3,280 research outputs found

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Energy Optimization for Distributed Energy Resources Scheduling with Enhancements in Voltage Stability Margin

    Get PDF
    The need for developing new methodologies in order to improve power system stability has increased due to the recent growth of distributed energy resources. In this paper, the inclusion of a voltage stability index in distributed energy resources scheduling is proposed. Two techniques were used to evaluate the resultingmultiobjective optimization problem: the sum-weighted Pareto front and an adapted goal programmingmethodology.With this newmethodology, the systemoperators can consider both the costs and voltage stability. Priority can be assigned to one objective function according to the operating scenario. Additionally, it is possible to evaluate the impact of the distributed generation and the electric vehicles in the management of voltage stability in the future electric networks.One detailed case study considering a distribution network with high penetration of distributed energy resources is presented to analyse the proposed methodology. Additionally, the methodology is tested in a real distribution network.info:eu-repo/semantics/publishedVersio

    An H∞ design for dynamic pricing in the smart grid.

    Get PDF
    An H∞ design for dynamic pricing in the smart grid is proposed. This design jointly considers the operation of a distribution network operator and a market operator. In the design, a ratio of the regulated output energy to the disturbance energy is minimized to address the worst-case scenario. Linear matrix inequality approaches are used to formulate the design problem as a convex problem. Fuzzy interpolation techniques are integrated into the design procedure so that nonlinear grid dynamics can be addressed. In contrast with existing designs, the proposed design can yield a more reliable and practical pricing scheme as shown via simulations

    Multiobjective optimisation of hybrid wind-PV-battery-fuel cell-electrolyser-diesel systems : An integrated configuration-size formulation approach

    Get PDF
    Acknowledgment The financial support by Energy Renewable UK Ltd through co-funding of REST4U project is gratefully acknowledged.Peer reviewedPostprin

    Virtual power plant models and electricity markets - A review

    Get PDF
    In recent years, the integration of distributed generation in power systems has been accompanied by new facility operations strategies. Thus, it has become increasingly important to enhance management capabilities regarding the aggregation of distributed electricity production and demand through different types of virtual power plants (VPPs). It is also important to exploit their ability to participate in electricity markets to maximize operating profits. This review article focuses on the classification and in-depth analysis of recent studies that propose VPP models including interactions with different types of energy markets. This classification is formulated according to the most important aspects to be considered for these VPPs. These include the formulation of the model, techniques for solving mathematical problems, participation in different types of markets, and the applicability of the proposed models to real case studies. From the analysis of the studies, it is concluded that the most recent models tend to be more complete and realistic in addition to featuring greater diversity in the types of electricity markets in which VPPs participate. The aim of this review is to identify the most profitable VPP scheme to be applied in each regulatory environment. It also highlights the challenges remaining in this field of study
    corecore