-correct from data. In addition, thanks to this model, the above

gap is corrected during the driving process, taking into consideration real-time restrictions.

Now, in Section 7.1.2, the topic and the content is introduced in detail as well as the

structure of the chapter.

This chapter and all the results presented in it correspond to the published papers:

� A. Sancarlos, M. Cameron, A. Abel, E. Cueto, J.L. Duval, F. Chinesta, �From

ROM of Electrochemistry to AI-Based Battery Digital and Hybrid Twin,� Archives

of Computational Methods in Engineering , vol. 28, pp. 979�1015, 2021. DOI:

https://doi.org/10.1007/s11831-020-09404-6.

� A. Sancarlos, A. Abel, F. Chinesta, �Batteriemanagementsysteme mit Hybrid Twin

für Lithium-Ionen-Batterien,� ATZextra , Springer Vieweg, vol. 26, Edition: Special

issue 3/2021, pp. 20�23, Juni 2021. URL: https://www.springerprofessional.

de/batteriemanagementsysteme-mit-hybrid-twin-fuer-lithium-ionen-bat/

19313538.

as well as the following Conference Proceedings paper:

� A. Sancarlos, P. De Miguel, M. Cameron, E. Cueto, F. Chinesta, J.L. Duval, �Battery

Hybrid Twin in Electrical Vehicle Monitoring and Planning ,� FISITA 2021 World

Congress � Conference Proceedings, 2021.
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7.1.2 Topic introduction and chapter structure

After nearly a century with the Internal Combustion Engine (ICE) dominating the personal

transportation sector, it now appears that the Electric Vehicle (EV) is on the verge of

becoming its successor. We have witnessed important movements and actions in this

direction both at commercial and (inter-)national level in recent years. The former,

through research and development of the market, the latter by changing legislation for

these purposes. Needless to say, the electric battery sector is expected to become of utmost

importance in the years to come.

One key issue in the EV is that its performance is closely tied to the performance of the

battery. For this reason, it is fundamental to analyze this component of the car. Most EV

have an on-board Battery Management System (BMS) that maintains safe and consistent

operation of the battery module and optimize the performance of the battery system.

In order to infer micro-scale, unmeasurable states from the available, macro-scale

measurements, a model must be solved for the BMS. In automotive applications, this model

should accurately describe the battery behavior under the wide range of possible operating

conditions encountered in practice.

Current BMS often use empirical or phenomenological models, such as the

Equivalent-Circuit Models (ECM) for battery state estimation and control [Plett 2004,

Hu et al. 2012]. These models have a relatively low computational cost, but they can only

be used within the narrow operating conditions in which they have been parametrized.

If the range of validity wants to be extended, a large amount of experimental data is

required under a wide range of operating conditions. Furthermore, making predictions

when degradation happens is challenging or simply impossible.

Alternatively, there exist di�erent physics-based models describing the

thermodynamics, reaction kinetics and transport within the cell [Doyle et al. 1993,

Fuller et al. 1994, Doyle & Fuentes 2003]. These models are more accurate and also valid

over a wide range of operating conditions. In addition, they can be directly coupled to

degradation models. However, they are highly time-consuming to be of practical use in

real-time applications due to the limited computational resources of an embedded BMS.

A good summary of thermal-electrochemical models and ECM used in literature can be

found in [Wang et al. 2016].

The physics-based model most commonly used is Newman's pseudo-2D (P2D) Model

[Doyle et al. 1993]. The P2D model can accurately describe lithium-ion battery time

evolution responses over a wide operating range [Forman et al. 2012], and it is therefore

an excellent starting point for the following generation of BMS [Bizeray et al. 2015].

Nevertheless, the P2D model needs a bigger computation e�ort than ECM does. For

this reason, several attempts to obtain simpli�ed models derived from the P2D model to

guarantee its use in real-time applications can be found in the literature .

One of the most commonly used simpli�cations is known as the Single Particle

Model (SPM) [Santhanagopalan & White 2006, Moura et al. 2014, Domenico et al. 2009,

Moura et al. 2017]. It assumes that each electrode can be represented by a

unique solid-phase particle and considers that the concentration in the electrolyte

does not vary spatially or temporally. State estimation using the SPM and

similar approximations often include the use of an Extended Kalman Filter (EKF)

algorithm [Santhanagopalan & White 2006]�for which reduced-order versions exist, see

[González et al. 2017]�, or a backstepping PDE state estimator [Moura et al. 2014].

In [Domenico et al. 2009], an averaged electrochemical model similar to the SPM was

used, by applying also the EKF, and in [Moura et al. 2017], an improvement of the SPM

was made to include the dynamics of the concentration in the electrolyte. Nevertheless,
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these approaches are inherently limited because of the low current validity range of the

SPM.

Other approaches include state estimation on reduced-order models derived from

the P2D model [A. Smith et al. 2007, A. Smith et al. 2008, D. Stetzel et al. 2015,

L. Lee et al. 2012b, L. Lee et al. 2012a, L. Lee et al. 2014]. For example, in

[D. Stetzel et al. 2015], the EKF is applied to a state space reduced-order model

computed from the P2D model using a discrete-time realization algorithm

[L. Lee et al. 2012b, L. Lee et al. 2012a, L. Lee et al. 2014]. However, as

[Bizeray et al. 2015] remarks, the parameters of such reduced-order models may be

di�cult to interpret or have no direct physical meaning, which makes accounting for

degradation e�ects di�cult.

Most recent works have shown that the use of spectral numerical methods to discretize

the P2D model produces a high model reduction without losing accuracy or physical

signi�cance of parameters [Bizeray et al. 2015]. However, the reduction depends on the

choice of the basis. Therefore, if the maximum possible reduction is looked for, the best

possible basis must be found (e�ciency criteria). This is a goal which can be achieved with

the POD approach proposed in this work.

For these reason, the main objective of this work is to develop a Hybrid Twin (HT), as

introduced in [Chinesta et al. 2020], for lithium-ion batteries. In this way, a new generation

of BMS for the automotive industry can be developed according to the expected necessities

in this industrial application. The HT concept is based on Newman's P2D Model previously

mentioned. This model is presented in detail in Section 7.2.

To that end, the �rst step is to achieve a simulation time for the model compatible with

both the real-time feedback rates of the BMS and the available computer power in the car.

To achieve this, the following Model Order Reduction (MOR) technique is �rst employed:

the Proper Orthogonal Decomposition (POD) [Chinesta et al. 2017]. The analysis shows

that the results of the POD model are indistinguishable, to the naked eye, to the original

ones (without using the MOR).

In addition, POD results are compared with the software Lithium-ION SIMulation

BAttery Toolbox (LIONSIMBA), see https://github.com/lionsimbatoolbox/

LIONSIMBA. This is a reliable tool to compare results because a validation of the software

was done with respect to the COMSOL MultiPhysics commercial software (COMSOL,

Inc., Stockholm, Sweden) and the Newman's DUALFOIL code [Robinson & García 2015].

The POD results and the methodology of the technique are detailed in Section 7.4. It

is shown that by utilizing the proposed model, cell design, optimization of parameters and

simulation of battery packs can be achieved while saving time and computational resources.

The second step is to integrate the developed model with all the other systems which

constitute the EV under real-time constraints. The POD model may not be suitable or the

best option to achieve this, so alternatives are explored.

Here the use of the sparse Proper Generalized Decomposition, s-PGD

[Ibáñez Pinillo et al. 2018] is proposed to obtain an algebraic expression for the behavior

of a battery cell according to di�erent possible itineraries. This chapter proves that we

can model the behavior of the lithium-ion cell analyzed for such a wide range of itineraries

using polynomials with the proposed approach. Since the discussed proposal transforms

the problem of the cell model to the evaluation of a polynomial, there are no problems

in coupling the battery model with the other systems in the EV. A detailed example

of the accuracy and the range of use of the approach is discussed. The results and the

explanation of the technique used in the regression (s-PGD) can be found in Section 7.5.

To simulate the EV, the ESI system simulation software SimulationX (ESI ITI GmbH,

169

https://github.com/lionsimbatoolbox/LIONSIMBA
https://github.com/lionsimbatoolbox/LIONSIMBA


Chapter 7. From ROM of electrochem. to AI-based battery digital and HT

Dresden, Germany) was used. The results of this study can be found in Section 7.6.2.

The Digital Twin created in the above section does not only allow real-time simulations,

but can also adapt its predictions taking into consideration the real driving conditions and

the real driving cycle to change the planning in real-time.

For this reason, an innovative planning algorithm is created taking the s-PGD model.

The great added value of this algorithm is its ability to make quick decisions based on very

accurate predictions of the battery system while simulating the entire EV. To do that and

as previosuly introduced, the s-PGD battery model is �rst integrated into an EV system

using SimulationX (Section 7.6.2). Then, a procedure to adapt and modify the driving

cycle is designed to keep the battery state in the correct operation range in function of the

planned itinerary (Section 7.6.3). This way, driving pro�les can be recommended or imposed

on the driver to guarantee durability and good long-life performance of the battery pack.

Furthermore, the planning algorithm can decide on the best possible itinerary considering

di�erent battery criteria (Section 7.6.4). To achieve that, di�erent routes are simulated in

real-time using the created EV model. In addition, other proof of concept is carried out

simulating a BMS in SimulationX (Section 7.6.5), proving that a BMS could be developed

using the present approach.

The next section (Section 7.7) is devoted to the data-driven modeling concept of the

HT methodology. The main idea here is that biased deviations (between the model and

the measurements) show hidden physics not considered in the model. These deviations

therefore require a particular treatment, namely their on-line modeling by assimilating

collected data. On the other hand, the unbiased deviation contribution is associated with

noise and is addressed by using adequate �lters. For this reason, a data-driven model based

upon the novel strategies proposed in Chapter 2 is developed. In particular, the stabilized

DMD (Section 2.5.3) and the DMD Dictionary Method (Section 2.5.4). They are employed

to extract an on-line model to correct the gap between predictions and measurements.

Thanks to the HT model, we can eliminate this gap during the driving process and take

into consideration real-time restrictions. The results can be found in Section 7.7.

Finally, in Section 7.8 the general conclusions of the present work are shown.

7.2 Electrochemical model: Newman's P2D model

7.2.1 Newman's P2D model

There exists a vast collection of models for the battery in the literature. Those related to the

equivalent circuit of the battery are often simple enough to achieve a good computational

time. However, they are typically limited to a narrow operational range. In addition, the

battery models based on electrochemistry laws are generally preferred to the equivalent

circuit or to other kinds of simpli�ed models, because they also predict the physical cell

limitations, which have a relevant e�ect in the automotive application, where the battery

su�ers very often the stress of very high transient loads. In addition, they are more accurate

and have a wide operational range. The literature on electrochemical modeling of batteries

is quite extensive, including both full order and simpli�ed models.

Newman's group developed a physics-based model using porous electrode and

concentrated solution theories [Doyle et al. 1993]. This model can accurately capture the

battery response and has been widely used in the literature. However, there are problems

to use the model in real-time applications or to achieve fast simulations and predictions

because of the large computational e�ort needed to solve it. A method to reduce the

computational resources required to solve the model is presented in Sect. 7.4.
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Figure 7.1 � Schematic of electrochemical cell model with coupled solid di�usion
submodel.

The lithium-ion cell model shown in Figure 7.1 consists of two porous electrodes

composed of an active material (that can store lithium intercalated in the solid material)

and a separator. The electrodes and the separator are soaked in an electrolyte that allows

the transport of ions. During discharge, lithium stored in the anode is de-inserted from the

active material and released as ions in the electrolyte. Driven by di�usion (concentration

gradient) and migration (potential gradient), lithium ions travel through the separator to

the cathode where they enter the lattice of the cathode active material.

Figure 7.2 � Schematic of the P2D model.

The separator, while conductive to ions, is an electronic insulator, thus forcing electrons

to follow an opposite path through an external circuit or load. On the other hand, the path

of electrons and lithium-ions is reversed when the battery is charging (due to the fact that

the physical reactions are made in the opposite sign).

In the domains of the problem, two phases are considered, the solid phase and the
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electrolyte phase, and they are treated as superimposed continua using porous electrode

theory [Bizeray et al. 2015].

It is important to note that the x-dimension refers to the spatial dimension through the

electrodes and the separator, according to Figures 7.1, 7.2, and 7.3, and the r dimension

refers to the depth in the particle where the di�usion of the lithium happens. The

r-dimension of the spherical particles is called the pseudo second dimension. This is why

the model is often referred to as Newman's P2D model in the literature.

Figure 7.3 � Detail of the solid di�usion submodel. The path of electrons and the
graphs of cs(r) showed are the ones for the discharging process

The P2D model consists of a set of partial di�erential equations (PDEs) and algebraic

constraints governing the evolution of lithium concentration and electric potential within

the cell. The equations of the model describe the battery system with four quantities, i.e.,

concentration of lithium in solid and electrolyte phase, cs(r, x, t) and ce(x, t), respectively,

and the volume-averaged electrical potential in the solid and electrolyte phase, φs(x, t) and

φe(x, t). All the equations are coupled by the term jLi(x, t) which is the reaction current

resulting in production or consumption of Li.

The complete set of equations for the micro-macroscopic model is:

∂cs
∂t

=
Ds

r2
· ∂
∂r

(
r2 ∂cs
∂r

)
, (7.1)

∂ (εe · ce)
∂t

=
∂

∂x

(
De�
e

∂ce
∂x

)
+

1− t+
F

· jLi, (7.2)

jLi =
∂

∂x

(
σe�

∂φs
∂x

)
, (7.3)

jLi = − ∂

∂x

(
Ke� ∂φe

∂x

)
− ∂

∂x

(
Ke�
D

∂ ln ce
∂x

)
, (7.4)

jLi(x) = as · i0 ·
[
exp

(
αa · F
R · T

· η
)
− exp

(
−αc · F
R · T

· η
)]

. (7.5)
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These equations are supplemented with appropriate boundary conditions:

∂cs
∂r

∣∣∣∣
r=Rs

=
−jLi

F · as ·Ds
,

∂cs
∂r

∣∣∣∣
r=0

= 0,

∂ce
∂x

∣∣∣∣
x=0

= 0,
∂ce
∂x

∣∣∣∣
x=Lt

= 0,

σεs
∂φs
∂x

∣∣∣∣
x=0

= σεs
∂φs
∂x

∣∣∣∣
x=Lt

= − I
A

∂φs
∂x

∣∣∣∣
x=Ln

=
∂φs
∂x

∣∣∣∣
x=Ln+Ls

= 0,

∂φe
∂x

∣∣∣∣
x=0

= 0,
∂φe
∂x

∣∣∣∣
x=Lt

= 0

In addition, cs and ce are known at the initial time. The de�nition and the terminology

used in the variables shown is summarized in Appendix D.

Eq. (7.1) enforces the lithium conservation in the solid phase. Similarly, Eq.(7.2)

enforces the lithium conservation in the electrolyte phase. In contrast, Eq. (7.3) refers

to the charge conservation in the solid phase. Similarly, Eq. (7.4) refers to the charge

conservation in the electrolyte phase.

Finally, the Butler-Volmer Eq. (7.5) is used to couple the charge and species governing

equations: The four unknowns cs, ce, φs and φe are coupled in the nonlinear de�nition of j
Li,

resulting in a nonlinear problem. In addition, other variables which appear in the equations

are de�ned empirically. These de�nitions are often nonlinear�such as, for example, the

open circuit voltage U�thus adding more di�culties in the resolution.

