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The need for developing new methodologies in order to improve power system stability has increased due to the recent growth of
distributed energy resources. In this paper, the inclusion of a voltage stability index in distributed energy resources scheduling is
proposed. Two techniques were used to evaluate the resulting multiobjective optimization problem: the sum-weighted Pareto front
and an adapted goal programmingmethodology.With this newmethodology, the system operators can consider both the costs and
voltage stability. Priority can be assigned to one objective function according to the operating scenario. Additionally, it is possible
to evaluate the impact of the distributed generation and the electric vehicles in the management of voltage stability in the future
electric networks. One detailed case study considering a distribution network with high penetration of distributed energy resources
is presented to analyse the proposed methodology. Additionally, the methodology is tested in a real distribution network.

1. Introduction

The growing use of distributed generation (DG) in different
voltage levels has been changing the power systems operation
concept. To support the network operation and also to take
advantage of the distribution energy resources, it is important
to develop new operation and management methodologies.
One key aspect to guarantee adequate service levels is the
power system stability margin that is ensured by adequate
ancillary services. These services are traditionally provided
by centralized power plants with high power capacity and
coordinated by the system operators in the transmission
level. However, in a near future and considering the growing
penetration of distributed energy resources in medium and
low voltage distribution network, the system stability should
also be ensured by the system operator in the distribution
level, as well as by the aggregators (e.g., virtual power plants)
that manage the distributed energy resources [1, 2].

Behind the DG units, the consumers, storage systems,
and electric vehicles (EVs) are also important to support the

power system stability [3]. At the distribution level, the dis-
tribution system operator and the aggregators can participate
in several ancillary services [1, 4] such as primary, secondary,
tertiary frequency, and voltage control; fault-ride-through
capability; the congestion management; the power losses
minimization in distribution networks; the monitoring the
waveform quality; and the islanded operation of networks.

Extensive reviews on voltage stability indexes can be
found in the literature [5–9], with special focus on online
assessment methods for voltage stability. Nevertheless, using
this index to enhance scheduling, reconfiguration, and dis-
patch solutions has shown its potential to improve the
solutions regarding the voltage stability limitation [10–12].
These approaches make the 𝐿-index a possible option to
enhance the solutions, which was initially proposed in [13]
based on the power flow equations; however, recent attention
to its use, application, and possible improvements has been
reported in [14]. A thorough comparison with other indexes
can be found in [8], as well as a discussion on 𝐿-index
limitations [9].
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The line stability indexes like the 𝐿
𝑚𝑛

[15] or the VCPI
[16] are more accurate than the 𝐿-index to predict the voltage
collapse proximity in a real time operation. However, in
the day-ahead scheduling optimization, the main goal of
the voltage stability index is not based on determining the
proximity to the collapse, but to influence the distributed
resources scheduling for contributing to the system stability.
As stated in [16], the evolution of the 𝐿-index is similar as
the other suggested indexes (when the 𝐿-index increases the
𝐿
𝑚𝑛

and VCPI also increase), meaning if we optimize the
𝐿-index we are also improving the 𝐿

𝑚𝑛
and VCPI indexes.

The 𝐿-index is used in the present study because it is easier
to integrate in the optimization problem than the other
suggested indexes. With the 𝐿-index, the objective function
does not depend on the use of 𝑄 and consequently not on 𝑃
due to the load consumption in each bus (also depends on
the resources scheduling such as distributed generation and
electric vehicles).

The paper proposes an energy resource scheduling
problem with a multiobjective function incorporating the
operation cost and the voltage stability. This multiobjective
optimization problem will be applied for a scenario in a
distribution network with a high penetration of distributed
energy resources, mainly an intensive EVs penetration. In the
operation cost different technologies of DG and the use of
EVs with griddable capability are considered, also known as
vehicle-to-grid (V2G).The use of 𝐿-index is proposed to deal
with the voltage stability in the joint optimization problem.
The 𝐿-index was initially proposed in [13] based on the
power flow equations. Two optimization techniques are pro-
posed in this paper for solving the proposed multiobjective
energy resource scheduling problem. These techniques will
determine the nondominated solutions of the multiobjective
optimization problem, namely, the weighted-sum method
and an adapted goal programming methodology. Thus, the
nondominated solutions represent the Pareto front that was
proposed in [17], yet the application in engineering and
science fields only began in the end of the seventies [18].
Furthermore, the goal programming methodology can be
very useful in real application due to the complex character-
istics of the objective functions. In a regular power system
operation, the system operators can establish a predefined
range in the operation cost objective function, and, in the
critical situations (operation near from boundaries), the
system operators can limit the objective function concerning
the voltage stability index.

To demonstrate the effectiveness of the proposed
methodologies, concerning voltage stability, two studies were
included: in the first one, the sensitivity analysis is performed
considering variations in the power demand, in the voltage
angle, and in the voltage magnitude on the slack bus (from
the distribution network’s point of view the reference bus
is the connection in an upstream network). In the second
analysis, the loadability limit is determined for an hour
considering three different scheduling objective functions
(operation cost, 𝐿-index, and multiobjective), allowing the
determination of the maximum load that can be supplied
(voltage stability boundary) considering the voltage control
constraints. This approach is equivalent to the bifurcations

determined with continuation power flow algorithms that
allow to calculate the loadability limit for the power system
[19–21]. Both analyses show the improvements in the energy
resource scheduling problem through the incorporation of
𝐿-index as another objective function. In addition, both
methodologies are tested in a distribution network with high
penetration of distributed energy resources, considering
the use of electric vehicles allowing the 𝐿-index and the
operation cost evaluation. The weighted-sum method is
also applied to a real distribution network to evaluate its
performance in a large network.

After the Introduction, Section 2 presents an overview
concerning the energy resource scheduling problem. Sec-
tion 3 focuses on the mathematical formulation and on the
implementation of the proposed methodologies. Section 4
shows the case study considering a 33-bus distribution
network, and finally the most important conclusions are
presented in Section 5.

2. Energy Resource Scheduling
Overview and Contributions

The development of energy resources scheduling methods
considering the distributed resources in different voltage lev-
els of power systems is an important research topic. Typically,
the energy resource scheduling consists in an optimization
problem to determine the best scheduling to minimize the
operation cost of the available resources [22]. However, in a
smart grid context it is also important to take into account
other aspects than just the economic one, such as power
quality, voltage stability, environmental aspects, or the load
diagramprofile.Therefore, all these aspects can be included in
the energy resource scheduling providing different solutions
to help the system operators in the decision making process.

Several authors have proposed different methodologies
to deal with the energy resource scheduling considering dis-
tributed energy resources, such as DG and active consumers
with demand response programs and the network operation.
In [23], it is described a framework for aggregators to deter-
mine the energy resource scheduling based on the concept of
quality-of-service in power system. A more complex negoti-
ation perspective is presented in [24] considering multilevel
negotiation layers between aggregators and electricitymarket
participation. For amicrogrid level perspective, [25] proposes
a multiagent base platform allowing the scheduling of the
distributed energy resources.