The overpotential of Eq. (7.5) is obtained as:

η(x) = φs(x)− φe(x)− U(cse(x)), (7.6)

where cse = cs(r = Rs, x) and therefore, the open circuit voltage U depends on the

electrode.

In Eq. (7.5), exchange current density, i0, is related to both solid surface and electrolyte

concentrations according to

io = ko · cαae · (cs,max − cse)αa · cαcse , (7.7)

where k0 is a kinetic rate constant that depends on the temperature. Its value is often

obtained using the initial exchange current density and concentrations.

Finally, the cell potential is computed as:

V = φs (x = Lt)− φs (x = 0)−Rf · I. (7.8)

There are additional secondary equations to solve the model in the de�nition of some

variables. The reader can �nd a detailed description of these equations in Appendix E.

It is worth noting that there are as many equations (7.1) as particles in the x domain.

Therefore, the discretization on the electrodes a�ects the number of equations to solve.

This is caused by the fact that usually there is one particle in each x node in the electrode

domains.

If it is taken into account that the just-introduced model is one-dimensional in the cell

space, the scheme of the model would be as depicted shown in Figure 7.2 where the reader

is reminded that there will be as many particles as nodes in x in the anode and cathode

domain.
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As previously stated, Eq. (7.1) is solved in the r-dimension of the spherical

particles�the pseudo-second dimension�. For an in-depth analysis of this electrochemical

model, the reading of [Hariharan et al. 2018] is recommended.

7.2.2 De�nitions of the State of Charge (SoC)

We can �nd a lot of de�nitions of the SoC in the literature, and each one has its particular

use and meaning. Fundamentally, the concept of SoC is related to the transport of lithium

from one electrode to the other. A cell with a highly lithiated negative electrode and

relatively delithiated positive electrode should correspond to a high SoC, since this implies

that the cell has most of its stored charge.

The more extended de�nition is the bulk SoC. The bulk SoC counts the total lithium

entering or exiting the electrode particles. Therefore, knowing the maximum and minimum

concentration of lithium in each electrode (related to a correct operation of the cell), we

can estimate the bulk SoC. The bulk SoC is computed using the following expression:

SoC =

cs,av
cs,max

− θ0%

θ100% − θ0%
, (7.9)

where θ100% and θ0% are the relation cse
cs,max

on one electrode when the battery is fully charged

and completely discharged respectively. cs,av is the average value of the concentration in

the electrode. It is computed as follows (for the anode):

cs,av =
3

Ln ·R3
s

∫ Ln

0

∫ Rs

0

r2 · cs(r, x) · dr · dx. (7.10)

The �rst integral is used to compute the mean value of concentration of each particle

and the second computes the mean value of all the particles along the electrode (since the

lithium concentration varies spatially in the electrode).

It is important to note that the meaning of SoC depends on the choice of cs,av. For

example, the voltage depends directly on the concentration at the particle surface and not

on the mean value in the particles. Therefore, we can de�ne the surface SoC rede�ning

cs,av as follows: The cs,av is computed using (with respect to the negative electrode):

cs,av =
1

Ln

∫
Ωn

cse(x) · dx. (7.11)

where Ωn refers to the domain of the anode.

Furthermore, the surface SoC can also be computed for each spatial position on the

electrodes (therefore: cs,av = cs(x, r = Rs)). This way, the surface SoC would be a function

depending on time and space SoC(x, t). This is an interesting de�nition to see where

depletion and saturation occur on the electrodes.

In addition, the surface SoC has implications in the available power that can

be extracted at a given time, since the redox reactions are limited by the reactant

concentrations at the particle surface [Bartlett 2015]. The bulk and surface SoC converge

to the same value at steady state (because at steady state the concentration pro�les are

stabilized), but it can be useful to track both metrics during dynamic current pro�les.

For example, in a high discharge rate, there will be a signi�cant di�erence between

bulk and surface SoC. However the latter has the information about the quantity of lithium

instantaneously available to move from one electrode to the other and the quantity of

lithium that can be deposed in a given time on an electrode.
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Despite the usefulness of Eq. (7.11), the pro�le of the surface concentration on the

electrodes can have big variations and irregularities depending on the properties of the

cell. In these cases, the mean value of Eq. (7.11) may not be suitable to approximate the

dynamic behavior of the SoC in the electrodes.

The reason for this is that the critical points in the electrodes can reach the values of

depletion or saturation much sooner than the average value of the electrode concentration.

This can cause problems such as a sudden loss of power.

For this reason, control strategies normally try to avoid this [Smith 2010]. In these

cases, we may be interested in the surface SoC at the critical points.

In this case we rede�ne cs,av as cs,av = cs(x = xc, r = Rs), where Rs is the particle

radius and xc is the critical point on the electrode. In this way we can, for example, stop

charging if the critical point in the electrode is close to a dangerous surface SoC 1. In order

to clarify the terminology employed, this dissertation will refer to the above de�nition as

critical SoC and to the de�nition of Eq. 7.11 as surface SoC.

Another important issue is the voltage limits of the cell. Usually the operation of the

cell has to work between a given range of voltage. Trying to work outside this limits can

have undesirable e�ects. The operational limits of the battery can come from a variety

of sources: voltage limits, suitable concentration limits and limits to avoid depletion and

saturation e�ects. In some way, the e�ects are related, for example the voltage depends

on the surface concentration and their distribution on the electrodes as well as the current

pro�le.

Finally, sometimes the cell voltage distributions are plotted as a function of the depth

of discharge (DoD), a term which is used to describe how deeply the battery is discharged

and it can be calculated as

DoD = 1− SoC. (7.12)

7.3 Solving Newman's P2D model

The reader is reminded that one of the goals of this work is to reduce, by means of a

reduced-order model, the computational e�ort and the simulation time of the full-order

model, FOM, explained in Sect. 7.2. Results of the ROM will therefore be checked against

the FOM. This section is devoted to explaining the method used to solve the model. In

particular, a strategy to solve Eqs. (7.1), (7.2), (7.3), (7.4) and (7.5) is needed, because all

equations are coupled and there is not a direct way to compute a solution.

Firstly, it can be noticed that the system of equations is nonlinear, so an algorithm

for the solution of nonlinear systems is required. The Newton-Raphson method will be

employed for the necessary linearization of these equations.

Secondly, it is noted that Eqs. (7.1) and (7.2) are the only ones which allow us to

advance in the time domain. This can be accomplished in an implicit or explicit scheme.

As a �rst approximation, and to avoid cumbersome expressions for the Jacobian matrix,

only the spatial derivatives of cs and ce will be cast in an implicit scheme. The variable jLi

will be cast in an explicit way, allowing us to separate the nonlinear problem in Eqs. (7.3),

(7.4) and (7.5). This scheme is sketched in Figure 7.4.

The just-introduced approach can be further improved. For example, an additional

iterative loop can be added (as shown in Fig. 7.5) to compute jLi in an implicit way.

1The measure to control depletion and saturation on the electrodes is 0 < cse(x)/cs,max < 1.

On the other hand, the measure to control depletion in the electrolyte is ce(x) > 0 [Smith 2010].
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Figure 7.4 � Scheme to solve the electrochemical model.

This allows the augmentation of the size of the time steps without the introduction of any

perceived instability.

The PDEs (7.2), (7.3) and (7.4) always contain a term of the form ∂
∂x

(
k ∂u∂x

)
where k is

a discontinuos function. A �nite element discretization is used for these equations, namely,

a weak formulation of the problem, to avoid problems in the derivative of a discontinuos

function. In contrast, Eq. (7.1) can be discretized using the FDM (Finite Di�erence

Method), which is easier to implement than FEM.

To compute the value of the functions cs and ce at each time step, a Crank�Nicolson

scheme is used to discretize Eq. (7.1) and an implicit Euler scheme for Eq.(7.2). The

reason of using the implicit Euler scheme is its enhanced stability properties. Conversely,

the Crank-Nicolson method is used to take advantage of the bene�ts of the implicit methods

as well as an order of accuracy of O(∆t2).

In the r-domain, two di�erent step sizes are used to adapt the mesh to the shape of the

solution. In addition, a �nite di�erence formula of an order of accuracy of O(∆r4) is used

in the area where the function changes faster and abruptly. In the other areas, the classical

formulas of an order of accuracy of O(∆r2) are used.

7.4 Proper Orthogonal Decomposition of the P2D model

7.4.1 Reasons to use the POD

In general, the solution of the model described in Section 7.2 requires a large computational

e�ort in terms of both time and memory. Under such situations, classical methods are not
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Figure 7.5 � Improved scheme to solve the electrochemical model.

able to provide satisfactory results under the stringent conditions imposed by real-time

feedback rates.

Analyzing di�erent batteries, it can be observed that the parameters of the model can

in�uence signi�cantly the stability and accuracy needed to solve the model and therefore

also in the amount of computational resources. For example, some tests to simulate

some seconds of battery life usually took times in the order of minutes to compute.

Hence, the computational e�ort has to be reduced several orders of magnitude and to

achieve that, Proper Orthogonal Decomposition is proposed [Karhunen 1946] [Loève 1963]

[Meyer & Matthies 2003] [Niroomandi et al. 2008] [Rozza et al. 2008].

In the simulations carried out, it is observed that roughly 90 % of the time is used in

solving Eqs. (7.1). In addition, a big computational e�ort is needed to save and to compute

the time evolution of the cs(r) functions at each particle. So it is clear that it is necessary

to focus on this part of the model.

The problem in Eq. (7.1) is the large number of nodes along the r-domain needed

to achieve an accurate solution without losing stability. This number of nodes has to be

multiplied for the number of particles distributed along the x-domain. Therefore, one

possible solution to the problem can be to reduce drastically the number of unknowns

needed along r. For that purpose, a reduced basis is extracted to project all the possible

functions cs(r). If the cardinality of the basis, n, is small enough, the number of unknowns

in Eq. (7.1) can be greatly reduced:

cs(r) ≈
n∑
i=1

Fi(r) · αi. (7.13)

Now, if the reduced basis Fi(r) is known, we require only n coe�cients αi to determine

the function cs by Galerkin projection. It is important to keep in mind that in a Finite
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Element basis (for example) we may need hundreds of coe�cients (or even more) to

determine the function we are evaluating because of the re�ned mesh used.

Note that Eq. (7.13) can be expressed in a more compact form:

cs(r) =
[
F1(r) · · · Fn(r)

]  α1

...

αn(r)

 = F · α. (7.14)

To obtain the set of reduced basis,the method of the snapshots detailed in Section 1.2.1

is employed.

Imagine that a set of experimental values or snapshots of the cs(r) functions are collected

in a matrix Y during a battery simulation. The SVD can be used (according to the

aforementioned Section 1.2.1) to extract a reduced basis {ui}li=1, which better approximates

the cs(r) functions. If the extracted basis is small enough, a drastic reduction of unknowns

will be achieved.

If the snapshots re�ect well all the possible shapes and degrees of freedom of the cs(r)

functions, this reduced basis can be used to perform simulations di�erent from the ones

used to extract the reduced basis. The reason for this is that the cs(r) functions of other

scenarios will be well approximated because their projection into the reduced basis is good

enough to reproduce them. However, if there is a scenario which produces cs functions

which are not well reproduced by the reduced basis, the accuracy of the ROM will be

severely a�ected.

7.4.2 POD of the electrochemical model

To use the POD methodology, the matrix Y which contains the snapshots has to be

constructed (see Section 7.4.1). Each snapshot is a function cs(r) for a particle at a given

time. However, our experience indicates that only the cs(r) functions in the particles placed

at the boundaries of the electrodes are needed to construct a good reduced basis. In this

way, the size of the Y matrix is greatly reduced to reproduce long-time dynamics. So, from

Eq.(7.1):
∂cs
∂t

=
Ds

r2
· ∂
∂r

(
r2 ∂cs
∂r

)
=

2 ·Ds

r
· ∂cs
∂r

+Ds ·
∂2cs
∂r2

.

Using a Crank�Nicolson scheme:

cn+1
s − cns

∆t
=

1

2
Ds ·

(
2

r
· ∂c

n+1
s

∂r
+
∂2cn+1

s

∂r2
+

2

r
· ∂c

n
s

∂r
+
∂2cns
∂r2

)
. (7.15)

By further discretizing Eq. (7.15) in space, we obtain the following algebraic expression:

L · cn+1
s = J · cns +

1

2

(
bn+1 + bn

)
= J · cns + p(bn+1,bn). (7.16)

where p is a vector which depends on the boundaries (bn+1,bn), namely, the jLi(x) in the

n- and n+ 1-th time steps, according to the following �nite di�erence discretization.

The matrices in Eq. (7.16) (L,J) are obtained by using a Finite Di�erence scheme of

order O(∆r4) between Rs > r > 0.91 · Rs and of order O(∆r2) between 0.91 · Rs > r > 0

[Kutz 2013]. Two di�erent ∆r are used. A larger one (∆r1) between 0.89 ·Rs > r > 0 and

a smaller one (∆r2) between Rs > r > 0.89 · Rs. The values of ∆r1,∆r2 depend on the

parameters of the cell analyzed.

To obtain the second-derivative formula when changing from ∆r1 to ∆r2, we look for
d2ui
dr2 as in Fig. 7.6. In addition, the points i − 1, i, i + 1 and i + 2 are the ones which will
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be used in the expression searched according to Figure 7.6 where h is de�ned as ∆r1 and

γ · h as ∆r2.

Given a smooth function f : R→ R, its Taylor series around a is

∞∑
n=0

f (n)(a) (x− a)n

n!
.

Therefore, according to the Taylor series, the following system of equations can be found:ui−1

ui+1

ui+2

 = ui ·

1

1

1

+ h · dui
dr
·

 −1

γ

2 · γ

+ h2/2 · du
2
i

dr2
·

 1

γ2

4 · γ2


+h3/6 · du

3
i

dr3
·

 −1

γ3

8 · γ3

+ h4/24 · du
4
i

dr4
·

 1

γ4

16 · γ4

+ · · ·

Now, we form a weighted sum of the equations with the coe�cients 1, A,B:

ui−1 +A · ui+1 +B · ui+2 = ui · (1 +A+B)

+ h · dui
dr
· (2 ·B · γ +A · γ − 1)

+ h2/2 · du
2
i

dr2
· (4 ·B · γ2 +A · γ2 + 1)

+ h3/6 · du
3
i

dr3
· (8 ·B · γ3 +A · γ3 − 1) + · · ·

removing the addends related to the third and �rst derivatives gives:

2 ·B · γ +A · γ = 1,

8 ·B · γ3 +A · γ3 = 1.

Solving the system:

B =
1− γ2

6 · γ3
; A =

1− 2 ·B · γ
γ

.

So, �nally the sought expression is:

d2ui
dr2

= 2 · B · ui+2 +A · ui+1 − ui · (1 +A+B) + ui−1

h2 · (4 ·B · γ2 +A · γ2 + 1)
+O(h2). (7.17)

Returning to Eq.(7.16), adding the terminology introduced in Eq. (7.14), we change

Eq. (7.16) to introduce the reduced basis in the formulation of the problem as well as the

new unknowns.

L · F · αn+1 = J · F · αn + p(bn+1,bn). (7.18)

There are di�erent strategies to solve the overdetermined system in Eq. (7.18). In this

dissertation, the Ordinary Least Squares is chosen. This method minimizes the sum of

squared residuals, and leads to a closed-form expression for the estimated value of the

unknown vector. Therefore, the solution can be written as:

LF = L · F, JF = J · F,
R = L>F · LF , M = L>F · JF ,

αn+1 = R−1 · L>F ·
(
JF · αn + p(bn+1,bn)

)
,

αn+1 = R−1 ·
(
M · αn + L>F · p(bn+1,bn)

)
.