Other works deal with the energy resource scheduling to
integrate the electric vehicles with V2G capability. A compre-
hensive and exhaustive review is presented in [26] concerning
the impact of EVs in the distribution network. In [27], the
authors proved that EVs can improve the management of
intermittent renewable resources such as wind farms, and
in [28] it is shown that EVs can be used to level the daily
load diagram. Wu et al. [29] claim that the charging control
in EVs is required for a well accommodation in the power
system. To handle the large number of electric vehicles,
several artificial intelligence algorithms have been proposed
[30–32] to provide the scheduling of charge and discharge
energy from EVs batteries. Another innovative perspective
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is proposed in [33] considering a hierarchical model to
coordinate the energy resource scheduling in smart grid with
electric vehicles. The integration of plug-in hybrid electric
vehicles in microgrids resource scheduling is proposed [34].

The use of multiobjective functions in the energy
resources scheduling problems is an important challenge
to improve the quality of the obtained solutions. Some
approaches are proposed considering the environment
aspects [30, 35] or to levelling the load diagram [28, 36]
in the energy resource scheduling problem. However, as is
possible to see in [26], few work was developed considering
the contribution of the distributed energy resources and
mainly the electric vehicles to the ancillary services like the
voltage stability. The inclusion of a voltage stability index
in the energy resource scheduling problem turns into a
multiobjective function, because it is a competing objective
with the operation cost. The main contributions of this work
are as follows:

(1) To propose a multiobjective model to deal with the
operation cost and voltage stability in the energy
resource scheduling problem.

(2) To use distributed energy resources, namely, dis-
tributed generation and electric vehicles, for con-
tributing to the power system voltage stability.

(3) To apply theweighted-summethodology and to adapt
the goal programmingmethodology to determine the
Pareto front of the proposed multiobjective energy
resource scheduling problem.

(4) Test the proposed multiobjective approach in a real
distribution network.

3. Energy Resource Scheduling in
Distribution Network

The energy resource scheduling is an important task in
the present and the future power systems operation. The
growing penetration of distributed generation and other
energy resources, such as the electric vehicles, increases sig-
nificantly the problem complexity [37]. The energy resource
scheduling can consider several objective functions, most of
them based on the energy costs or on the entities profits.
However, technical aspects, such as the system stability,
are becoming more important in new operation paradigm
of the future distribution networks. In this paper, it is
proposed a multiobjective energy resource scheduling for
the distributed energy resources, considering two objective
functions, namely, the operation cost and the voltage stability,
using two different methodologies. The first methodology,
called weighted-sum, is one of the most popular methods
to solve multiobjectives problems. The second implemented
approach is the modified weighted goal programming which
is also used in several real applications. These methodologies
can be used by an aggregator with the responsibility to
control different distributed resources as well as part of the
distribution network.

The goal programming approach can result in non-Pareto
optimal solutions [38], and the execution time for each

simulation should be higher due to the increased number of
constraints (one of the objective function is formulated as
constraint) [39]. On the other hand, it is possible to obtain an
approach of Pareto front with few simulations.Therefore, the
use of goal programming approach was selected considering
the characteristics of the objective functions. In fact, when
the system is operating normally, the system operators can
establish a predefined range in the operation cost objective
function, and in critical situations (operation near to bound-
aries) the system operators can define the objective function
concerning the voltage stability index.

3.1. Operation Cost Objective Function (𝐹
1
). The operation

cost function 𝐹
1
is composed by several terms concerning

different distributed energy resources use/operation costs
that are given by

min 𝐹
1
=

𝑇

∑

𝑡=1

[

𝑁DG

∑

DG=1
𝑐
𝐴(DG,𝑡)𝑋DG(DG,𝑡) + 𝑐𝐵(DG,𝑡)

⋅ 𝑃DG(DG,𝑡) + 𝑐𝐶(DG,𝑡)𝑃
2

DG(DG,𝑡)

+

𝑁SP

∑

SP=1
𝑐SP(SP,𝑡)𝑃SP(SP,𝑡)

+

𝑁EV

∑

EV=1
(𝑐Dch(EV,𝑡) + 𝑐Deg(EV))

⋅ 𝑃Dch(EV,𝑡) − 𝑐Ch(EV,𝑡)

⋅ 𝑃Ch(EV,𝑡) +

𝑁𝐿

∑

𝐿=1

𝑐NSD(𝐿,𝑡)𝑃NSD(𝐿,𝑡)

+

𝑁DG

∑

DG=1
𝑐GCP(DG,𝑡)𝑃GCP(DG,𝑡)] .

(1)

For the DG units, a quadratic function is used, which is
commonly employed for fossil fuel units [40]. In DG units
based on renewable sources (e.g., wind or solar), the linear
term (𝑐

𝐵
) of the quadratic function is the only one considered.

The cost with energy acquisition to external suppliers is also
considered (𝑃SP) that allows the balance between the DG,
EVs, and demand in the distribution network. In this formu-
lation the cost with EVs discharge (𝑐Dch(EV,𝑡)) is considered
and also the benefit to the aggregator from charging EVs
(𝑐Ch(EV,𝑡)). In addition, the battery degradation cost (𝑐Deg(EV))
is considered during the EVs discharging process [41, 42].
Finally, two penalization costs are considered. The first one,
𝑃NSD(𝐿,𝑡), penalizes the aggregator when nonsupplied demand
situations occur. The second one, 𝑃GCP(DG,𝑡), refers to “take-
or-pay” contracts violation. These contracts are considered
mainly for wind and solar units, and the penalization occurs
when generation curtailment is necessary. The penalization
terms are important to make a robust mathematical for-
mulation in order to handle with critical situations from
high consumer demands or high power generation from DG
units.
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3.2. Voltage Stability Objective Function (𝐹
2
). In the proposed

mathematical formulation, the voltage stability is achieved
considering the load index (𝐿-index) minimization. In [13]
the following expression is proposed that determines the 𝐿-
index (𝐿

𝑗
), considering bus 𝑖 as a generation bus and bus 𝑗 as

the load bus:

𝐿
𝑗
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
𝑈
𝑖

𝑈
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (2)

In [43] and most recently in [44], a new expression is
proposed to determine the 𝐿-index using measurements of
voltage phasors at the bus and is defined as

𝐿
𝑗
=

4 [𝑉
𝑖
𝑉
𝑗
cos (𝜃

𝑖
− 𝜃
𝑗
) − 𝑉
2

𝑗
cos2 (𝜃

𝑖
− 𝜃
𝑗
)]

𝑉
2

𝑖

. (3)

The 𝐿-index value is between 0 and 1, and the optimal
value is close to 0. If the maximum 𝐿-index in the system is
less than 1, the system is stable in terms of voltage level. The
system is unstable if the 𝐿-index value is above 1 [13]. From
the optimization point of view, the goal is to minimize the
maximum value of 𝐿-index in all buses. Basically, the 𝐿-index
minimization involves taking into account the bus far from
the stressed condition boundaries.

The evaluation of 𝐿-index implies the use of expression
(3) in all consumption buses. However, in the future distribu-
tion networks there will be generation connected in several
buses, changing the consumption buses to the generation
buses in someperiods of the day depending on the distributed
energy resources installed and on the generation and load
forecast in each one. Therefore, all buses are compared
with the bus connected to the high voltage level in order
to determine the 𝐿-index, where the minimization of the
function 𝐹

2
, which is the maximum 𝐿-index in each period

𝑡, is formulated:
min 𝐹

2
= max (𝐿 index

(bus,𝑡)) . (4)
Function 𝐹

2
is a nonconvex function, which requires

more time to find the optimal solution.The epigraph variable
𝐹Aux is used to turn the 𝐹

2
function into a convex one:

min 𝐹
2
= 𝐹Aux(𝑡)

subjected to: 𝐹Aux(𝑡) ≥ (𝐿 index
(bus,𝑡)) ,

(5)

where the epigraph variable 𝐹Aux removes the nonconvexity
of function 𝐹

2
(the maximum 𝐿-index) turning the optimiza-

tion problem simpler to be solved. The use of the epigraph
variables is detailed, explained, and illustrated in [45], turning
a nonlinear optimization problem into a linear optimization
problem.

3.3. Multiobjective Function: Weighted-Sum Approach (𝐹
𝑊
).

The weighted-sum method [46] transforms the multiobjec-
tive function 𝐹 into a single one by summing all functions
(𝐹
1
and 𝐹

2
), where each function is multiplied by a different

weight (𝛽 and 𝛿), as it is formulated:
min 𝐹 = 𝛽𝐹

1
+ 𝛿𝐹
2
SF

𝛽 + 𝛿 = 1,

(6)

where the weight factors are between 0 and 1 for giving more
or less relevance to each objective function. Additionally,
the sum of the two weight factors must be equal to 1. To
uniform the objective functions the voltage stability price
factor (SF) is included.The voltage stability can be quantified
as a price signal meaning that themultiobjective function can
be treated as a single objective function to optimize the cost.
In the present paper, the value of SF is equal to the energy cost
of the most expensive distributed resource, as given by

SF = max (𝑐Res Sche) , (7)

where the 𝑐Res Sche contains the prices of all resources
scheduled (DG, external suppliers, and EVs) solving the
optimization problem with just the operation cost function
𝐹
1
. For the DG units that use a quadratic function, it is

considered an average price determined by themultiplication
of the DG maximum generation power and the coefficients
of the quadratic function and then divided by the same
maximum generation power. Typically, the price selected
will be the most expensive resource scheduled in the peak
periods, because in those periods it has the highest consump-
tion power. However different expression can be also used
depending on the aggregator’s strategies and on the normal
network operation conditions. The weighted-sum method is
the most traditional and popular method that parametrically
changes the weights among objective functions to obtain the
Pareto front [47].

3.4. Multiobjective Function: Goal Programming Considering
the Utopia Point Approach (𝐹

𝐺
). The goal programming

was firstly proposed in [48, 49] and it is used in a large
range of problems in different areas [50]. Several variations
of the original method have been proposed, such as the
reference goal programming [51], or the Archimedean goal
programming (also known as weighted goal programming)
[52].Thegoal programming consists in the definition of a goal
for the objective function, converting the original objective
function into a constraint, as it is described

min
𝑥∈𝑋,𝑑

−
,𝑑
+

𝑘

∑

𝑖=1

(𝑑
+

𝑖
+ 𝑑
−

𝑖
)

subjected to: 𝐹
𝑗
(𝑥) + 𝑑

+

𝑗
+ 𝑑
−

𝑗
= 𝑏
𝑗

𝑑
+

𝑗
, 𝑑
−

𝑗
≥ 0,

𝑗 = 1, 2, . . . , 𝑘.

(8)

In order to copewith variations in the initial goal, positive
(𝑑
+

𝑖
) and negative (𝑑−

𝑖
) deviation variables for each objective

function should be added to the new constraint.The objective
in (8) is to minimize the positive and negative deviation
variables [39]. Additionally, a weight factor can be multiplied
in each deviation variable turning themethod into aweighted
goal programming. The Pareto front can be also obtained by
this method through changing the weights of the positive and
negative deviation in each simulation [39, 53].

The proposed methodology is based on the goal pro-
gramming method with additional changes in order to
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Figure 1: Flowchart of the proposed goal programming methodology.

adapt this approach to the envisaged problem. The proposed
methodology uses some principles of the normal-boundary
intersection proposed in [54]. The main idea is to establish
only one objective function as constraint, trying to optimize
the other objective function.Themain advantage is the ability
to execute simulations only in the predefined ranges for each
parameter. Figure 1 presents the flowchart of the proposed
goal programming methodology.

In the first step, the optimal solution for each objective
function is determined using the expressions (1) and (5),
respectively. The utopia point (Up) is determined using
the obtained individual points (𝐹

1𝑝
) and (𝐹

2𝑝
). The utopia

point, also known as ideal point, can be described as the
point with the best result for both objective functions of
the multiobjective optimization problem [55]. Considering
the utopia point (Up) and the results obtained in the single
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objective functions, the users can reduce function limits in
order to guarantee more adequate solution that results in the
points 𝐹

1𝑛
and 𝐹

2𝑛
. These values can also be determined by

functions according to the operation contexts.
Afterwards, the fixed values for functions 𝐹

1
and 𝐹

2
are

obtained using functions steps (𝐹
1 step) and (𝐹

2 step) that are
calculated as

𝐹
1 step =

(𝐹
1𝑛
− Up)

num steps
, (9)

𝐹
2 step =

(𝐹
2𝑛
− Up)

num steps
, (10)

where num steps is the total number of steps that is defined
by the users and they can be different for each objective
function. In this paper, a total number of 19 steps are
considered for each objective function.

Finally, the fixed values for each objective function are
used to determine new solutions (𝐹

𝑔1
) and (𝐹

𝑔2
):

𝐹
𝑔1
= min (𝐹

1
+ 10𝐹

2𝑑
+ + 0.1𝐹

2𝑑
−) , (11)

𝐹
𝑔2
= min (𝐹

2
+ 10𝐹

1𝑑
+ + 0.1𝐹

1𝑑
−) . (12)

In (11) the objective is to minimize the function 𝐹
1

obtained with (1) plus the positive (𝐹
2𝑑
+) and negative (𝐹

2𝑑
−)

deviations in objective function 𝐹
2
. The negative deviation is

multiplied by 0.1 which means an incentive to the 𝐿-index
reduction.The positive deviation is multiplied by 10 to penal-
ize the increase of the 𝐿-index, because the positive deviation
is only used to guarantee the problem feasibility. Additionally,
it is necessary to transform the objective function 𝐹

2
(5) into

a constraint:

𝐹
2
= 𝐹Aux + 𝐹2𝑑+ − 𝐹2𝑑− , 𝐹

2𝑑
+ , 𝐹
2𝑑
− ≥ 0. (13)