(7.19)
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Figure 7.6 � Reference mesh to obtain the �nite di�erence formula when the spatial
step changes.

7.4.3 Results

To validate the robustness of the proposed scheme, two di�erent batteries are studied,

each one with di�erent parameters. The parameters of the �rst cell are taken from

[Domenico et al. 2009, Smith & Wang 2006]. This is a 6 Ah cell, designed for its application

to Hybrid Electric Vehicles (HEV). For this battery, a POD basis is extracted using a

constant 12 A discharge current. To check the accuracy of the reduced model, a comparison

between the POD model and the original, full-order model is done. Results of this

comparison are detailed in Figure 7.7, where a validation is done with a current pro�le

according to the Freedom CAR test procedure, a U.S. Department of Energy program for

the zero-emission vehicle and technology Research.

Other current pro�les provided similar results, thus proving the validity of the approach.

On the other hand, a reduction factor of 50 in the number of unknowns in this cell is achieved

by using the POD basis. The simulation time and the computational e�ort to solve the

problem is reduced by this factor approximately�note that roughly 90 % of the time was

used to solve Eq. (7.1).

The second cell parameters are taken from [Torchio et al. 2016]. This type of cell is

suitable for both HEV and EV applications, as we can notice in the types of simulations

done in these references. The main parameters of this cell are detailed in Appendix E.

For this second battery, a POD basis is extracted using a constant current discharge of

60 A. Figure 7.8 shows a comparison between the POD model and the original full order

model. This �gure shows the accuracy for the POD model to perform simulations with

current pro�les di�erent from the one used to extract the basis. We remind ourselves that

the basis is extracted with a constant current pro�le, while in the simulation of Figure 7.8,

the current used has a linear pro�le between di�erent points. Despite the current di�erences,

a good accuracy is achieved by the POD model as we can see in the comparison.

The reduced-order results are also compared to those provided by the software

LIONSIMBA [Torchio et al. 2016]. These results are shown in Fig. 7.9.

In addition to obtaining a good comparison in terms of results, a reduction factor of 40

in the number of unknowns in this cell is achieved using the POD basis. The simulation time

and the computational e�ort to solve the problem is reduced by this factor approximately.

In fact, for both cells, the time for a simulation of an interval t is less or equal than the

elapsed time t. These results were tested on a laptop running an Intel Core Kabylake

i7-7700HQ+HM175, with 8GB DDR4 RAM running at 2400MHz.

Based on the experience of our simulations, we conclude that the key issue to obtaining a

good reduced basis is to collect the cs(r) functions from an o�-line simulation of a complete

discharge-charge cycle at constant current. As it is shown in Fig. 7.8, this basis is good
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Figure 7.7 � Simulation of the reduced order model for the �rst cell. Comparison
of the evolution in time between the POD model and the original, full-order
electrochemical mode, of the di�erent variables of the cell. The di�erent SoC and
cell voltages are compared and the input current used during the simulation is shown
in the last picture. Legend: RM = Results of the full P2D model; POD = Results
of the POD model.
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Figure 7.8 � Comparison of full- and reducer-order simulations of the second cell.
. The di�erent SoC and the cell voltage are compared and the input current used
during the simulation is shown in the last picture. Legend: RM = Results of the
full P2D model; POD = Results of the POD model.
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Figure 7.9 � Comparison of the reduced-order results with those provided by the
software LIONSIMBA for the second cell.
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enough to reproduce other current pro�les with good accuracy.

Another important consideration is the value of the constant current used to extract

the basis. Normally, a high value will produce more variations in the cs functions, which

will better enrich the reduced basis. However, in this case, the simulation will typically

stop sooner due to, for example, reaching the cut-o� voltage.

In these circumstances, the depth of the di�usion in the particles can be smaller because

of the shorter simulation time. This provides a dilemma for selecting the appropriate value.

The reader is reminded that the cut-o� voltage is one of the limits imposed on the cell,

as explained in Section 7.2.2, to ensure a suitable operation of the component. In this case,

the cut-o� voltage is referred to the limit assigned to the lowest value of the cell voltage.

7.5 PGD regression. Learning the cell behavior from

data

7.5.1 Introduction

In Section 7.4, a ROM is developed to allow fast simulations of the electrochemical model

using less computational resources. As we saw, excellent agreement with existing, full-order

models are obtained. However, the POD model is not necessarily the best option to achieve

a full simulation of all the systems which constitute the EV or indeed to be used in a BMS.

For this reason, several alternatives are explored, leading us to the approach presented in

this section.

This method allows to easily couple the battery model with the other subsystems of

the vehicle. It can likewise be used in a BMS without issue because of the simple algebraic

expression(s) obtained.

Furthermore, this PGD approach could be developed, in which batteries can be

modeled from data. One motivation for the use of the latter approach is that, by

working directly with data, no parameter �tting is necessary. This conceptualization

has been tested successfully in other branches of scienti�c computing, see, for

instance, [Kevrekidis & Samaey 2010] [Kirchdoerfer & Ortiz 2016] [Brunton et al. 2016]

[Kaiser et al. 2018] [González et al. 2018a] [Moya et al. 2019], to name but a few. This

methodology can be specially convenient if it is expected that, for some reason, the model

for the battery will change during its operating life, for instance.

As presented in Section 7.3, the response of the cell depends on the micro-scale, where

many parameters are involved in the description of its dynamics. If a response surface-like

approach is chosen under this setting, a large sampling e�ort is to be expected, that

grows exponentially with the number of parameters. For this reason, a method able to

circumvent the curse of dimensionality should be used [Laughlin & Pines 2000]. Here, the

so-called sparse Proper Generalized Decomposition (s-PGD in what follows) is employed.

The reader unfamiliar with this methodology is directed to review Section 2.2 where it

is introduced. The constructed model is explained in Section 7.5.2. Finally, results are

presented in Section 7.5.3.

7.5.2 Proposed model

This chapter is focused on the battery application in the EV. In this application, the main

objective is to construct a regression model able to provide the response of the cell/battery

for an arbitrary itinerary of the EV.
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Figure 7.10 � Construction of a piece-wise linear intensity as a function of time.

The itinerary depends on the initial State of Charge (SoC), the loading and the

environmental conditions. Therefore, the goal is to build a mathematical model which

give us functions f1 and f2 as follows:

SoC(t) = f1(SoC(t = 0),Load,Environment),

V (t) = f2(SoC(t = 0),Load,Environment).
(7.20)

There are two immediate issues in developing the model in Eq. (7.20). The �rst

is the high-dimensional problem of de�ning such an itinerary. The second is that the

electrochemical model depends on a micro state. This implies that the dynamical evolution

of the response depends on the time evolution of a large number of variables.

Considering the isothermal model of the cell and neglecting its time evolution, the load

and the environment of an itinerary can be translated as the I(t) demanded by the battery.

In this way, the di�erent itineraries can be modeled as di�erent I(t) for a given initial SoC.

It follows that a possible way to obtain a model by data regression is to parameterize

the current instead. To this end, a piece-wise linear intensity is assumed and constructed as

a function of the value of the current in some nodes as sketched Figure 7.10. The problem is

that this approach forces us to work in a high-dimensional space with potentially hundreds

of parameters for a one-hour itinerary. This idea was therefore discarded.

Another possibility consists in parameterizing an interval of time as a function of a given

initial condition and a �nal current at the end of the time interval. Once this interval is

parameterized, the only thing we have to do to complete a simulation is to join the solutions

of each interval.

The problem here is due to the micro-scale modeling of the cell. This means that we

will need to follow the micro-scale evolution of parameters such as cs(r, x, t) and ce(x, t)

to compute and follow the time evolution of macroscopic parameters such as V (t) and the

SoC(t). Therefore, this second idea produces hundreds of inputs or outputs on the modeled

interval.

Nevertheless, analytical means can be considered to reduce the number of input and

output parameters to make this second idea feasible. Sometimes, variables at the macro

scale, which depend on a high number of parameters in the micro-scale, can be reduced

to a simple expression. In this way, macroscopic parameters (surface SoC, bulk SoC and

voltage) are used to reproduce the battery response, assuming for now that the system will

185



Chapter 7. From ROM of electrochem. to AI-based battery digital and HT

Figure 7.11 � Model of the parameterized interval. One regression is performed for
each output. We will take for each output, the inputs which give us the best results.
Here, subscript i refers to input values, while subscript o means output. Variable i
refers to the current and the variable V refers to the voltage.

be su�ciently described by these variables. This is not a random choice. The bulk SoC, the

surface SoC and the voltage for a given intensity depend on the dynamics of the micro-scale

parameters cs and ce.

This approach is extended by predicting the micro-scale parameters of interest using

only the above-mentioned macro-scale variables. Concretely, depletion and saturation

are predicted adding the critical SoC de�ned in Section 7.2.2. Furthermore, the average

electrolyte concentration at each electrode, ce,avg, is added into the s-PGD model. In this

way, Li+ depletion in the electrolyte is controlled.

To summarize, the s-PGD model retains only �eld variables relevant to estimation and

control applications in the micro and macro scale. The great advantage of employing this

approach is that the s-PGD model can predict the time evolution in all the scales observing

only a few macro-scale variables. Proofs of this assertion are included in Section 7.5.3.

In Fig. 7.11, the proposed model is sketched. In this model, a time interval ∆t = to− ti
is parameterized as a function of given initial conditions at the beginning of the interval

and the �nal current at the end of the interval.

A di�erent PGD regression model will be constructed for each output. This model

provides us with a forecast of the outputs ∆t seconds in the future, taking the corresponding

inputs into the regression. Note that it is not necessary to take all the inputs shown in Fig.

7.11 to perform the regression. For each output, the inputs which give the best results are

taken.

A polynomial basis is selected to use the s-PGD explained in Section 2.2 with the

electrochemical model. The motivation for this choice is the requirement for a simple

model that can be integrated in the SimulationX model of the EV.

Therefore, the expression of the output voltage as a function of all the relevant

parameters will take the form

Vo = g(s1, ..., s6) =

M∑
m=1

6∏
k=1

ϑkm(sk), (7.21)

where:

s1 = ii, s2 = io, s3 = surface SoC (anode)

s4 = surface SoC (cathode), s5 = bulk SoC (anode), s6 = bulk SoC (cathode),

186



7.5. PGD regression. Learning the cell behavior from data

and ϑkm are the one-dimensional functions constructed with di�erent polynomial bases

according to the Modal Adaptivity Strategy (MAS) explained in Section. 2.2.

7.5.3 Results

In this section, we analyze an example cell described in [Torchio et al. 2016]. Its parameters

are detailed in Appendix E.

As already described in Section 7.5.2, polynomial bases are used for the one-dimensional

functions of the s-PGD regression introduced in Sect. 2.2. The MAS is used, starting with

low-degree approximations and �nishing with higher-degree approximations.

The surrogate input to describe an itinerary, namely I(t), is considered to be polygonal

within each ∆t. This assumption is made because, in principle, ∆t is small enough to

consider that the current has a linear pro�le between any two consecutive time instants.

It is observed that the method chosen to extract and to select the data for the training

set has a signi�cant impact on the regression results. The regression is done performed

on sparse data, because of the high dimensionality of the problem. For this reason, the

sampling strategy is critical to ensuring the good predictive capabilities in the model.

A simple way to obtain a good training set is to consider the current nodes of the

itinerary I(t) (de�ned as in Fig. 7.10) as di�erent parameters (dimensions i0, . . . , in) of the

problem. We remind ourselves that the real dimensions of the model proposed are the ones

shown in Fig. 7.11, but for the sampling i0, . . . , in are selected to be used. The reason for

this choice is that it is not possible to reconstruct the whole micro-scale state with the few

dimensions which are chosen in Fig. 7.11. The whole micro-scale state is needed to run the

model to obtain the training set.

In order to obtain di�erent I(t) values, the Latin Hypercube Sampling (LHS) method

is employed in the dimensions i0, . . . , in. The sampling process described is repeated for

di�erent initial SoC of the cell. Then, when sampling is �nished and the itineraries of the

the sampling are simulated, the di�erent results of the variables of interest (SoC, V , ...) are

split into di�erent intervals of size ∆t to perform the regression via the s-PGD.

One way to improve the sampling described above is the following. The LHS which

is used in this work (Matlab function lhsdesign()) produces normally oscillating I(t)

functions. It is convenient to enrich the training set by e.g. adding some I(t) with constant

current pro�les or formed of 2-4 step functions. In this way, the regression is more adapted

to current pro�les representative of a constant discharging or charging of the battery and it

can take into consideration this type of behavior that otherwise would be underestimated.

Furthermore, in doing this, the training set is more adapted to simulations that attain

greater depths of discharge (because, for example, some high constant current pro�les are

added in the training set).

In the results that follow, a regression is obtained using a sampling composed of 5-minute

itineraries (∆t = 15 s is used for the regression). These results are shown in Figs. 7.12, 7.13,

7.14 and 7.15. This regression turns out to be very accurate for itineraries of 5 minutes,

where the relative error is always under 1 % in all the tests.

This regression model can be used for itineraries longer than 5 min, but the relative

error starts to increase up to 1 %. In Figs. 7.14 and 7.15 we can see that the error can be

acceptable for 10 minute itineraries.
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Figure 7.12 � Comparison of the results between the s-PGD model and the POD
model in a 5 minute itinerary. The s-PGD model is extracted based on itineraries
of 5 minutes. ∆t = 15s.

The inputs used for the regression of each output were:

Vo : s1 = io − ii s2 =
io + ii

2

s3 = surface SoC (anode) s4 = bulk SoC (anode)

s5 = Vi

s-SoC : s1 = ii s2 = io

s3 = surface SoC s4 = bulk SoC

s5 = Vi

b-SoC : s1 = ii s2 = io

s3 = bulk SoC

where the s-SoC and the b-SoC refer to the surface SoC and bulk SoC respectively.

The MAS explained in Section 2.2 is used to determine the higher-degree
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Figure 7.13 � Error between the s-PGD model and the POD model in a 5 minute
itinerary. The s-PGD model is extracted based on itineraries of 5 minutes. ∆t = 15s

approximations used. The results to apply the MAS are:

1. For the surface and bulk SoC, only polynomial basis of degree one (thus, linear) are

used.

2. For the Voltage: a �rst group of modes is created with one-dimensional functions based

on polynomial basis of degree one. Then, a second group of modes is created with

one-dimensional functions based on polynomial bases of degree two.

This methodology can also be used with longer trajectories or smaller ∆t. Consider, for

instance, a regression obtained with a sampling composed of 10-minute itineraries (∆t = 5

s is used for this regression). The results are shown in Figs. 7.16 and 7.17. This regression

is very accurate to compute 10-minute itineraries, where the relative error is under 1 % in

almost all the checking set of data points.

Trajectories longer than 10 minutes can also be computed. While the error will naturally

increase, it can be acceptable if the di�erence between Tsim and Treg is not too large. Note
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Figure 7.14 � Comparison of the results between the s-PGD model and the POD
model in a 10 minute itinerary. The s-PGD model is extracted based on itineraries
of 5 minutes. ∆t = 15s
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Figure 7.15 � Error between the s-PGD model and the POD model in a 10 minute
itinerary. The s-PGD model is extracted based on itineraries of 5 minutes. ∆t = 15s
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Figure 7.16 � Comparison of the results between the s-PGD model and the POD
model in a 10 minute itinerary. The s-PGD model is extracted based on itineraries
of 10 minutes. ∆t = 5s
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Figure 7.17 � Error between the s-PGD model and the POD model in a 10 minute
itinerary. The s-PGD model is extracted based on itineraries of 10 minutes. ∆t = 5s

193



Chapter 7. From ROM of electrochem. to AI-based battery digital and HT

that Tsim is the duration of the simulated itinerary, while Treg is the equivalent for the

sampling itineraries for the PGD regression.