The same approach is used to obtain a new solution (𝐹
𝑔2
)

optimizing the objective function 𝐹
2
(12), considering the

expression (5) for function 𝐹
2
plus the positive (𝐹

1𝑑
+) and

negative (𝐹
1𝑑
−) deviations in objective function 𝐹

1
. Then, the

objective function (1) is converted into a constraint:

𝐹
1
=

𝑇

∑

𝑡=1

[

𝑁DG

∑

DG=1
𝑐
𝐴(DG,𝑡)𝑋DG(DG,𝑡) + 𝑐𝐵(DG,𝑡)𝑃DG(DG,𝑡)

+ 𝑐
𝐶(DG,𝑡)𝑃

2

DG(DG,𝑡) +

𝑁SP

∑

SP=1
𝑐SP(SP,𝑡)𝑃SP(SP,𝑡)

+

𝑁EV

∑

EV=1
(𝑐Dch(EV,𝑡) + 𝑐Deg(EV)) 𝑃Dch(EV,𝑡)

− 𝑐Ch(EV,𝑡)𝑃Ch(EV,𝑡) +

𝑁𝐿

∑

𝐿=1

𝑐NSD(𝐿,𝑡)𝑃NSD(𝐿,𝑡)

+

𝑁DG

∑

DG=1
𝑐GCP(DG,𝑡)𝑃GCP(DG,𝑡)] + 𝐹1𝑑+ − 𝐹1𝑑− ,

𝐹
1𝑑
+ , 𝐹
1𝑑
− ≥ 0.

(14)

3.5. Problem Constraints. The energy resource scheduling
should use an accurate model of the network to achieve
scheduling results that are feasible in the electric network
(avoiding lines congestion and bus voltage violations). For
this purpose, an AC power flow is included as constraint in
the energy resource scheduling problem. The active power
balance equation establishes that the active power injected in
each bus 𝑖 is equal to the active power generation minus the
active power demand in the same bus:

𝑁
𝑖

DG

∑

DG=1
(𝑃
𝑖

DG(DG,𝑡) − 𝑃
𝑖

GCP(DG,𝑡)) +

𝑁
𝑖

SP

∑

SP=1
𝑃
𝑖

SP(SP,𝑡)

+

𝑁
𝑖

EV

∑

EV=1
𝑃
𝑖

Dch(EV,𝑡) −

𝑁
𝑖

𝐿

∑

𝐿=1

(𝑃
𝑖

Load(𝐿,𝑡) − 𝑃
𝑖

NSD(𝐿,𝑡))

−

𝑁
𝑖

EV

∑

EV=1
𝑃
𝑖

Ch(EV,𝑡)

= 𝐺
𝑖𝑖
𝑉
2

𝑖(𝑡)

+ 𝑉
𝑖(𝑡)
∑

𝑗∈𝑇𝐿
𝑖

𝑉
𝑗(𝑡)
(𝐺
𝑖𝑗
cos 𝜃
𝑖𝑗(𝑡)

+ 𝐵
𝑖𝑗
sin 𝜃
𝑖𝑗(𝑡)
) .

(15)

The active power injected in bus 𝑖 is defined as the sum
of all power flow through the lines that connect to this bus;
the power generation is the sum of the power generation
fromDG and external suppliers and EVs discharge; the active
power demand is equal to the sum of the EVs charge plus
the forecast consumers demand in each bus less than the
nonsupplied energy. A more detailed loads model should be
used for dynamic evaluation of voltage stability. However,
in the scheduling process, the use of forecast values allows
determining the impact of the power demand in the voltage
stability indexes [5–9].

In addition, the reactive power injected in bus 𝑖 is also
equal to the reactive power generationminus the active power
demand:

𝑁
𝑖

DG

∑

DG=1
𝑄
𝑖

DG(DG,𝑡) +

𝑁
𝑖

SP

∑

SP=1
𝑄
𝑖

SP(SP,𝑡)

−

𝑁
𝑖

𝐿

∑

𝐿=1

(𝑄
𝑖

Load(𝐿,𝑡) − 𝑄
𝑖

NSD(𝐿,𝑡))

= 𝑉
𝑖(𝑡)
∑

𝑗∈𝑇𝐿
𝑖

𝑉
𝑗(𝑡)
(𝐺
𝑖𝑗
sin 𝜃
𝑖𝑗(𝑡)

− 𝐵
𝑖𝑗
cos 𝜃
𝑖𝑗(𝑡)
)

− 𝐵
𝑖𝑖
𝑉
2

𝑖(𝑡)
,

∀𝑡 ∈ {1, . . . , 𝑇} ; ∀𝑖 ∈ {1, . . . , 𝑁Bus} ; 𝜃𝑖𝑗(𝑡) = 𝜃𝑖(𝑡) − 𝜃𝑗(𝑡),

(16)

where 𝜃
𝑖𝑗(𝑡)

is the voltage angle difference between bus 𝑖 and
𝑗. 𝑇𝐿𝑖 contains the set of all lines that are connected to the
bus 𝑖. 𝐺

𝑖𝑗
and 𝐵

𝑖𝑗
represent the real and imaginary part of the

admittance matrix corresponding to the 𝑖 row and 𝑗 column,
respectively.
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For the AC power flow model, it is also to establish the
maximum and minimum limits for the voltage magnitude
and angle, respectively:

𝑉
𝑖

Min ≤ 𝑉𝑖(𝑡) ≤ 𝑉
𝑖

Max; ∀𝑡 ∈ {1, . . . , 𝑇} ,

𝜃
𝑖

Min ≤ 𝜃𝑖(𝑡) ≤ 𝜃
𝑖

Max; ∀𝑡 ∈ {1, . . . , 𝑇} .

(17)

Before solving the energy resource scheduling problem, a
slack bus is necessarily selected in the distribution network.
For this slack bus, a fixed value for the voltage magnitude and
angle is specified.

Finally, the line thermal limit (upper limit) is established
for the power flow from bus 𝑖 to bus 𝑗 and vice versa, as is
defined:

󵄨󵄨󵄨󵄨󵄨󵄨
𝑉
𝑖(𝑡)
[𝑦
𝑖𝑗
𝑉
𝑖𝑗(𝑡)

+ 𝑦sh 𝑖𝑉𝑖(𝑡)]
∗󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑆

Max
𝑇𝐿
, 𝑖 to 𝑗,

󵄨󵄨󵄨󵄨󵄨󵄨
𝑉
𝑗(𝑡)
[𝑦
𝑖𝑗
𝑉
𝑗𝑖(𝑡)

+ 𝑦sh 𝑗𝑉𝑗(𝑡)]
∗󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑆

Max
𝑇𝐿
, 𝑗 to 𝑖,

∀𝑡 ∈ {1, . . . , 𝑇} ; ∀𝑖, 𝑗 ∈ {1, . . . , 𝑁Bus} ; ∀𝑇𝐿 ∈ {1, . . . , 𝑁𝑇𝐿} , 𝑖 ̸= 𝑗; 𝑉
𝑖𝑗(𝑡)

= 𝑉
𝑖(𝑡)
− 𝑉
𝑗(𝑡)
.