The results for the regression shown in Figs. 7.16 and 7.17 are

1. For the surface and bulk SoC, only polynomial bases of degree one are used.

2. For the voltage, a �rst group of modes is created with one-dimensional functions based

on polynomial bases of degree one. Then, a second group of modes is created with

one-dimensional functions based on polynomial bases of degree two. Finally, a third

group of modes is created with one-dimensional functions based on polynomial bases of

degree three.

To summarize, the results of using the s-PGD in the critical SoC and in the cavge are

shown according to Section 7.5.2 (where their importance was discussed). Here, ∆t = 2s is

used. The values are with respect to the negative electrode.

Results are shown in Figs. 7.18 and 7.19. These regressions are intended to reproduce

ten-minute itineraries with an initial SoC of 85 %. We can observe that we can reproduce

the results with a high degree of accuracy. Inputs used for these regressions are the same as

those used in the voltage regression with ∆t = 15s (but using cavge or the critical SoC instead

for the voltage input), while polynomials of degree two were employed in the approximation.
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Figure 7.18 � Comparison of the results between the s-PGD model and the POD
model in a 10-minute itinerary (critical SoC and cavge ). The s-PGD model is
extracted based on itineraries of 10 minutes. ∆t = 2s.
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Figure 7.19 � Error between the s-PGD model and the POD model in a 10 minute
itinerary (critical SoC and cavge ). The s-PGD model is extracted based on itineraries
of 10 minutes. ∆t = 2s.
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7.6 Innovative planning algorithm with EV simulation

and results

7.6.1 Introduction

In previous Section 7.5, an accurate s-PGD model of a battery cell is developed.

Due to its low computational cost, it can be perfectly integrated on-board of the EV as

well as in system simulation tools such as SimulationX [ESI ITI GmbH. Dresden, Germany].

In fact, an innovative planning algorithm is created taking the above model in the

following sections of this work. The great added value of this algorithm is its ability to make

quick decisions based on very accurate predictions of the battery system while simulating

the entire EV.

To do that, the s-PGD battery model is �rst integrated into an EV system using

SimulationX (Section 7.6.2). Then, a procedure to adapt and modify the driving cycle

is designed to keep the battery state in the correct operation range in function of the

planned itinerary (Section 7.6.3). The big succcess here is being able to make fast decisions

employing the highly-accurate predictions provided by the s-PGD model. This way, driving

pro�les can be recommended or imposed on the driver to guarantee durability and good

long-life performance of the battery pack.

Furthermore, the planning algorithm can decide on the best possible itinerary

considering di�erent battery criteria (Section 7.6.4). To achieve that, di�erent routes are

simulated in real-time using the EV model created in SimulationX. As the simulation times

of the s-PGD model are extremely fast, this goal is perfectly reached.

Two criteria are tested:

The �rst one is based on choosing the fastest itinerary by imposing a maximum allowable

depth of discharge. Furthermore, the driving cycle is also corrected to �t an appropiate

operation range for the battery cells.

On the other hand, the second criterion is based on choosing the itinerary which achieves

the minimum depth of discharge while monitoring that the travel time does not exceed a

maximum speci�ed value. In addition, the driving cycle is corrected as done in the �rst

criterion.

In addition, other proof of concept is carried out simulating a BMS in SimulationX

(Section 7.6.5). This proves that a BMS industrial application can be developed using the

present approach. Therefore, the methodology is discused to be an excellent �rst step to

implement the required new generation of BMS for the automotive industry due to the

accuracy of the proposed model and the low computational resources required.

7.6.2 Constructing a digital twin of the electric vehicle system

In this section, the s-PGD model developed in Section 7.5 (speci�cally the model with ∆t =

2 s) is inserted in a HEV/EV model to simulate the whole vehicle under realistic operating

conditions. To this end, the system simulation software SimulationX (ESI ITI GmbH,

Dresden, Germany) is used. This is a tool in the �eld of multi-physics system simulation.

It is based on theModelica language, an object-oriented, declarative, multi-domain modeling

language for component-oriented modeling of complex systems. See http://modelica.org

for more information.

The neessary steps to insert the s-PGD model into a SimulationX model of the EV are

summarized in Fig. 7.20.

Firstly, a battery package is created with all the elements needed for the battery model.

This package is written using Modelica and encapsulates all elements needed to run the
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Figure 7.20 � Diagram showing the data �ow for the s-PGD model when embedding
in a SimulationX model.

model such as types, classes and functions. In addition to describing equations in its native,

equation-based form, Modelica provides a means of interfacing components to external

C functions. A number of utility functions are created in C language such as functions

for reading the input �le containing the polynomial coe�cients of the s-PGD solution.

This �le is generated by the program used to compute the s-PGD solution. By exploiting

the Modelica external C interface, the regression information stored in the �le can be

tranparently loaded into the Modelica battery modeling components as a battery component

that reproduces the s-PGD model in the full EV system simulation, Fig. 7.20.

Induction motors (for example the Tesla Model S) or synchronous motors (for example

the Renault Zoe) are more widely used than the DC motors in the EV. However, for

simplicity, and without loss of generality, we will model in this example the electric motor

as a DC motor, which can be more often found in HEV applications.

A DC/DC converter is used to control the motor through the applied voltage. The

model used in the converter is taken from [Winter et al. 2015]. Elements such as damping,

inertias, springs, transmissions, rotational transformations and masses are used to model

the mechanical part of the vehicle.

The main forces acting against the movement of the car are the aerodynamic resistance,

the rolling resistance and the grade resistance. Therefore, the tractive e�ort must be higher

than these resistance forces to achieve the desired acceleration.

In Appendix F the interested reader can �nd the main parameters used in this example.

An actual ten-minute itinerary is used between Avenida de Valencia, E-46891 El Palomar

and Plaza Barranc Marques, E-46890 Agullent, both in Spain. This itinerary is shown in

Fig. 7.21.

Moreover, the SimulationX model of the vehicle is connected to OpenStreetMap (OSM)

[OpenStreetMap contributors 2017] to download the data for an speci�ed itinerary such as

maximum speed limitations or the di�erent sections of the road. This way, an expected

driving cycle (expected speed curve in function of the trajectory position; v(s)) can be

designed for a given itinerary. To do that, a speci�c interface was created with HTML and

JavaScript to extract the OSM data. Then, these data are communicated to SimulationX

with Python.
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Figure 7.21 � Picture of the itinerary simulated by the SimulationX EV model.
It corrsponds to a ten-minute itinerary between Avenida de Valencia, E-46891 El
Palomar and Plaza Barranc Marques, E-46890 Agullent, both in Spain.
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Figure 7.22 � Velocity(position) of the itinerary

The expected driving cycle v(s) is obtained considering that the speed in each road

section is the permitted maximum speed. In Fig. 7.22, this velocity function is shown,

while in Fig. 7.23 the velocity demanded by the driver as a function of time is shown.

A PI controller is used to ensure that the system follows the response v(s). In our case,

the controller sends a signal to the actuator of the control system as a function of the error

between the sensed speed and the desired speed. The controller output can be expressed

as:

u(t) = Kp · e(t) +Ki ·
∫ t

0

e(τ)dτ,

where e(t) is the error between the sensed speed and the desired speed and Kp and Ki

are the proportional and integral gains respectively. In this way, the driver behavior is

modeled by the PI controller which must be correctly parameterized to follow the desired

speed response v(s).

In addition, the hill gradient angle γ is also obtained taking the altitude of each point

in the road provided in the OSM data:

γ(si) = arctan(
hi+1 − hi
si+1 − si

), (7.22)

where si refers to the discretized i-th point of the trajectory position and hi is the discretized

i-th point of the altitude function for the itinerary.

This way, the rolling and grade resistance can be updated and computed for each road

position in function of the selected itinerary:

Rr(s) = Cr ·m · g · cos(γ(s)),

Rgrade(s) = m · g · sin(γ(s)),
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Figure 7.23 � Velocity response demanded by the driver
.
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Figure 7.24 � Graphical view of the EV model created in SimulationX. In the red
circle, the battery box created with the s-PGD solution is highlighted

where m is the vehicle mass and Cr is the rolling resistance coe�cient.

On the other hand, the aerodynamic resistance is also considered in function of the real

speed of the vehicle, which depends on the expected driving cycle obtained with OSM:

Raero(s) = ρ/2 ·Aref · Cw · v(s)2,

where ρ is the air density, Cw is the air drag coe�cient, V is the vehicle speed and Aref is

the reference area.

The parameter values and the details of the vehicle simulated in this work can be found

in Appendix F.

In Fig. 7.24, the SimulationX battery box model is shown. In Fig. 7.25, the SimulationX

user parameter interface demonstrates how a user can select the number of (identical) cells

are connected in series and in parallel. More than one type of cell can be used to create the

battery by joining di�erent battery boxes.

Furthermore, the possibility of adding an internal resistance to the model is created. In

this way, the user can model linear voltage drops such as the contact resistance when the

cells are connected through the collectors. In Fig. 7.26, we observe voltage variation in a

cell due to the electrochemical model. In Fig. 7.27, we can observe the voltage variation

in a cell due to the internal resistance (A resistance R = 0.001 Ω is selected). In Fig. 7.28,

a comparison of the bulk SoC and the surface SoC is shown. Finally, the critical SoC and

the ce,avg in the negative electrode can be noticed from Fig. 7.29.

7.6.3 Adapting driving behaviour in function of an accurate and
fast computation of battery needs

Durability and good long-life performance of battery cells is a crucial property to ensure. To

achieve that, it is important to guarantee that cells are maintained in a suitable operation

range. For example, it is important to accurately predict when depletion and saturation
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Figure 7.25 � Parameters of the SimulationX model created using the s-PGD
solution
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Figure 7.26 � Cell voltage predicted by the s-PGD model during the simulated
itinerary.

Figure 7.27 � Voltage drop produced by the internal resistance in a cell during the
simulated. itinerary
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Figure 7.28 � Comparison between the bulk SoC and the surface SoC in the
ten-minute itinerary.

Figure 7.29 � Comparison between the critical SoC and the cavge in the negative
electrode during the simulated itinerary.
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occurs in the electrodes as well as Li+ depletion in the electrolyte. The reason is that these

phenomenons can cause problems such as a sudden loss of power.

Furthermore, although it is true that a cell can supply a higher current than nominal

for a short period of time, if the peaks and duration of these transient periods are not

controlled, the stress to which the cell is subjected can advance its deterioration.

It is not surprising then, that industry is requiring more accurate and real-time tools

to predict these e�ects in order to act accordingly. For this reason, we are proposing the

integrated s-PGD approach to monitor these processes. In fact, this can be easily carried

out supervising the variables: surface SoC, critical SoC and ce,avg de�ned in Section 7.2.2

and 7.5.2.

Therefore, the s-PGD predictions are employed to anticipate when these e�ects will

occur and adapt the driver's driving pro�le accordingly, preventing the battery from entering

dangerous operating zones and reducing the electrochemical stress of the cells. For this

reason, an algorithm is designed in SimulationX, simulating the whole EV for the desired

itinerary with the s-PGD battery model to then, change the speed driver's pro�le if problems

are expected to arise.

The global algorithm to adapt the speed pro�le is composed of two steps.

First Step: Guaranteeing a minimum �nal SoC. The algorithm checks if the selected

route can be traveled with the initial speed reference curve without overtaking a maximum

pre-speci�ed Depth of Discharge (DoC). In other words, the algorithm checks if a minimum

SoC is achieved at the end of the trajectory. If the SoC is below this threshold, the

expected driving cycle is changed until the condition is satis�ed. Therefore, the algorithm

simulates the EV model and monitors the �nal SoC. Furthermore, the procedure described

in Algorithm 1 shows the details of this �rst step. In this procedure bSoC refers to the

bulk SoC, RS refers to road section, vper refers to the maximum permitted speed in a RS,

f de�nes a factor to determine the maximum percentage allowed to decrease the expected

driving cycle and L1 de�nes the SoC threshold to be satis�ed at the end of the itinerary.

Algorithm 1 First Step. Guaranteeing a minimum �nal SoC

1: procedure Firststep

2: Simulate s-PGD�EV system.
3: while bSoC(tend) < L1 do

4: Identify traveled RSs when bSoC = L

5: De�ne set T containing the above RSs
6: Find RS in T with the highest speed.
7: Take max. speed in the found RS: vsect.
8: while vsect < fvper do

9: Find next RS in τ with the highest speed.
10: Take max. speed in the found RS: vsect.
11: if v(t) < fvper(t) for ∀t then
12: End algorithm. Reject itinerary.

13: Reduce p% the speed in the chosen section
14: Simulate s-PGD-EV system with new v(s).

15: Report �nal values of the s-PGD�EV system

Second Step: Finding a suitable and safe battery operation range. Firstly, the algorithm

checks if depletion or saturation happens by monitoring the critical SoC and ce,avg.
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Figure 7.30 � Smoothing procedure of the reference driving cycle taken by the control
v(s) when high discharge/charge rates happens when accelerating. This is used by
the second step (See Algorithm 2) of the general procedure to adapt the driving
cycle. v(s) and α refers to the values before the modi�cation and v′(s) and α′ refers
to the values after the modifciation.

Speci�cally, this process veri�es that the above variables do not reach a prede�ned

threshold value. Secondly, the algorithm control the di�erence between the surface SoC

and bulk SoC to avoid strong electrochemical stresses. The reason is that there will

be a signi�cant di�erence between bulk and surface SoC in high discharge and charge

rates. And this relationship will be further exacerbated as the charge/discharge rates

get stronger. Therefore, the measure of this di�erence gives a good estimator about the

electrochemical stress that the cell is su�ering. If the measured di�erence reach a prede�ned

threshold, a trigger is activated. Then, the smoothing procedure of Figure 7.30 is employed.

The idea is to reduce the acceleration demanded to the EV, decreasing accordingly the

demanded intensity peaks. Therefore if the trigger is activated, the acceleration is reduced.

Furthermore, the procedure described in Algorithm 2 shows the details of this second step.

In this procedure sSoC refers to the surface SoC, RSC refers to the reference speed curve

taken by the control system v(s), Dep refers to a boolean variable that indicates if depletion

happens when true, Sat refers to a boolean variable that indicates if saturation happens

when true.

To illustrate, the algorithm, a travel example considering the following start and end

points:

� Start point: Mittelstraÿe 14, 04838 Eilenburg, Germany

� End point: Bunitz, 04838 Doberschütz, Germany

In addition, the itinerary selected in OpenStreetMaps is the one shown in Figure 7.31.

The reference speed curve changes from the one in Figure 7.32 to the one in Figure

7.33 after applying the described algorithm. Comparing the two �gures, the smoothing

procedure can be observed.

Moreover, the predicted values concerning the surface and bulk SoC for the initial

driving cycle are the ones in Figure 7.34.
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Algorithm 2 Second Step: Finding a suitable and safe battery operation range.

1: procedure Secondstep

2: Simulate s-PGD�EV system.
3: Check depletion and saturation: Dep, Sat.
4: while Dep or Sat are True do
5: Identify problematic region: Ri.
6: if same Ri modi�ed n times in a row then

7: Reduce p% the speed increment in Ri.
8: if v(t) < fvper(t) for some t then
9: End algorithm. Reject itinerary.