(18)

The distribution network can be connected to upstream
networks by transformers that change the voltage level from
high voltage (HV) to medium voltage (MV). These HV/MV
transformers have an upper limit (maximum capacity):

√(

𝑁
𝑖

SP

∑

SP=1
𝑃
𝑖

SP(SP,𝑡))

2

+ (

𝑁
𝑖

SP

∑

SP=1
𝑄
𝑖

SP(SP,𝑡))

2

≤ 𝑆
Max
TFR HV MV(𝑖),

∀𝑡 ∈ {1, . . . , 𝑇} ; ∀𝑖 ∈ {1, . . . , 𝑁Bus} .

(19)

Similarly, the buses in the distribution network can have
transformers from MV to low voltage (LV) connecting small
distributed energy resources, such as photovoltaic units and
EVs, to the MV side of bus 𝑖:

√𝑃
2

TFR MV LV(𝑖,𝑡) + 𝑄
2

TFR MV LV(𝑖,𝑡) ≤ 𝑆
Max
TFR MV LV(𝑖),

∀𝑡 ∈ {1, . . . , 𝑇} ; ∀𝑖 ∈ {1, . . . , 𝑁Bus} .

(20)

The 𝑃TFR MV LV and 𝑄TFR MV LV are determined by

𝑃TFR MV LV(𝑖,𝑡) =

𝑁
𝑖

DG

∑

DG=1
(𝑃
𝑖

DG(DG,𝑡) − 𝑃
𝑖

GCP(DG,𝑡))

+

𝑁
𝑖

EV

∑

EV=1
(𝑃
𝑖

Dch(EV,𝑡) − 𝑃
𝑖

Ch(EV,𝑡))

−

𝑁
𝑖

𝐿

∑

𝐿=1

(𝑃
𝑖

Load(𝐿,𝑡) − 𝑃
𝑖

NSD(𝐿,𝑡)) ,

𝑄TFR MV LV(𝑖,𝑡) =

𝑁
𝑖

DG

∑

DG=1
𝑄
𝑖

DG(DG,𝑡)

−

𝑁
𝑖

𝐿

∑

𝐿=1

(𝑄
𝑖

Load(𝐿,𝑡) − 𝑄
𝑖

NSD(𝐿,𝑡)) .

(21)

Regarding the DG units, the minimum and maximum
limits for active, reactive, and apparent power generation are
considered:

𝑃Min(DG,𝑡)𝑋DG(DG,𝑡) ≤ 𝑃DG(DG,𝑡)

≤ 𝑃Max(DG,𝑡)𝑋DG(DG,𝑡),

𝑄Min(DG,𝑡)𝑋DG(DG,𝑡) ≤ 𝑄DG(DG,𝑡)

≤ 𝑄Max(DG,𝑡)𝑋DG(DG,𝑡),

√(𝑃DG(DG,𝑡))
2

+ (𝑄DG(DG,𝑡))
2

≤ 𝑆Max(DG,𝑡),

∀𝑡 ∈ {1, . . . , 𝑇} ; ∀DG ∈ {1, . . . , 𝑁DG} ,

(22)

where 𝑋DG(DG,𝑡) is used to control if the DG unit will be
turned on or off considering the optimized solution.

Regarding DG units with “take-or-pay” contracts with
the system operator, mainly renewable sources, the system
operator is mandatory to dispatch all the forecasted power
that is given by

𝑃DG(DG,𝑡) + 𝑃GCP(DG,𝑡) = 𝑃DGForecast(DG,𝑡),

∀𝑡 ∈ {1, . . . , 𝑇} ; ∀DG ∈ {1, . . . , 𝑁DG} .
(23)

In the case of external supplier, a maximum limit for the
active and reactive generation, respectively, is defined as

𝑃SP(SP,𝑡) ≤ 𝑃Max(SP,𝑡)

𝑄SP(SP,𝑡) ≤ 𝑄Max(SP,𝑡),

∀𝑡 ∈ {1, . . . , 𝑇} ; ∀SP ∈ {1, . . . , 𝑁SP} .

(24)
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Regarding EVs, the amount of energy stored at the end
of period 𝑡 is determined:

𝐸Stored(EV,𝑡) = 𝐸Stored(EV,𝑡−1) − 𝐸Trip(EV,𝑡) + 𝜂𝑐(EV)𝑃Ch(EV,𝑡) −
1

𝜂
𝑑(EV)

𝑃Dch(EV,𝑡),

∀𝑡 ∈ {1, . . . , 𝑇} ; ∀EV ∈ {1, . . . , 𝑁EV} ; Δ𝑡 = 1, 𝑡 = 1 󳨀→ 𝐸Stored(EV,𝑡−1) = 𝐸Initial(EV),

(25)

where 𝐸Trip(EV,𝑡) corresponds to the typical daily travel profile
for reducing the energy stored in the battery when the
EV is in travel. Thus, the system operator must ensure
the energy required for the EV user to travel in the time
horizon of the energy resource scheduling problem. A trip
forecast can be considered in the 𝐸Trip(EV,𝑡) according to the
history consumption profile for each EV [56]. The charge
and discharge efficiency(𝜂

𝑐(EV) and 𝜂𝑑(EV)) are included in
the batteries balance equation (25).

The energy resource scheduling problem also considers
the maximum and minimum energy stored in the EVs
batteries:

𝐸BatMin(EV,𝑡) ≤ 𝐸Stored(EV,𝑡) ≤ 𝐸BatMax(EV,𝑡),

∀𝑡 ∈ {1, . . . , 𝑇} ; ∀EV ∈ {1, . . . , 𝑁EV} ,
(26)

where 𝐸BatMax(EV,𝑡) is related to the battery’s capacity and
𝐸BatMin(EV,𝑡) corresponds to the minimum amount of energy
stored in the battery and in which period that energy must

be guaranteed. EV users and system operator must use an
adequate communication system to exchange information
about several parameters, such as the 𝐸BatMin(EV,𝑡) [57].

The charge/discharge rates have their own upper limits
that are formulated as

𝑃Ch(EV,𝑡) ≤ 𝑃Max(EV,𝑡)𝑋Ch(EV,𝑡),

𝑃Dch(EV,𝑡) ≤ 𝑃Max(EV,𝑡)𝑋Dch(EV,𝑡),

∀𝑡 ∈ {1, . . . , 𝑇} ; ∀EV ∈ {1, . . . , 𝑁EV} ,

(27)

where the maximum charge/discharge limits depend on the
connection points (normal charge or fast charge points). For
instance, EVs can be connected in a single phase (e.g., at
home); therefore the charge/discharge limit is lower than
when EVs are connected in three-phasemode (e.g., a parking
lot at the work).