10: else

11: Smooth the RSC in the chosen Ri.

12: Simulate s-PGD�EV system with new v(s).
13: Check depletion and saturation: Dep, Sat.

14: while max(bSoC − sSoC) > L2 do

15: Identify problematic region: Ri.
16: if same Ri modi�ed n times in a row then

17: Reduce p% the speed increment in Ri.
18: if v(t) < fvper(t) for some t then
19: End algorithm. Reject itinerary.

20: else

21: Smooth the RSC in the chosen Ri.

22: Simulate s-PGD�EV system with new v(s).

23: Report �nal values of the s-PGD�EV system
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Figure 7.31 � In red: example itinerary taken for Section 7.6.3. It is also the example
itinerary (number one) taken for Section 7.6.4

Figure 7.32 � Initial reference speed for the example of Section 7.6.3. The
SimulationX model translates the reference v(s) to v(t). It is important to note
that this is not the real speed of the EV but the reference one taken by the control.
We start with this type of reference curves to minimize the travel time. If problems
arise, the smooth procedure is applied.
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Figure 7.33 � Reference speed after applying the algorithm of Section 7.6.3. Note
that the SimulationX model translates the reference v(s) to v(t).

On the other hand, the time evolution of the bulk and surface SoC once the algorithm

adapted the driving cycle are shown in Figure 7.35. Comparing Figures 7.34 - 7.35, it can be

observed that the di�erence between the surface SoC and the bulk SoC is decreased thanks

to the modi�ed driving cycle. This way, as said previously, the electrochemical stress of the

cell is reduced. Also, the minimum �nal SoC imposed by the user is satis�ed (in this case

83 %) and the condition to avoid depletion or saturation was veri�ed by the algorithm.

7.6.4 Algorithm to select the best itinerary

The EV system with the s-PGD model can also be employed to decide the best possible

route when considering battery speci�cacions. Here, an algorithm is considered to do this

choice in function of two criteria.

The �rst one is to look for the fastest route while ensuring a user-de�ned minimum

�nal SoC. This way, the itineraries which produce an unacceptable DoC are discarded and

the fastest route is taken from the remaining ones. Furthermore, the driving cycle is also

corrected to �t an appropiate operation range for the battery cells.

The second is to �nd the route that provides the user with the minimum DoC while

ensuring that the time travel takes less than a prede�ned maximum time. In addition, the

driving cycle is corrected as done in the �rst criterion.

In addition, the algorithm is able to detect charging stations close to the route to suggest

a stop at them if necessary.

To illustrate all this, the same start and end points of the above example are considered

but now, studying di�erent possible routes to select the best one in function of the exposed

criteria.

In Figures 7.31, 7.36 and 7.37, the three di�erent routes to study are considered.

Simulating the above routes, the Table 7.1 is obtained.
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Figure 7.34 � Time evolution of the surface (green line) and bulk (red line) SoC
when taking speed curve of Figure 7.32.

Figure 7.35 � Time evolution of the surface (green line) and bulk (red line) SoC
when taking the modi�ed speed curve of Figure 7.33.

Table 7.1 � Predictions for the example of Section 7.6.4

Route �nal SoC Travel time Distance traveled

1 83.83 % 10 min 10.7 km
2 84.56 % 8.3 min 6.7 km
3 84.49 % 8.5 min 6.8 km
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Figure 7.36 � In red: example itinerary (number two) taken for Section 7.6.4.

Figure 7.37 � In red: example itinerary (number three) taken for Section 7.6.4.
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Figure 7.38 � Diagram of the cell balancing strategy employed in Section 7.6.5.

The route selected depending on the chosen criterion is:

� First criterion. Here, we suppose that the user wants to reach the end point with a

minimum SoC of 84 %. In this case, route number 2 will be selected.

� Second criterion. Here, we suppose that the user wants to reach the end point with

a maximum travel time of 9 minutes. In this case, route number 3 will be selected.

7.6.5 BMS: cell balancing example

As mentioned in this work, the proposed approach can be integrated in a BMS to improve

the control and monitoring of battery cells. The improvement is signi�cant: the better

predictions of the cell state provided by the s-PGD model will be translated to better

BMS, which is one of the topics that automotive industry is seeking. As a proof of concept,

a cell balancing scheme (one of the tasks carried out by the BMS) is designed to correct

the imbalance of one cell. Speci�cally, an example of passive balancing is employed. To

do that, a switched shunt resistor is designed to balance the cells during the charging (See

Figure 7.38). This way, cells with higher SoC will have a net input energy lower than cells

with low SoC when charging, thus producing the balancing e�ect.

For this example, we consider that, after some trajectories, a cell is unbalanced respect

to the others 1 %. Then, a charging procedure starts with a constant current pro�le and

the BMS activates the mentioned cell balance strategy to correct this gap.

Figure 7.39 shows how the SoC is balanced thanks to the implemented strategy.

Furthermore, the voltage responses are also tracked in Figure 7.40. For this example,

the voltage of both blocks is equalised after the balancing process is �nished. However, it

is important to note that equal voltages do not necessarily mean the same state of charge

as it observed when seeing and comparing the time evolution of both Figures.
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Figure 7.39 � Balancing of the cells during charging. In this �gure, the bulk SoC
of the two types of unbalanced cells is shown. After approx. 770 s, the cells are
balanced. The charging is done using a constant current pro�le.
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Figure 7.40 � Balancing of the cells during charging. In this �gure, the voltage of
the two types of unbalanced cells is shown. The voltage of both blocks is equalised
after the balancing process is �nished. The charging is done using a constant current
pro�le.
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7.6.6 Summary results

It has been shown how the proposed battery approach can be employed to develop planning

algorithms, to correct and adapt driving behaviours or to design new BMS thanks to its

accuracy and low computational cost.

The added value is signi�cant: the better predictions of the cell state provided by the

s-PGD model will be translated to better tools for the above concepts. This is interesting

for the automotive industry to improve their products and and be more competitive in the

EV market.

Furthermore, we proved that fast simulations are carried out for the entire EV system

when the battery s-PGD model is included with SimulationX. Not only that but multiple

trajectories are quickly simulated to decide the best route or adapt/correct the driving cycle.

In addition, the needed itinerary data for the simulation is extracted from OpenStreetMap

(OSM). This way, problems about restrictions on use or availability of map data are avoided.

7.7 Constructing a hybrid twin

7.7.1 Introduction

In Section 7.5, a battery model is developed. It can be simulated together with all the other

systems within the EV under real-time feedback constraints. With the help of this model,

highly accurate results are obtained in the prediction of variables of interest as compared

to the results of the original electrochemical model shown in Section 7.2.

This section aims to go further. The main objective is to develop a model for real-time

applications capable to learn from data. In this way, systematic, biased deviations from

the model can be attributed to de�ciencies in the model. With the stream of experimental

measurements the model will be corrected on-line and under real-time constraints, thus

giving rise to the concept of the Hybrid Twin [Chinesta et al. 2020]. In this application,

the correction term is contructed employing the novel procedure described in Section 2.5.4:

The DMD Dictionary method. The procedure employed for this application is detailed in

Section 7.7.2..

Finally, The reader is reminded that a detailed mathematical introduction to the HT

is carried out in Section 2.5.2.

7.7.2 Dictionary Model for the Electrochemical Model: Correcting
the gap

As introduced in Section 7.2, the electrochemical model is high-dimensional. If we use the

ideas of the Dictionary Method (DM) in the micro-scale, the matrices to work will be of

an intractable size. For example, if a reduction of the dimension is not used, a state vector

of thousands of dimensions can be found. In this case, the DM would be unfeasible. In

addition, even if a drastic reduction of the dimension in the micro-scale could be applied,

there is no guarantee that good results would be obtained because the system is highly

nonlinear.

For these reasons, we must change the way we think about the electrochemical model

to use the DM with success. We focus only on two variables of interest: The voltage and

the bulk SoC.

The isothermal Newman's P2D model presented in this work give us the voltage and

the bulk SoC as a function of both the micro-scale state of, and the current demanded by

the battery, I(t). However, the time evolution of the micro-scale is a consequence of I(t).
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Figure 7.41 � Diagram of the approach used to apply the DM for the battery model.

Therefore, the global overview would be that the Newman's P2D gives the evolution of

the variables as a function of the initial micro-scale state of the battery and the current

demanded by the battery I(t).

It is worth noting that implies that the variable which dictates the time evolution of

the whole system is I(t) (for a �xed initial state). In this way, the model can be interpreted

as a black box, as sketched in Fig. 7.41.

Therefore, a dynamical system, which has only voltage and bulk SoC as variables of

interest, along with the input I(t), is considered. Note that I(t) carries two meanings: the

time evolution of the current and the time evolution of the micro scale. For this reason,

the dynamical system that we are proposing must depend on the history. In this way, it

takes into consideration how the micro scale is evolving, and how the response must change

because of that.

Therefore, variables based on the time history of I(t) must be created to measure

this evolution of the micro-scale state. In addition, a transformation g(·), introduced in

Section 2.5.4, must be de�ned to linearize as much as possible the behavior of the system.

The identi�ed local linear systems have the form

z̃ =



V

bulk SoC

I
dI
dt∫ t

0
I dt∫ t

0

∫ t
0
I dt dt


−→ z =

[
V

bulk SoC

]
,

M̃ =

[
m(1,1) m(1,2) m(1,3) m(1,4) m(1,5) m(1,6)

m(2,1) m(2,2) m(2,3) m(2,4) m(2,5) m(2,6)

]
.

As we have already seen in Section 2.5.4, the dictionary S, which allows us to reproduce

a nonlinear model as a combination of local linear approaches, is obtained in two phases.

The �rst stage is o�-line during which a training set T composed of a collection of

snapshots
{
z̃1, . . . , z̃Nf

}
of di�erent simulations must be obtained. Then, in the on-line

stage, the model is corrected, enriching the original dictionary. In this way, the proposed

model can be adapted so as to �t with unexpected experimental measurements.

Consider, for instance, a model trained to reproduce any possible 10-minute trajectory

from an initial SoC of 40-60 %. If the model attempts to reproduce a trajectory of an
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initial SoC of 80 % (not trained), the on-line correction must be able to reproduce well this

new scenario. Or imagine that an attempt is made to employ model with a twenty-minute

trajectory whereas it is trained only for ten-minute journeys. Then, the on-line correction

also needs to be able to reproduce well this new scenario. Gaps between reality and the

electrochemical model should be corrected in the same way.

Noise is not considered in the results of Section 7.7.3. It could easily be, however, with

the methodology already considered in Section 2.5.2.

7.7.3 Results

The systems to identify have the form presented in Section 7.7.2. In these, we expect our

model to be able to reproduce an arbitrary 10-minute trajectory with an initial SoC of

50 %. The pseudo-experimental training set T is composed of a collection of snapshots

obtained from the Newman's P2D electrochemical model shown in Section 7.2 using the

POD methodology explained in Section 7.4. This training set T is obtained using ten

di�erent ten-minute trajectories. In the comparisons that follow, the results of the DM are

compared with the ones extracted from the Newman's P2D electrochemical model.

Two di�erent error criteria are used. The �rst one is:

errVmax = max

(
100 · |VDM (t)− VP2D(t)|

VP2D(t)

)
,

errSoCmax = max

(
100 · |SoCDM (t)− SoCP2D(t)|

SoCP2D(t)

)
,

where V denotes voltage, SoC denotes the bulk state of charge, the subscript DM denotes

the results obtained by the Dictionary Method and the subscript P2D denotes the results

obtained by Newman's P2D model.

The second error criteria used is given by

errV =
‖VDM (t)− VP2D(t)‖2

‖VP2D(t)‖2
,

errSoC =
‖SoCDM (t)− SoCP2D(t)‖2

‖SoCP2D(t)‖2
.

In Figs. 7.42 and 7.43, we can observe the error caused by the model extracted through

the DM for 38 trajectories (without any on-line correction). The �rst ten trajectories

correspond to the training set. The transition between the training set to the not-trained

trajectories is highlighted with a red line. In these plots we can see that the voltage error

is always lower than 3 % and it can be lower than 1 % in a lot of itineraries. Conversely,

the SoC error is negligible (always lower than 0.08 %).

In Fig. 7.44 and 7.45 we show the comparison of the DM with and without the on-line

correction for a trajectory which we have chosen deliberately to be di�erent to those in the

training set. To update the on-line dictionary we impose the criteria to limit the maximum

error to 0.65 % for the voltage and to 0.05 % for the SoC. In addition, the vertical lines in

the correction event plot indicate when a correction event happens. We can notice in these

�gures that only two corrections are needed to maintain the error level below 0.65 %.

In Fig.7.46, the on-line correction is shown to react within a region for which the model

is not prepared. Here we can see the results for a trajectory with an initial SoC of 85 %.

We can see that a few corrections are needed at the beginning but later, the model attains

good predictability abilities.
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Figure 7.42 � Voltage error of using the model extracted through the DM for 38
trajectories (without any on-line correction). The �rst ten trajectories correspond
to the training set. The transition between the training set and the not-trained
trajectories is highlighted with a red line

In Fig. 7.47, we show the SoC results for the above conditions. Note that only one

correction is needed for the SoC, despite the fact that the model was not trained to work

in these conditions.

In Fig. 7.48, we see how the on-line correction reacts to a di�erent trajectory with an

initial SoC of 85 %. In this case, no correction is needed due to the on-line learning of the

�rst one (see Fig. 7.46).

Finally, in Fig. 7.49 and 7.50, the number of corrections needed for six trajectories of

an initial SoC of 85 % and another six for an initial SoC of 42.7 % are shown. As a result

of these corrections, the error the voltage remains below 0.5 %.

As an additional measure, the dictionary is enriched at each correction. With this
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Figure 7.43 � SoC error of using the model extracted through the DM for 38
trajectories (without any on-line correction). The �rst ten trajectories correspond
to the training set. The transition between the training set and the not-trained
trajectories is highlighted with a red line

addition, the number of corrections is reduced as the model learn how to react in these new

scenarios. To update the on-line dictionary, we imposed the criteria to limit the maximum

error to 0.035 % for the SoC and to 0.5 % for the voltage.
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Figure 7.44 � Comparison of the results between the P2D model and the DM model
for trajectory number 30. Here, the on-line correction term is not used.
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Figure 7.45 � Comparison of the results between the P2D model and the DM model
for trajectory number 30. Here, the on-line correction is used. To update the
on-line dictionary we impose the criteria to limit the maximum error to 0.65 %
for the voltage. The vertical lines in the correction event plot indicate when the
correction event happens.
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Figure 7.46 � The DM with on-line correction reacts in a region for which the model
is not prepared. Results are shown for the voltage during a trajectory with an initial
SoC of 85 % (not initially considered in the training set). To update the on-line
dictionary, we imposed the criteria to limit the maximum error to 0.5 % for the
voltage.
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Figure 7.47 � The DM with on-line correction reacts to a region in which the model
is not prepared. Here we can see the results for the SoC for a trajectory with an
initial SoC of 85 % (not trained for this scenario). To update the on-line dictionary
we imposed the criteria to limit the maximum error to 0.035 % for the SoC.
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Figure 7.48 � The DM with on-line correction reacts to another trajectory with an
initial SoC of 85 %. We can see that no correction is needed for the voltage in this
second trajectory due to the on-line learning of the �rst one (Fig. 7.46). To update
the on-line dictionary we imposed the criteria to limit the maximum error to 0.5 %
for the voltage
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Figure 7.49 � Number of corrections needed for di�erent trajectories with an initial
SoC of 85 % (for which the original model is not trained). To update the on-line
dictionary we imposed the criteria to limit the maximum error to 0.035 % for the
SoC and to 0.5 % for the voltage.
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Figure 7.50 � Number of corrections needed for di�erent trajectories with an initial
SoC of 42.7 % (for which the original model is not trained). To update the on-line
dictionary we imposed the criteria to limit the maximum error to 0.035 % for the
SoC and to 0.5 % for the voltage.