Finally, the sum of the two binary variables for charge and
discharge must be lower or equal to 1 to avoid a simultaneous
charge and discharge in the same period 𝑡:

𝑋Ch(EV,𝑡) + 𝑋Dch(EV,𝑡) ≤ 1, ∀𝑡 ∈ {1, . . . , 𝑇} ; ∀EV ∈ {1, . . . , 𝑁EV} , 𝑋Ch(EV,𝑡), 𝑋Dch(EV,𝑡) ∈ {0, 1} . (28)

The on-load tap changer (OLTC) in the HV/MV power
transformer ismodeled (29) considering different steps (STP)
and a correspondent binary variable (𝑋TFR(STP,𝑡)) for each
one. Equation (30) assures that only one step is used and the
power voltage in the power transformer (𝑉

0(𝑡)
) is defined in

(31). Consider the following:

Δ𝑉TFR(𝑡) = 𝑉
STP
TFR(𝑡)𝑋TFR(STP,𝑡), (29)

𝑁STP

∑

STP=1
𝑋TFR(STP,𝑡) = 1, (30)

𝑉
𝑖(𝑡)
= 𝑉

Base
𝑖(𝑡)

+

𝑁STP

∑

STP=1
Δ𝑉
𝑖

TFR(STP,𝑡);

∀𝑡 ∈ {1, . . . , 𝑇} ; ∀𝑖 ∈ {1, . . . , 𝑁Bus} .

(31)

3.6. Software and Solvers Used. Both methodologies have
been implemented inMATLAB software interconnectedwith
the general algebraic modeling system (GAMS) [58]. MAT-
LAB is used to process all the data regarding the resources
characteristics and contracts and afterwards to organize all

the results. GAMS is used to run the optimization algorithms.
GAMS offers a large set of solvers in the same platform. The
proposed energy resource scheduling is classified as a mixed-
integer nonlinear programming (MINLP) problem.

In GAMS software, the DICOPT solver was used [59],
because it solves the MINLP problems by splitting them into
mixed-integer programming (MIP) and nonlinear program-
ming (NLP) subproblems. The coordination between these
two subproblems is important to obtain the optimal solution
of a MINLP problem, and DICOPT coordinates MIP and
NLP solutions through “Outer approximation,” “Equality
relaxation,” and “augmented penalty.” These coordination
mechanisms will create and handle relaxed problems to
be solved by the MIP and NLP solvers, afterwards the
obtained solutions are penalized, then the relaxed problems
are decreased until the stopping criteria of DICOPT is
reached.

The two solvers used to solve the two subproblems are
CPLEX for the MIP subproblems and the CONOPT for the
NLP subproblems. DICOPT uses an iterative process that
stops when the MIP and NLP subproblems return solutions
with a difference less than a predefined error that has been
fixed at 0.01%. The local optima solutions are the main
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Table 1: Distributed energy resources information.

Resource Units # Total installed power (kW) Price scheme (m.u./kWh)
Max. Mean Min.

PV 32 1320 0.254 0.187 0.110
Wind 5 505 0.136 0.091 0.060
Small hydro 2 80 0.145 0.117 0.089
CHP 15 725 0.105 0.075 0.057
Biomass 3 350 0.226 0.201 0.186
WTE 1 10 0.056 0.056 0.056
Fuel cell 8 440 0.200 0.055 0.010
Total DG 66 3430 — — —
External suppliers 10 2900 0.150 0.105 0.060
EVs charge 2000 — 0
EVs discharge 0.040

Table 2: Electric vehicle technical information [61–67].

EV model Battery Charge rate (kW) Discharge rate (kW)
Capacity (kWh) Range (km) Slow Fast

MiEV 16.0 160 3 50 3
C-Zero 16.0 150 2.2 27.5 2.2
Fluence Z.E. 22.0 185 3 43 3
Leaf 24.0 160 6.6 50 6.6
Kangoo Z.E. 22.0 170 3 43 3
Zoe 22.0 150 3 43 3
Prius 4.4 20 3 — 3

obstacle to overcome by DICOPT due to the nonconvexities
that characterize a MINLP problem. Therefore, the solver
does not guarantee the global optimum even incorporating
algorithms to handle this kind of obstacle.

4. Case Study

The present section shows the main results of the proposed
methodologies and it is divided into five subsections. Sec-
tion 4.1 presents the information and input data used in the
first case study of this paper. Section 4.2 is related to the
Pareto front results of the two proposed methodologies to
solve themultiobjective energy resource scheduling problem.
Section 4.3 presents an evaluation concerning the voltage
stability margin of different Pareto front solutions deter-
mined by the adapted goal programming methodology. In
Section 4.4 the behaviour of the adapted goal programming
methodology in different operation scenarios is evaluated,
such as voltage angle variation, voltage magnitude variation,
and load consumption variation. Section 4.5 presents the
Pareto front results of the proposed weighted-sum method-
ology for a real scenario.

4.1. 33-Bus Distribution Network Description. In the first
case study, a 33-bus distribution network in [60] is used.
The network supplies 218 consumers, including domestic,

commercial, and industrial consumers. The network has 66
DG units spread over the buses: 32 photovoltaic (PV), 15
combined heat and power (CHP), 8 fuel cell, 5 wind, 3
biomass, 2 small hydro, and 1 waste-to-energy (WTE) unit.
The network is connected to aHVupstreamnetwork through
bus 0.The distribution system operator or the aggregator can
negotiate energy with external suppliers in bilateral negotia-
tions and/or electricity markets. The negotiated energy flows
to distribution network through bus 0. Figure 2 shows the
33-bus distribution network. In Table 1, the power capacity
and the energy cost of each generation technology, of external
suppliers and of EVs, are presented.

Regarding the EVs, the management of 2000 EVs is
considered that can come and go from the network. Table 2
presents the seven EVsmodels that are used in this case study
[61–67]. A simulation tool [56] is used to generate the daily
traveling profiles for the 2000 EVs. This simulator obtains
the bus location that each EV will have to connect in the
distribution network. In terms of the batteries’ degradation
cost, a cost of 0.03m.u./kWh considering the work proposed
in [41, 42] has been defined. In addition, the EVs discharge
cost was established at 0.04m.u./kWh. This value is based
on the profits of the EV’s owner; however, an extra incentive
established in the contracts should be considered to stimulate
the participation in these events.
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Figure 2: 33-bus distribution network configuration in 2040 [60].

4.2. 33-Bus Distribution Network Results. Considering the
described scenario, two proposed methodologies were per-
formed, namely, the weighted-sum and the adapted goal
programming methodologies. In the weighted-summethod-
ology, 500 runs have beenmade and in each run the weighted
factors changed from 0 to 1 in steps of 0.002 (considering that
in each run the sum of the two weights must be equal to 1).
For the adapted goal programming methodology 40 points
were tested. The simulations were performed on a computer
with two processors Intel� Xeon� E5645 2.40GHz, each one
with two cores, 24GB of random-access-memory.

Figure 3 shows the Pareto front obtained by the weighted-
sum methodology.