227



Chapter 7. From ROM of electrochem. to AI-based battery digital and HT

7.8 Conclusions

In Section 7.4 a ROM is developed using the POD technique. It can be observed that the

results of the full model are reproduced with a high accuracy using the POD model. A

large reduction in the computational time and resources needed to solve the electrochemical

model is also achieved.

The saving in computational time and resources means that cell design, parameter

�tting, and simulation of battery packs can be achieved under this rationale. The key to

developing this model is the extraction of the basis functions using the results of o�-line

simulations. As it was shown, with only an o�-line simulation a wide operational range of

the cell can be reproduced. To further enrich the basis, some o�-line simulations close to a

SoC of 100 % and 0 % are recommended.

In Section 7.5, a data-driven ROM was developed using the s-PGD regression technique

which can learn either from a physics-based model or experimental data. In Section 7.6.2,

it was shown that the developed model was used successfully in conjunction with the whole

EV model to obtain fast results with the accuracy of the electrochemical model. This

approach could be an excellent option and a good �rst step to develop the new generation

of BMS for the automotive industry because of its accuracy and the low computational

resources required. In fact, it has been shown how the proposed battery approach can be

employed to develop planning algorithms, to correct and adapt driving behaviours or to

design new BMS. The added value is signi�cant: the better predictions of the cell state

provided by the s-PGD model will be translated to better tools for the above concepts.

This is interesting for the automotive industry to improve their products and and be more

competitive in the EV market.

Furthermore, the Digital Twin created using the s-PGD does not only allow for real-time

simulations, but can also adapt its predictions taking into consideration the real driving

conditions and the real driving cycle to change the planning in real-time.

Indeed, it would be interesting to enrich the model with the thermal gradient or aging

e�ects to further enhance its applicability. This would require a reformulation of the

electrochemical model so that the phenomena were correctly described.

Finally, in Section 7.7, a model based on the hybrid twin paradigm is presented to

correct the electrochemical model in real-time. To achieve this, a data-driven model based

upon the novel hybridation strategies proposed in this dissertation is developed. Accurate

results are found by using this data-driven model to reproduce the behavior of the cell. As

it has been shown, the data-driven model has excellent capabilities to adapt quickly and

reliably to new scenarios (situations for which the model has not been trained).

Note: Perspectives and future works will be detailed in next chapter.
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The discussed work showed that the present dissertation is part of the framework based on

strengthening the link between data science and numerical simulation. In fact, this thesis

was devoted to the development of new methodologies and simulation tools to improve,

enhance and boost virtual, digital and hybrid twins to address current industrial challenges.

In particular, the MOR and the Machine Learning (ML) framework were explored, employed

and enlarged by means of the new proposals done during this work.

The purpose of this thesis was threefold.

First, the development of high-�delity and high-dimensional parametric models to

strongly accelerate highly-accurate physics-based models by means of the MOR and

data-driven techniques. These solutions can be evaluated online extremely fast even

with real-time constraints (compulsary in many applications) and consequently, they were

employed to improve existing twins. Several current industrial problems were studied

(Chapters 4, 5, 6 and 7).

Second, Research and development (R&D) of novel MORTs, algorithms and data-driven

models. Novel approaches were developed to improve the results when the current

techniques su�er and to extend methodologies to new areas of interest. Most of the novel

simulation tools proposed here were provided to address the di�erent challenging scenarios

presented throughout this dissertation. Nevertheless, they can be easily extended or, in

most cases, directly applied to other settings.

Third, in the context of the DDDAS framework, the Hybrid Twin was developed

and applied to an aeronautics problem as well as to a battery system of an EV. Here,

the di�erence/gap between the physical prediction and the measurements is corrected.

We observed how the physics-based response can be accelerated employing a parametric

deterministic solution learned using the non-intrusive MOR framework. To make possible

the hybridation, two novel techniques were successfully proposed, allowing not only to

address nonlinear settings but also to ensure stability in the time integration as well as a

low computational cost.

In Chapter 2, the novel techniques to successfully solve the industrial challenges of

Chapters 4, 5, 6 and 7 were presented and discussed. In particular, this chapter proposed

the following new techniques: the s-PGD+RB strategy, a novel unwrapping algorithm, the

stabilized DMD/DMDc and the DMD Dictionary strategy. In addition, excellent results

were observed when applied to their respective problems detailed below.

In Chapter 4, high-dimensional parametric solutions were obtained to quickly determine

the response of rotating electric machines with accuracy. Two di�erent approaches were

successfully applied for di�erent ranges of application. The �rst one employing the intrusive

PGD combined with an innovative mapping to transform the motor geometry. The

second one based on the proposed s-PGD+RB strategy. Excellent results were obtained

when compared with the FEMM software. Furthermore, the proposed solutions can

be particularized under the stringent real-time constraints and can empower industrial

procedures such as the optimization, inverse analysis or simulation-based control.

The above work opened a line of research where more complex models are going to

be addressed as well as the coupling of the numerical model with transient responses of

circuit equations. Thus, the computational cost reduction would be even more drastic.
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In fact, the electric machine articles published in this thesis, attracted the attention of

multinational companies such as SKF, starting a collaboration to apply these techniques to

their electromagnetic devices, in this case magnetic bearings.

Then, in Chapter 5, the novel unwrapping algorithm proposed in this dissertation

was applied to the e�cient and optimal design of radar-based Advanced Driver

Assistant Systems (ADAS). In particular this chapter proposed a parametric solution by

employing a non-intrusive formulation of the PGD, combined with a powerful phase-angle

unwrapping strategy for accurately addressing the electric and magnetic �elds interpolation,

contributing to improve the design, the calibration and the operational use of those systems.

It was proved how the number of snapshots can be greatly reduced by employing the

proposed approach. This way, the computational cost is signi�cantly reduced. And not

only that, but its performance was compared with that of Matlab software, showing better

results and thus improving current commercial techniques.

Next, Chapter 6 proposed a new strategy for the computation of stable, fast and

accurate corrections in the Hybrid Twin framework to address an industrial application

of the international company Dassault Aviation. Speci�cally, the stabilized DMD/DMDc

was employed. It was proved how this novel strategy addresses successfully the delicate

and important problem of stability. In fact, it was demonstrated that the technique is

able to learn dynamical models while guaranteeing a low computational cost as well as

the achievement of stable dynamical time integrations. Moreover, the experimental tests

carried out showed that the proposed technique correctly �lters noise, thus improving the

knowledge of the system state. In addition, the experimental results re�ected the advantages

of the HT paradigm. Indeed, the most complex behaviors could only be captured when

applying this hybrid strategy. Due to the excellent results obtained during this research

project, a new line of research wants to be opened (with Dassault Aviation) to apply the

aformentioned technique to an aeronautical system but explicitly taking into consideration

the corresponding control strategy.

The last industrial application was addressed in Chapter 7: the need of fast an

accurate models for lithium-ion batteries. In particular, three Reduced Order Model (ROM)

techniques were applied to the most commonly used physics-based models, each one for a

di�erent range of application.

In Section 7.4, a POD model was proposed to greatly reduce the simulation time and

the computational e�ort for the Newman's pseudo-2D cell model, thus proving to be an

excellent tool for cell design, parameter �tting or simulation of battery packs. In addition,

the results showed an excellent agreement between both modeling frameworks.

Then, Sections 7.5 and 7.6 proposed a s-PGD cell model that achieved real-time

performance for the whole Electric Vehicle (EV) system with a battery pack. Moreover,

results proved that a good accuracy was obtained. Indeed, it has been shown and

demonstrated how the proposed battery approach can be employed to develop planning

algorithms, to correct and adapt driving behaviours or to design the new generation of

BMS. The added value is signi�cant: the better predictions of the cell state provided by

the s-PGD model will be translated to better tools for the above concepts. In addition,

there are strong perspectives of incorporing the aforementioned s-PGD cell models in the

commercial software of ESI Group. Furthermore, an interesting future line of research

would be to enrich the model with the thermal gradient or aging e�ects to further enhance

its applicability.

The last ROM was a data-driven model based on the proposed DMD Dictionary

technique (Section 7.7). It was demonstrated how this approach can be used to extract

an on-line model that corrects the gap between prediction and measurement. Thus, the
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�rst (to our knowledge) hybrid twin of a Li-ion battery was constructed, being able to

self-correct from data. Accurate results were found by using this data-driven model to

reproduce the behavior of the cell. And not only that, but excellent model capabilities

were reported to adapt quickly and reliably to new scenarios. Future works would address

the capabilities of the data-driven model to predict speci�c aging e�ects, to correct other

possible QoI or to deal with the presence of noise (in the latter case, �lters could be created

if necessary whenever the inherent �lter of the DMD does not give satisfactory results).

Another chapter, which is worthy to metion, is Chapter 3 where the novel PGD

techniques were presented: the rs-PGD, the s2-PGD and the ANOVA-based sparse-PGD.

Each of them was designed to deal with a di�erent issue. Moreover, we observed and

discussed, through di�erent examples, how they can improve signi�cantly the existing

sparse PGD performance, reducing over�tting and achieving great explanatory predictive

capabilities when correctly applied in their respective frameworks. Therefore, the

improvements carried out by these new techniques opens the door to construct better

high-dimensional parametric functions in the low-data regime context, which is really

appealing because of the increasing industrial interest in this type of solutions. In fact, this

work opened and active line of research to address speci�c industrial applications where the

use of these techniques can be competitively advantageous. In addition, this line of research

will also study the best work�ow for allying them as well as the scalability.

As we noticed during the manuscript, the topics covered in this work come from

speci�c industrial areas, however, the work was addressed from a global point of view,

o�ering di�erent methodologies than can be extrapolated in di�erent areas. For that

reason, perspectives of future work (in addition to the ones previously introduced) consider

capitalization of the techniques developed. Also, the industrialization and scalability of

techniques such as the hybridation ones, the rs-PGD or the s2-PGD.

To sum up, we strongly believe that this dissertation constitutes a good foundation

towards the implementation of machine learning techniques combined with the MOR

framework as a cornerstone to the development of disruptive and innovative technologies.

As it can be appreciated in the individual conclusions of each section, the techniques and

strategies proposed in this manuscript along with the exempli�ed applications are able to

open the route to a new paradigm combining low-data arti�cial intelligence with physical

knowledge. And not only that, but also to pave the way to the discussed new lines of

research.
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Translation of the Chapter on

Conclusions and Perspectives

This appendix contains the translation into Spanish and French of the Chapter on

Conclusions and Perspectives of the present dissertation.

A.1 Conclusions et Perspectives

Les travaux discutés ont montré que la présente thèse s'inscrit dans le cadre basé sur le

renforcement du lien entre la science des données et la simulation numérique. En e�et, cette

thèse a été consacrée au développement de nouvelles méthodologies et d'outils de simulation

pour améliorer, renforcer et dynamiser les jumeaux virtuels, numériques et hybrides a�n de

relever les dé�s industriels actuels. En particulier, les techniques de réduction de modèles

et du Machine Learning (ML) ont été explorés, employés et élargis par le biais de nouvelles

propositions faites au cours de ce travail.

L'objectif de cette thèse était triple.

Tout d'abord, le développement de modèles paramétriques haute-�délité et

haute-dimension pour accélérer fortement les modèles physiques plus précis au moyen des

techniques de réduction de modèles et des techniques orientées données. Ces solutions

peuvent être évaluées en ligne extrêmement rapide, même avec des contraintes de temps

réel (obligatoires dans de nombreuses applications) et, par conséquent, elles ont été utilisées

pour améliorer les jumeaux existants. Plusieurs problèmes industriels actuels ont été étudiés

(Chapitres 4, 5, 6 et 7).

Deuxièmement, la recherche et le développement (R & D) de nouvelles techniques

de réduction de modèles, algorithmes et modèles pilotés sur les données. De nouvelles

approches ont été développées pour améliorer les résultats lorsque les techniques actuelles

se voient limitées et pour étendre les méthodologies à de nouveaux domaines d'intérêt.

La plupart des nouveaux outils de simulation proposés ici ont été fournis pour répondre

aux di�érents scénarios di�ciles présentés tout au long de cette thèse. Néanmoins, ils

peuvent être facilement étendus ou, dans la plupart des cas, directement appliqués à d'autres

contextes.

Troisièmement, dans le cadre de travail des DDDAS, le jumeau hybride a été développé

et appliqué à un problème aéronautique ainsi qu'à un système de batterie d'un véhicule

électrique. Ici, la di�érence/écart entre la prédiction physique et les mesures experimentales

est corrigée. Nous avons observé comment la réponse basée sur la physique peut être

accélérée en utilisant une solution déterministe paramétrique apprise en utilisant les

techniques de réduction de modèles non-intrusives. Pour rendre possible l'hybridation, deux

nouvelles techniques ont été proposées avec succès, permettant non seulement de traiter des

paramètres non linéaires mais aussi d'assurer la stabilité de l'intégration temporelle ainsi

qu'un faible coût de calcul.

Dans le Chapitre 2, les nouvelles techniques permettant de résoudre avec succès les

dé�s industriels des Chapitres 4, 5, 6 et 7 ont été présentées et discutées. En particulier,
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ce chapitre propose les nouvelles techniques suivantes : la stratégie s-PGD+RB, un nouvel

unwrapping algorithm, la DMD/DMDc stabilisée et la stratégie du Dictionnaire DMD. De

plus, d'excellents résultats ont été observés lorsqu'elles ont été appliquées à leurs problèmes

respectifs détaillés ci-dessous.

Dans le Chapitre 4, des solutions paramétriques à haute dimension ont été obtenues pour

déterminer rapidement et avec précision la réponse des machines électriques tournantes.

Deux approches di�érentes ont été appliquées avec succès pour di�érents domaines

d'application. La première utilise la PGD intrusive combinée à un mappage innovante

pour transformer la géométrie du moteur. La seconde est basée sur la stratégie s-PGD+RB

proposée. D'excellents résultats ont été obtenus en comparaison avec le logiciel FEMM. En

outre, les solutions proposées peuvent être adaptées aux contraintes strictes du temps réel

et peuvent faciliter les procédures industrielles telles que l'optimisation, l'analyse inverse

ou le contrôle par simulation.

Le travail ci-dessus a ouvert une ligne de recherche où des modèles plus complexes vont

être abordés ainsi que le couplage du modèle numérique avec les réponses transitoires des

équations de circuit. Ainsi, la réduction des coûts de calcul serait encore plus drastique.

En pratique, les articles sur les machines électriques publiés dans cette thèse ont attiré

l'attention de multinationales telles que SKF, qui ont entamé une collaboration pour

appliquer ces techniques à leurs dispositifs électromagnétiques, en l'occurrence les paliers

magnétiques.