The weighted-sum method has been able to find 360
nondominated solutions, most of themwith very close values
in both objective functions. Considering these results, it is
possible to conclude that 500 weights is an excessive number
that influences the execution time of this methodology. The
operation cost changed between 6933 and 9054m.u, and
the 𝐿-index changed between 0.0305 and 0.1613. In Figure 4
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Figure 3: Pareto front for weighted-sum method considering 500
different weights.

the Pareto front comparison between the two implemented
methodologies is presented.
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Considering the excessive number of weights tested in
the first simulation (Figure 3), 40 weights were tested for the
weighted-sum method. Using the same number of simula-
tions in both methods allows getting a better comparison.
As shown in Figure 4, the curves are overlapped and it is
very hard to see differences between the two methodologies.
The overlapping of Pareto front curves allows to conclude
that both proposed methodologies are suitable to solve
the multiobjective energy resource scheduling considering
the operation cost and the voltage stability. In the goal
programming methodology, the reduction of the solutions
ranges (𝐹

1𝑝
= 𝐹
1𝑛

and 𝐹
2𝑝

= 𝐹
2𝑛
) was not considered.

However, in a real application it is possible to reduce the range
of the operation costs, due to the low variation presented by
𝐿-index. In this paper, the normalized distance to the utopia
point was used. The normalized distance of each obtained
solution to the utopia point is presented in Figure 5.

The Pareto front gives useful multiple choices to the
decisionmaker (i.e., distribution system operator or resource
aggregator). However, the decision maker must choose the
“best” nondominated solution that satisfies its requirements.
The choice should be made according to a specific strategy
depending of each decision maker. Some methods have been
proposed to select the best choice of the Pareto front [68]. In
this method, the “best” solution corresponds to an operation
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Figure 6: Operation cost in each period.
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Figure 7: 𝐿-index in each period.

cost of 7236m.u. and to an 𝐿-index of 0.0642, as is shown by
Figure 5. In Figures 6 and 7 the comparisons of the operation
cost and the 𝐿-index for the “best” solution and for the
solutions considering each objective function are presented.

Regarding to the operation cost, a high variation occurs
in successive periods when the minimization of the 𝐿-index
objective function is only considered.However, the 𝐿-index is
constant throughout the daywith a very small value of 0.0305.
The 𝐿-index value, represented in Figure 7, corresponds to
the maximum value in each hour, and it can be obtained
in different buses in each period. Results of the “best”
solution also present a constant behaviour of 𝐿-index, and
the operation cost is according to the expected values for this
parameter.

Looking more carefully at Figure 6, it is possible to see
that in some periods the operation cost obtained in the “best”
solution is higher than the cost obtained by the optimal solu-
tion in the minimization of 𝐿-index. This happens because
the optimization process considers the 24 periods and not
an optimization for each period. In fact, one of the most
difficult aspects in the optimization is to schedule the charge
and discharge periods of EVs. For instance, the operation
cost in period 16 is higher in the “best” solution than in
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Figure 9: Energy resource scheduling considering the “best” solu-
tion.

the optimal solution for the individual 𝐿-index optimization
due to the higher amount of scheduled EVs charging in the
“best” solution, which increase the energy stored in the EVs
batteries. This energy will be used in the remaining periods
avoiding the use of more expensive resources. The voltage
magnitude in each bus is presented in Figure 8.

As expected, the use of 𝐿-index function results in a
more stable voltage profile in each bus. Figure 9 presents the
energy resource scheduling by each technology for the “best”
solution.

Figure 9 shows the high impact of the PV generation
during the hourswith a high solar radiation (aroundmidday).
Another important aspect is the use of electric vehicles
discharge at the end of the day (i.e., peak periods). The use
of EVs discharge in these peak periods can be restricted
by the use of these vehicles, because approximately 96% of
the time cars are parked, and in only 4% of the time cars
are used for transportation [69]. In the peak periods, many
vehicles are traveling. However, many of them are parked
with the possibility of being connected in the electric network
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Figure 10: Electric vehicles charge and discharge considering the
“best” solution.

and then discharging the batteries energy if necessary. In
the present simulation, most of the EVs have trips between
periods 18 to 22, with an average time of one hour.Thismeans
there are lots of vehicles connected to the network in each
period. Furthermore, most of the EVs have high amounts
of energy storage in their batteries, due to the previous
scheduling, allowing the use of EVs discharge when EVs are
connected to the network. Figure 10 shows the EVs charge
and discharge and energy stored in the battery for the “best”
solution.

In Figure 10 one can see that EVs charge their battery
during the night (i.e., off-peak periods), but also in hours
with high PV generation, because this case study considered
that PV has “take-or-pay” contracts, so the aggregator or
distribution system operator must fully dispatch the energy
generated by PV. Another important aspect is the use of
charge and discharge processes in the same periods. In fact,
each EV only charges or discharges in each period. However,
the optimization schedules the charge of some EVs and the
discharge of other EVs in order to guarantee lower 𝐿-index
values. This means that EVs can be used as a resource to
improve the voltage stabilitymargin in the future distribution
networks. Some detailed information concerning the perfor-
mance and execution time of the proposed methodologies is
shown in Table 3.

The high number of variables, including the discrete ones,
leads to a very complex problem with high execution time.
The execution time for one run (a simulation with specific
weights) is, in average, of around 25 minutes. However, the
execution time of a simulation can change between 13 and
58 minutes. The total execution time is higher than 27 hours
for the weighted-sum method with 500 different weights (or
simulations). When 40 different weights are used, the time
becomes more acceptable to a little bit more than 2 hours.
These execution times are only possible due to the use of
parallel processing (8 cores in this case). In the adapted
goal programming method, the time is higher (3.3 hours),
because it is necessary to determine the results for each
objective function regardless of defining the simulation steps
and continuing with the rest of the method’s process (see
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Table 3: Performance and execution time.

Performance indicators Weighted-sum method Proposed goal programming
500 weights 40 weights

Average execution time for one run (in minutes) 24.1867 23.4567 26.1942
Total simulation time (in hours) 27.7693 2.2725 3.2931
Memory used for one run Around 60MB
Number of variables 36,796
Number of discrete variables 11,424

Table 4: Voltage stability margin in period 21.

Pareto front point 𝜆

Minimum 𝐹
1

1.297
Minimum 𝐹

2
2.115

“Best” solution 2.107

Figure 1). In this case, the parallel processing only can be
used after determining the simulation steps and fixed values.
The memory space is not a critical aspect in the optimization
process when a single simulation is considered. However, it
can be a constraint when the parallel processing is used.

4.3. Voltage StabilityMargin. To determine the voltage stabil-
itymargin, it is necessary to use the optimization formulation
given in [19, 21]:

max 𝜆
𝑡

subjected to: 𝑃load = 𝜆𝑡𝑃load󸀠(𝐿,𝑡);

𝑄load = 𝜆𝑡𝑄load󸀠(𝐿,𝑡);

∀𝑡 ∈ {1, . . . , 𝑇} ;

∀𝐿 ∈ {1, . . . , 𝑁
𝐿
} .

(32)

The maximum loadability will be given by the load
increment parameter 𝜆

𝑡
for each hour, and it is a parameter of

interest for assessing voltage stability [19], and as described in
(32) the loads are considered with a constant powermodel for
the calculations. In (32), the limits in the generators capacity
and the network power balance equations are included as
problem constraints; these are presented in (15), (16), and (22)
to (24).The calculation of 𝜆was performed for hour 21, which
is the peak hour and the hourwith higher differences between
the solutions with different objective functions.