Ensuite, dans le Chapitre 5, le nouvel unwrapping algorithm proposé dans cette

thèse est appliqué à la conception e�cace et optimale des systèmes avancés d'aide à la

conduite (ADAS) basés sur les radars. En particulier, ce chapitre propose une solution

paramétrique en employant une formulation non-intrusive de la PGD, combinée à une

stratégie puissante de unwrapping pour traiter avec précision l'interpolation des champs

électriques et magnétiques, contribuant ainsi à améliorer la conception, la calibration et

l'utilisation opérationnelle de ces systèmes. Il a été démontré que le nombre de snapshots,

peut être considérablement réduit en utilisant l'approche proposée. De cette façon, le coût

de calcul est considérablement réduit. De plus, ses performances ont été comparées à

celles du logiciel Matlab, montrant de meilleurs résultats et améliorant ainsi les techniques

commerciales actuelles.

Ensuite, le Chapitre 6 propose une nouvelle stratégie pour le calcul de corrections

stables, rapides et précises dans le cadre de l'Hybrid Twin pour répondre à une

application industrielle de la société internationale Dassault Aviation. Plus précisément, la

DMD/DMDc stabilisée est ici utilisée. Il a été prouvé que cette nouvelle stratégie permet

de résoudre avec succès le délicat et important problème de la stabilité. Concrètement,

il a été démontré que la technique est capable d'apprendre des modèles dynamiques tout

en garantissant un faible coût de calcul ainsi que la réalisation d'intégrations dynamiques

temporelles stables. De plus, les tests expérimentaux réalisés ont montré que la technique

proposée �ltre correctement le bruit, améliorant ainsi la connaissance de l'état du système.

De plus, les résultats expérimentaux ont re�été les avantages du paradigme HT. En

e�et, les comportements les plus complexes n'ont pu être capturés qu'en appliquant cette

stratégie hybride. En raison des excellents résultats obtenus au cours de ce projet, une

nouvelle ligne de recherche veut être ouverte (avec Dassault Aviation) pour appliquer la

technique mentionnée ci-dessus à un système aéronautique mais en prenant explicitement

en considération la stratégie de contrôle correspondante.

La dernière application industrielle a été abordée dans le Chapitre 7 : le besoin de

modèles rapides et précis pour les batteries lithium-ion. En particulier, trois techniques

de réduction de modèles ont été appliquées aux modèles basés sur la physique les plus
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couramment utilisés, chacune pour un domaine d'application di�érent.

Dans la section 7.4, un modèle POD a été proposé pour réduire considérablement le

temps de simulation et l'e�ort de calcul pour le modèle pseudo-2D de Newman, ce qui

s'avère être un excellent outil pour la conception de cellules, l'ajustement des paramètres

ou la simulation de packs de batteries. En outre, les résultats ont montré un excellent

accord entre les deux cadres de modélisation.

Ensuite, les sections 7.5 et 7.6 ont proposé un modèle de cellule s-PGD qui a atteint

une performance en temps réel pour l'ensemble du système du véhicule électrique (VE) avec

un bloc-batterie. De plus, les résultats ont prouvé qu'une bonne précision a été obtenue.

En e�et, il a été montré et démontré comment l'approche de la batterie proposée peut

être employée pour développer des algorithmes de plani�cation, pour corriger et adapter les

comportements de conduite ou pour concevoir la nouvelle génération de systèmes de gestion

de batterie (Battery Management Systems, BMS). La valeur ajoutée est importante : les

meilleures prédictions de l'état de la cellule fournies par le modèle s-PGD se traduiront

par de meilleurs outils pour les concepts ci-dessus. En outre, il existe de fortes chances

d'incorporer les modèles cellulaires s-PGD susmentionnés dans les logiciels commerciaux

d'ESI Group. En outre, une future ligne de recherche intéressante serait d'enrichir le

modèle avec le gradient thermique ou les e�ets du vieillissement pour améliorer encore

son applicabilité.

Le dernier modèle était un modèle piloté par les données basé sur la technique proposée

du dictionnaire DMD (Section 7.7). Il a été démontré comment cette approche peut être

utilisée pour extraire un modèle en ligne qui corrige l'écart entre la prédiction et la mesure

experimentale. Ainsi, le premier jumeau hybride (à notre connaissance) d'une batterie

Li-ion a été construit, capable de s'autocorriger à partir des données. Des résultats précis

ont été trouvés en utilisant ce modèle basé sur les données pour reproduire le comportement

de la cellule. Et ce n'est pas tout, les capacités du modèle à s'adapter rapidement et de

manière �able à de nouveaux scénarios sont excellentes. Les travaux futurs porteront sur les

capacités du modèle piloté par les données à prédire des e�ets de vieillissement spéci�ques,

à corriger d'autres quantités d'intérêt possibles ou à traiter la présence de bruit (dans ce

dernier cas, des �ltres pourraient être créés si nécessaire lorsque le �ltre inhérent au DMD

ne donne pas de résultats satisfaisants).

Un autre chapitre, qui mérite d'être mentionné, est le Chapitre 3 où les nouvelles

techniques PGD ont été présentées : la rs-PGD, la s2-PGD et la sparse-PGD basée sur

l'ANOVA. Chacune d'entre elles a été conçue pour traiter un problème di�érent. De

plus, nous avons observé et discuté, à l'aide de di�érents exemples, la manière dont ils

peuvent améliorer de manière signi�cative les performances de la sparse-PGD existante, en

réduisant le surajustement et en atteignant de grandes capacités prédictives explicatives

lorsqu'ils sont correctement appliqués dans leurs cadres respectifs. Par conséquent, les

améliorations apportées par ces nouvelles techniques ouvrent la porte à la construction

de meilleures fonctions paramétriques à haute dimension dans le contexte d'un régime à

faibles données, ce qui est vraiment attrayant en raison de l'intérêt industriel croissant

pour ce type de solutions. Ce travail a ouvert une ligne de recherche active pour

aborder des applications industrielles spéci�ques où l'utilisation de ces techniques peut

être compétitivement avantageuse. En outre, cette ligne de recherche étudiera également le

meilleur �ux de travail pour les allier ainsi que l'évolutivité.

Comme nous l'avons remarqué lors de la rédaction du manuscrit, les sujets abordés dans

ce travail proviennent de domaines industriels spéci�ques, cependant, le travail a été abordé

d'un point de vue global, o�rant di�érentes méthodologies qui peuvent être extrapolées dans

di�érents domaines. Pour cette raison, les perspectives de travaux futurs (en plus de celles
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présentées précédemment) envisagent la capitalisation des techniques développées. Il en

est de même, l'industrialisation et la mise à l'échelle de techniques telles que celles de

l'hybridation ou la s2-PGD.

En résumé, nous croyons fermement que cette thèse constitue une bonne base pour la

mise en ÷uvre de techniques d'apprentissage automatique combinées avec les techniques

de réduction de modèles comme pierre angulaire du développement de technologies

perturbatrices et innovantes. Comme on peut l'apprécier dans les conclusions individuelles

de chaque section, les techniques et les stratégies proposées dans ce manuscrit ainsi que

les applications prises en exemple sont capables d'ouvrir la voie à un nouveau paradigme

combinant la connaissance physique et l'intelligence arti�cielle avec peu de données. Et non

seulement cela, mais aussi ouvrir la voie aux nouvelles lignes de recherche discutées.

A.2 Conclusiones y perspectivas

El trabajo expuesto demostró que la presente disertación está inscrita en el marco de

trabajo basado en el fortalecimiento del vínculo entre la ciencia de los datos y la simulación

numérica. De hecho, esta tesis se dedicó al desarrollo de nuevas metodologías y herramientas

de simulación para mejorar, potenciar e impulsar los gemelos virtuales, digitales e híbridos

para abordar los retos industriales actuales. En particular, las técnicas de reducción de

modelos y de machine learning fueron exploradas, empleadas y ampliadas mediante las

nuevas propuestas realizadas durante este trabajo.

El objetivo de esta tesis ha sido triple.

Para empezar, el primer próposito ha sido el desarrollo de modelos paramétricos de

alta �delidad y dimensión para acelerar signi�cativamente los modelos físicos de gran

precisión mediante técnicas de reducción de modelos y ciencia de datos (concretamente,

técnicas de machine learning). Este tipo de soluciones pueden evaluarse en línea de forma

extremadamente rápida, incluso con restricciones de tiempo real (obligatorias en muchas

aplicaciones) y, en consecuencia, se emplearon para mejorar los gemelos existentes (virtuales,

digitales y híbridos). Varios problemas industriales actuales han sido estudiados en la

presente disertación (Capítulos 4, 5, 6 y 7).

El segundo próposito ha consistido en la investigación y el desarrollo (I+D) de nuevas

técnicas de reducción de modelos, algoritmos y modelos basados en datos. De hecho, se

han desarrollado nuevos enfoques para mejorar los resultados cuando las técnicas actuales

sufren o se ven limitidas, así como para ampliar las metodologías a nuevas áreas de

interés. La mayoría de las herramientas de simulación novedosas propuestas aquí se

proporcionaron para abordar los diferentes escenarios desa�antes presentados a lo largo

de esta disertación. No obstante, pueden extenderse fácilmente o, en la mayoría de los

casos, aplicarse directamente a otros escenarios.

En tercer lugar, en el marco de trabajo de los DDDAS, el próposito ha consistido en

desarrollar el Gemelo Híbrido (Hybrid Twin, HT) y aplicarlo a un problema aeronáutico,

así como a un sistema de baterías de un vehículo eléctrico. En este marco de trabajo,

la diferencia o la desviación entre la predicción física y las mediciones experimentales es

exitosamente corregida. Además, observamos cómo la respuesta basada en la física puede

acelerarse empleando una solución determinista paramétrica aprendida utilizando técnicas

de reducción de modelos no intrusivas. Para hacer posible la hibridación, se propusieron

con éxito dos técnicas novedosas, que permiten no sólo abordar con�guraciones no lineales,

sino también garantizar la estabilidad en la integración temporal, así como un bajo coste

computacional.

En el Capítulo 2, se presentaron y discutieron las nuevas técnicas para resolver con
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éxito los retos industriales de los Capítulos 4, 5, 6 y 7. En particular, en este capítulo

se propusieron las siguientes técnicas novedosas: la estrategia s-PGD+RB, un novedoso

algoritmo de unwrapping, la DMD/DMDc estabilizada y la estrategia del Diccionario DMD.

Además, se observaron excelentes resultados cuando se aplicaron a sus respectivos problemas

que se detallan a continuación.

En el Capítulo 4, se obtuvieron soluciones paramétricas de alta dimensión para

determinar rápidamente la respuesta de las máquinas eléctricas rotativas con precisión.

Se aplicaron con éxito dos enfoques diferentes para distintos rangos de aplicación. El

primero empleando la PGD intrusiva combinada con un mapeo innovador para transformar

la geometría del motor. El segundo, basado en la estrategia s-PGD+RB propuesta. Se

obtuvieron excelentes resultados cuando se compararon con el software FEMM. Además,

las soluciones propuestas pueden particularizarse bajo las estrictas restricciones de tiempo

real y pueden potenciar procedimientos industriales como la optimización, el análisis inverso

o el control basado en la simulación.

El trabajo anterior abrió una línea de investigación en la que se van a abordar modelos

más complejos, así como el acoplamiento del modelo numérico con las respuestas transitorias

de las ecuaciones del circuito. De este modo, la reducción del coste computacional sería aún

más drástica. De hecho, los artículos sobre máquinas eléctricas publicados en esta tesis,

atrajeron la atención de empresas multinacionales como SKF, con la que se ha iniciado una

colaboración para aplicar estas técnicas a sus dispositivos electromagnéticos, en este caso

rodamientos magnéticos.

A continuación, en el Capítulo 5, se aplicó el novedoso algoritmo de unwrapping

propuesto en esta tesis al diseño e�ciente y óptimo de sistemas avanzados de asistencia al

conductor (ADAS) basados en radar. En particular, este capítulo propuso una solución

paramétrica empleando una formulación no intrusiva de la PGD, combinada con una

potente estrategia de unwrapping para abordar con precisión la interpolación de los campos

eléctricos y magnéticos, contribuyendo a mejorar el diseño, la calibración y el uso operativo

de dichos sistemas. Se demostró cómo el número de snapshots, puede reducirse en gran

medida empleando el enfoque propuesto. De este modo, el coste computacional se reduce

signi�cativamente. Y no sólo eso, sino que su rendimiento se comparó con el del software

Matlab, mostrando mejores resultados y mejorando así las técnicas comerciales actuales.

Más adelante, en el Capítulo 6 se propuso una nueva estrategia para el cálculo de

correcciones estables, rápidas y precisas en el marco de trabajo del Hybrid Twin para

abordar una aplicación industrial de la empresa internacional Dassault Aviation. En

concreto, se empleó la DMD/DMDc estabilizada. Se demostró cómo esta novedosa

estrategia aborda con éxito el delicado e importante problema de la estabilidad. De hecho, se

demostró que la técnica es capaz de aprender modelos dinámicos garantizando un bajo coste

computacional, así como la consecución de integraciones dinámicas temporales estables.

Además, las pruebas experimentales realizadas mostraron que la técnica propuesta �ltra

correctamente el ruido, mejorando así el conocimiento del estado del sistema. Además,

los resultados experimentales re�ejaron las ventajas del paradigma HT. De hecho, los

comportamientos más complejos sólo pudieron ser capturados al aplicar esta estrategia

híbrida. Debido a los excelentes resultados obtenidos durante este proyecto de investigación,

se quiere abrir una nueva línea de investigación (con Dassault Aviation) para aplicar dicha

técnica a un sistema aeronáutico, pero teniendo en cuenta explícitamente la estrategia de

control correspondiente.

La última aplicación industrial se abordó en el Capítulo 7: la necesidad de modelos

rápidos y precisos para las baterías de iones de litio. En concreto, se aplicaron tres técnicas

de reducción de modelos a los modelos físicos más utilizados, cada uno para un rango de
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aplicación diferente.

En la sección 7.4, se propuso un modelo POD para reducir en gran medida el tiempo de

simulación y el esfuerzo computacional para el modelo pseudo-2D de Newman, demostrando

así ser una excelente herramienta para el diseño de celdas, el ajuste de parámetros o

la simulación de paquetes de baterías. Además, los resultados mostraron una excelente

concordancia entre ambos marcos de modelado.

A continuación, las secciones 7.5 y 7.6 propusieron un modelo de celda s-PGD que logró

un rendimiento en tiempo real para todo el sistema del vehículo eléctrico con un paquete de

baterías. Además, los resultados demostraron que se obtuvo una buena precisión. De hecho,

se ha mostrado y demostrado cómo el enfoque propuesto para las baterías puede emplearse

para desarrollar algoritmos de plani�cación, para corregir y adaptar los comportamientos de

conducción o para diseñar la nueva generación de sistemas de gestión de baterías (Battery

Management System, BMS). El valor añadido es signi�cativo: las mejores predicciones

del estado de la célula proporcionadas por el modelo s-PGD se traducirán en mejores

herramientas para los conceptos mencionados. Además, existen grandes perspectivas

de incorporar los mencionados modelos s-PGD en el software comercial del Grupo ESI.

Además, una interesante línea de investigación futura sería enriquecer el modelo con el

gradiente térmico o los efectos del envejecimiento para mejorar aún más su aplicabilidad.

El último modelo fue uno basado en datos y en la técnica propuesta del Diccionario

DMD (Sección 7.7). Se demostró cómo este enfoque puede utilizarse para extraer un modelo

en línea que corrija el desfase entre la predicción y la medición experimental. Así, se

construyó el primer gemelo híbrido (hasta donde sabemos) de una batería de iones de litio,

capaz de autocorregirse a partir de los datos. Se obtuvieron resultados precisos utilizando

este modelo basado en datos para reproducir el comportamiento de una celda. Y no sólo

eso, sino que se mostró la excelente capacidad del modelo para adaptarse de forma rápida

y �able a nuevos escenarios. En futuros trabajos se abordarán las capacidades del modelo

impulsado por datos para predecir efectos especí�cos del envejecimiento, para corregir otras

posibles cantidades de interés o para hacer frente a la presencia de ruido (en este último

caso, se podrían crear �ltros si fuera necesario siempre que el �ltro inherente de la DMD

no diera resultados satisfactorios).

Otro capítulo digno de mención es el Capítulo 3 donde se presentaron las nuevas

técnicas PGD: la rs-PGD, la s2-PGD y la ANOVA-based sparse-PGD. Cada una de ellas

fue diseñada para tratar un problema diferente. Además, observamos y discutimos, a

través de diferentes ejemplos, cómo pueden mejorar signi�cativamente el rendimiento de

la s-PGD existente, reduciendo el sobreajuste y logrando una gran capacidad predictiva

cuando se aplican correctamente en sus respectivos marcos. Por lo tanto, las mejoras

llevadas a cabo por estas nuevas técnicas abren la puerta a la construcción de mejores

funciones paramétricas de alta dimensión en el contexto del régimen de datos escasos, lo

cual es realmente atractivo debido al creciente interés industrial en este tipo de soluciones.

De hecho, este trabajo abre una línea de investigación activa para abordar aplicaciones

industriales especí�cas en las que el uso de estas técnicas puede ser competitivamente

ventajoso. Además, esta línea de investigación también estudiará el mejor �ujo de trabajo

para aliarlas así como la escalabilidad.

Como se ha podido comprobar a lo largo del manuscrito, los temas tratados en

este trabajo provienen de áreas industriales concretas, sin embargo, el trabajo se ha

abordado desde un punto de vista global, ofreciendo diferentes metodologías que pueden ser

extrapoladas a diferentes áreas. Por ello, las perspectivas de trabajo futuro (además de las

introducidas anteriormente) contemplan la capitalización de las técnicas desarrolladas, así

como la industrialización y escalabilidad de técnicas como las de hibridación o la s2-PGD.
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A.2. Conclusiones y perspectivas

En resumen, creemos �rmemente que esta disertación constituye una buena base hacia

la implementación de técnicas de aprendizaje automático combinadas con las técnicas de

reducción de modelos como piedra angular para el desarrollo de tecnologías disruptivas e

innovadoras. Como se puede apreciar en las conclusiones individuales de cada sección, las

técnicas y estrategias propuestas en este manuscrito junto con las aplicaciones tomadas

como ejemplo son capaces de abrir una ruta hacia un nuevo paradigma que combine el

conocimiento físico con la inteligencia arti�cial aplicada a la ingeniería. Y no sólo eso, sino

también allanar el camino a las nuevas líneas de investigación discutidas.
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Appendix B

EM parameters

B.1 Units

The units employed in the chapter and appendices which address rotating electrical

machines are introduced in the following table.

Unit Symbol Unit Symbol

millimeters mm meters m

degrees deg. radians rad

horsepower HP ampere A

Hertz Hz revolutions per minute rpm

Tesla T megasiemens MS

Pascal N/m2 = Pa - -

Table B.1 � Units

B.2 Induction motor

An example from the FEMM software manual [Meeker 2018] is borrowed, where geometry

and further details can be found. The main parameters and features of the motor are as

follows:

� 2 HP motor, 50 Hz, 3-phase supply. It is a 4-pole machine (i.e., p = 2).

� The winding con�guration for one pole of the machine is: A+, A+, A+, C-, C-, C-,

B+, B+, B+ (the nine slots from 0 to 90 geometrical degrees).

� There are a total of 36 slots on the stator and 28 slots on the rotor. A total of 44

turns sit inside each stator slot.

� The rotor's diameter is 80 mm, and the air gap between the rotor and stator is 0.375

mm. The length of the machine in the into-the-page direction is 100 mm.

Materials used:

� Aluminum for rotor bars (σ = 34.45 MS/m)

� Air (µr = 1)

� Stator Winding (µr = 1)

� For the Case 1. Linear B-H relationship.

� Silicon Core Iron for the ferromagnetic materials (µr = 7000)
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Appendix B. EM parameters

� For the Case 2. Nonlinear B-H relationship.

� Carpenter Silicon Core Iron "A", 1066C Anneal (B-H curve taken from FEMM

library)

B.3 Synchronous machine.

An example from the FEMM software manual [Meeker 2018] is borrowed, where geometry

and further details can be found. The main parameters and features of the motor are as

follows:

� 3-phase supply. It is a 8-pole machine (i.e. p = 4)

� The winding con�guration for one pole of the machine is: A+, B-, C+ (the three

slots from 0 to 45 geometrical degrees).

Geometry:

� Rotor Inner Diameter: 22.8 mm.

� Rotor Iron Outer Diameter: 50.5 mm.

� Rotor Outer Diameter: 55.1 mm.

� Air Gap Length: 0.7 mm.

� Stator Outer Diameter: 100 mm.

� Angle Spanned by Tooth: 11.9 deg.

� Turns/Slot: 46.

� The complete geometry of the machine is reconstructed in Figure 4.18.

Materials:

� Winding Wire: 4X20AWG copper wire

� Magnet Material: Sm2Co17 24MGOe

� Stator Material: 24 Gauge M19 NGO Steel @ 98% �ll

� Rotor Material: 1018 steel
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Appendix C

EM models

C.1 Induction motor

In this machine, a 2D current-based formulation for a squirrel-cage induction motor is

considered. According to [Bianchi 2005, Salon 1995], the 2D problem is given by the

following PDE:

∂

∂x

( 1

µ

∂Az
∂x

)
+

∂

∂y

( 1

µ

∂Az
∂y

)
= −J0 + σ

∂Az
∂t
− σv ×

(
∇×A

)
, (C.1)

where A is the magnetic vector potential, v is the velocity, Az is the z-component of

the magnetic vector potential, J0 is the applied density current source, σ is the electric

conductivity and µ represents the permeability.

Considering J0(t) = Re(Ĵ0e
jωt) , Az(t) = Re(Âze

jϕtejωt) and Ãz = Âze
jϕt (where ϕ

is the phase angle between Az(t) and J0(t)) as well as the assumptions and mathematical

procedure shown in [Bianchi 2005, Salon 1995], the above problem can be simpli�ed to the

following expression for an harmonic analysis:

∂

∂x

( 1

µ

∂Ãz
∂x

)
+

∂

∂y

( 1

µ

∂Ãz
∂y

)
= −Ĵ0 + jωσeqÃz, (C.2)

where Ãz is a complex number, j is the unit imaginary number, ω = 2πf , f is the supply

frequency, σeq is an equivalent conductivity computed as σeq = σs and s is the slip. The

slip in induction motors is de�ned as s = ns−nr
ns

, where ns is the synchronous speed and nr
is the rotor speed.

This formulation transforms the magneto-dynamic �eld problem expressed by Eq. (C.1)

to a magnetostatic complex �eld problem with induced currents. In the chosen approach

the rotor is �xed in the stator reference frame and an equivalent conductivity is assigned

to the rotor bars to take into consideration the motional term of the current density, that

is, the induced current density due to the movement.

Therefore, we can represent the motor at any operation point by multiplying the rotor

conductivities by the slip. This is similar to the procedure used in the standard motor

equivalent circuit where the rotor resistance is divided by the slip.

The choice of solving Eq. (C.2) was done to adapt the problem to the free FEMM

software and its capabilities. In addition, to take into consideration the nonlinear

relationship B-H in Eq. (C.2), FEMM includes a nonlinear time harmonic solver that

it is used in this work. This nonlinear time harmonic analysis seeks to include the e�ects

of nonlinearities like saturation and hysteresis on the fundamental of the response, while

ignoring higher harmonic content.

There are several subtly di�erent variations of the formulation that can yield slightly

di�erent results, so documentation of what has actually been implement is important to

the correct interpretation of the results from this solver. An excellent description of this

formulation is contained in [Jack & Mecrow 1990, Meeker 2018].
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C.2 Synchronous machine

In this machine, a two-dimensional steady state analysis is carried out to adapt us to the

capabilities of the open source FEMM. In Section 4.2.2, the weak form was described. Here,

the strong form employed in FEMM as well as the choice of certain modeling details are

introduced. In addition, at the end of the appendix, references are included to further

elaborate on the modelling of electrical machines and on the details presented here.

In three-phase motors, as in the other polyphase con�gurations of synchronous

machines, the stator-produced magnetomotive force (MMF) rotates at synchronous speed.

Since the rotor is also rotating at synchronous speed in the steady state, an observer on

the rotor experiences a constant �eld (∂B∂t = 0), and therefore, there are no eddy currents

on the rotor.

On the other hand, an observer on the stator experiences a time varying �eld whose

fundamental is at the system frequency. Since the stator is laminated and the stator

windings are stranded and transposed, the eddy currents are resistance limited and can

be neglected in the �eld computation. Hence the term (σ ∂Az∂t ) in the di�usion equation is

neglected also in this frame since σ can be considered zero.

If we take into consideration the above assumptions in Eq. (C.1) as well as adding the

modeling term for the permanent magnets, it will lead us to the Poisson's equation for a

magnetostatic analysis:

∂

∂x

( 1

µ

∂Az
∂x

)
+

∂

∂y

( 1

µ

∂Az
∂y

)
= −J0 −

∂

∂x

(Br,y
µ

)
+

∂

∂y

(Br,x
µ

)
, (C.3)

where Br,x and Br,y are respectively the x and y components of the remanent �ux density.

A �xed reference frame is used in the above equation where the PDE is solved for

each rotor position. To further details in electric machine modeling, we kindly suggest the

reading of [Salon 1995], [Bianchi 2005]. Note also that Eqs. (C.2) and (C.3) are solved in

Cartesian coordinates.
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Appendix D

Nomenclature for the

Electrochemical Model

Symbol De�nition Unit

as Active surface area per electrode unit volume m2

m3

A Electrode plate area m2

c Concentration of lithium in a phase mol
m3

D Di�usion coe�cient of lithium species m2

s

F Faraday's constant C
mol

io Exchange current density of an electrode reaction A
m2

I Applied current A

jLi Reaction current resulting in production or consumption of Li A
m3

Ln Length of the anode m

Ls Length of the separator m

Lp Length of the cathode m

Lt Length of the cell m

p Bruggeman exponent -

R Universal gas constant J
mol·K

Rf Film resistance on an electrode surface Ω ·m2

Rs Radius of solid active material particles m

t0+ Transference number of lithium ion with respect to the vel. of solvent -

T Absolute temperature K

U Open-circuit potential of an electrode reaction V

αa Anodic transfer coe�cient for an electrode reaction -

αc Cathodic transfer coe�cient for an electrode reaction -

η Surface overpotential of an electrode reaction V

K Conductivity of an electrolyte S
m

KD Di�usional conductivity of an electrolyte A
m

φ Volume-averaged electrical potential in a phase V

σ Conductivity of solid active materials in an electrode S
m

cse Concentration of litium in the solid phase at solid/electrolyte interface mol
m3

ko kinetic rate constant m2.5

mol0.5s

ε Volume fraction or porosity of a phase -
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Appendix D. Nomenclature for the Electrochemical Model

θ100% Stoichiometry at 100 % -

θ0% Stoichiometry at 0 % -

θ cse
cs,max

-

Symbol De�nition Unit

Table D.1 � Nomenclature used

Notes:

1. The subscript s refers to the solid phase with the exception of Ls.

2. The subscript e refers to the electrolyte phase.

3. The subscript n refers to the anode.

4. The subscript p refers to the cathode.

5. The subscript �max� refers to maximum.

6. The superscript �e�� refers to e�ective.

7. The superscript �init� refers to initial.
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Appendix E

Cell parameters and additional

equations

Parameter Cathode Separator Anode

cinite 1000 1000 1000

cinits 25751 - 26128

cs,max 51554 - 30555

De 7.5 · 10−10 7.5 · 10−10 7.5 · 10−10

Ds 10−14 - 3.9 · 10−14

ko 2.25196 · 10−6 - 4.85416 · 10−6

L 8 · 10−5 2.5 · 10−5 8.8 · 10−5

Rs 2 · 10−6 - 2 · 10−6

εs 0.59 - 0.4824

εe 0.385 0.724 0.485

σ 100 - 100

as 885000 - 723600

p 4 4 4

F 96485 96485 96485

R 8.314472 8.314472 8.314472

T 298.15 298.15 298.15

αa - - 0.5

αc 0.5 - -

θ100% 0.4955 - 0.8551

θ0% 0.99174 - 0.01429

A 1 - 1

t0+ 0.364 0.364 0.364

Parameter Cathode Separator Anode

Table E.1 � Cell parameters

The units of the values shown in the table above are the same as those used in Table D.1.
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Appendix E. Cell parameters and additional equations

Additional equations:

De�
e = εpe ·De, Ke� = εpe ·K, Ke�

D =
2 ·R · T ·Ke�

F
· (t0+ − 1),

σe� = εs · σ, as =
3 · εs
Rs

.

K, Un and Up are usually computed using empirical equations according to the simulated

cell. The empirical equations for this cell are:

Un(θn) = 0.7222 + 0.1387 · θn + 0.029 · θ0.5
n −

0.0172

θn
+

0.0019

θ1.5
n

+ 0.2808 · exp(0.9− 15 · θn)− 0.7984 · exp(0.4465 · θn − 0.4108),

Up(θp) =
−4.656 + 88.669 · θ2

p − 401.119 · θ4
p + 342.909 · θ6

p − 462.471 · θ8
p + 433.434 · θ10

p

−1 + 18.933 · θ2
p − 79.532 · θ4

p + 37.311 · θ6
p − 73.083 · θ8

p + 95.96 · θ10
p

,

K(ce) = 4.1253 · 10−2 + 5.007 · 10−4 · ce − 4.7212 · 10−7 · c2e
+ 1.5094 · 10−10 · c3e − 1.6018 · 10−14 · c4e.
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Appendix F

Parameters used in the

SimulationX model

Parameter Value Parameter Value

Vehicle mass m 1300 kg Initial Displacement 0 km

Initial Velocity 0 km/h Driving Shaft Inertia 0.9 kg ·m2

Inertia Side Shafts 0.5 kg ·m2 Inertia Driving Wheels 1.42 kg ·m2

Wheel radius 300 mm Axle Transmission ratio 3

Air Drag Coe�cient Cw 0.3 Rolling resistance Coef. Cr 0.01

Air density ρ 1.293 kg/m3 Reference Area Aref 1.5 m2

Hill Gradient Angle γ 0 PI controller G 1.39 · 10−3

PI controller Ti 0.0011 Armature resistance Ra 0.537 Ω

Armature inductance La 1 mH - -

Parameter Value Parameter Value

Table F.1 � Main parameters

The parameters of the PI controller are assumed to have the following form:

G ·
(

1 +
1

Ti · s

)
.

The parameters of the DC/DC converter are the default parameters in the SimulationX

model described in [Winter et al. 2015]. The main forces considered for the linear movement

of the vehicle are:

Ft = m · a+Raero +Rr +Rgrade,

where Ft is the tractive e�ort, and

Raero = ρ/2 ·Aref · Cw · V 2,

represents the aerodynamic resistance. Likewise,

Rr = Cr ·m · g · cos(γ),

represents the rolling resistance and, �nally,

Rgrade = m · g · sin(γ),

is the grade resistance.
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