Three scenarios were studied considering the use of single
objective functions (operation cost and 𝐿-index optimiza-
tion) and the “best” solution for the multiobjective function.
Table 4 shows the obtained solutions in period 21.

These results show that the proposed multiobjective
energy resource scheduling methodology allows increasing
the voltage stability margin effectively, and thus including the
𝐿-index helps improving the solution when compared to the
scheduling obtained only with theminimumoperational cost
(minimum 𝐹

1
).

Distribution network

Slack
generator

Bus 0

System
slack bus slack bus

“Virtual”

ZTH

Figure 11: Transmission system equivalent.

4.4. Sensitivity Analysis. In order to evaluate the proposed
methodology behaviour in different operation scenarios,
three different sensitivities analyses are performed. One of
the key points of these analyses is the assumption that dis-
tribution network is connected to the transmission network.
The transmission network can be represented by itsThevenin
equivalent that is shown in Figure 11, in which 33-buss
distribution network HV/MV connects to the transmission
network from bus 0.

In the distribution network scheduling process, the slack
bus is represented by the connection to the transmission
network. However, this connection can be seen as a “virtual”
slack bus due to the existence of a system slack bus. In prac-
tice, the “virtual” will impose the operation conditions of dis-
tribution network but depends on the Thevenin impedance
of all system. Taking this aspect into account, the “virtual”
slack bus can have different values of voltage magnitude and
voltage angle according to the system operation scenario.

The analyses consist in the variation of the different
parameters. In the first one (Figures 12 and 13), the “virtual”
slack bus voltage angle is changed. In the second analysis, the
“virtual” slack bus voltage magnitude is changed (Figures 14
and 15). In the third analysis, the consumers power demand
is changed (Figures 16 and 17).

To perform these analyses some assumptions are consid-
ered:

(i) The 𝐿-index is computed considering the power
system slack bus as reference.

(ii) The generation capacity has been increased two times.

(iii) The load consumption has been increased two times
in analyses 1 and 2.
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Figure 13: Operation cost sensitivity considering the “virtual” slack
bus voltage angle variation.

(iv) The “virtual” slack bus voltage and angle in analysis 2
is of 50∘.

(v) The lines thermal limits are increased to avoid viola-
tions.

By analysing Figures 12–17, it is possible to conclude that,
in general, theminimization of the𝐿-index objective function
provides better results concerning the 𝐿-index value, and
the minimization of the operation cost function provides
better results in terms of operation cost. This is a logical
and expected conclusion. Most interesting is the analysis
of the “best” solution results. In fact, the results obtained
using the multiobjective function give a solution for 𝐿-index
nearby the 𝐿-index objective function and solutions nearby
the operation cost objective function in terms of operation
cost.

In Figures 12 and 13, it is possible to see that the 𝐿-index
increases with the voltage angle increasing, and the differ-
ences between the objective functions decrease. However,
the use of the operation cost objective function (𝐹

1
) results

in 𝐿-index values higher than 1 for voltage angles higher
than 55∘, whereas the use of 𝐿-index objective function (𝐹

2
),

or the “best” solution objective function, keeps the values
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Figure 15: Operation cost sensitivity considering the “virtual” slack
bus voltage magnitude variation.

of 𝐿-index below 1. It is important to mention that in real
operation, values of 𝐿-index higher than 1 are not possible
because the system would collapse. However, in the present
analysis considering the day-ahead horizon this type of values
can be obtained mainly because the operation conditions are
significantly increased to analyse their limits.

Figure 13 shows that the operation cost is more or less
constant in the simulations. This means that the operation
cost is independent from the voltage angle.

Regarding the voltage magnitude analysis, from Figures
14 and 15, it is possible to see that the 𝐿-index is higher
than 1 in three situations when the objective function 1 is
used. In fact, the evolution is not constant. This happens
because the objective function only considers the costs, and,
in some cases, it can schedule resources at the same price,
yet with different impact on the 𝐿-index, as in this case.
When the 𝐿-index is included in the objective function, the
values obtained for the 𝐿-index have a constant evolution
remaining below the limit. As in the voltage angle evaluation,
the operation costs are more or less constant.

Analysing Figures 16 and 17, regarding the load sensitivity,
it is possible to see that the use of objective function 2 limits
the impact of the load increase in the 𝐿-index. In this case,
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Figure 17: Operation cost sensitivity considering the total load
consumption variation.

the electric vehicles charge and discharge are scheduled in
different periods trying to minimize the impact of the load
increase in 𝐿-index. When the operation costs are included
in the objective function, the 𝐿-index increases, remaining
below the limit. As expected, the cost increases with the load
increase.The load increases four times, and the cost increases
around two times. This fact can seem odd, but it can be
justified by the total system demand which is composed of
the load consumption and the electric vehicles charge. On
the other hand, the PV panels have “take-or-pay” contracts
with a price higher than the average. This means that the
load increase is supplied by the generation units or external
suppliers with a lower generation cost, reducing the impact
in the operation cost.

4.5. Real Scenario Analysis. Another important aspect to
evaluate the proposedmethodology is its application in a real
scenario. The proposed methodology assumes a higher pen-
etration of distributed generation and electric vehicles. This
represents a future vision of power systems operation. In this
way, themethodologywas tested in a real network concerning
the network characteristics, considering a scenario of DG
and EVs penetration according to [70, 71]. The considered
network (Figure 18) is a real 30 kV distribution network,

supplied by one high voltage substation (60/30 kV) with 90
MVA of maximum power capacity distributed by 6 feeders,
with a total number of 937 buses and 464 MV/LV power
transformers [72].This distribution network has already been
used for many years and it has suffered many reformulations.
It is partly composed of aluminium conductors and copper
conductors, and the distribution is made by power lines and
underground cables. The study results in 548 DG units most
of them using photovoltaic panels and 464 aggregated loads
in MV/LV power transformers.

Figure 19 shows the obtained results using the weighted-
sum method considering 200 simulations with different
weights.

The weighted-sum method found 70 nondominated
solutions. The operation cost changes between 93,131 and
94,161m.u. and the 𝐿-index between 0.01293 and 0.9512m.u.
This means that the utopia point is defined by an operation
cost of 93,131m.u and an 𝐿-index of 0.01293m.u. The “best”
solution (Figure 20) is given by the weight factor (𝛽) of 0.69
resulting in an operation cost of 93,168m.u. and an 𝐿-index
of 0.03506. Figure 21 shows the differences in the hourly
operation costs.

The cost increases 1.87% with objective function 2 and
increases only 0.04% when the “best” solution objective
function is used. Regarding 𝐿-index, the value obtained with
objective function 2 is constant during the day and equal to
0.01242. When the objective function 1 is used, the 𝐿-index
is of 0.09512 imposed in the peak hour (period 12). In the
“best” solution objective function, the 𝐿-index is 0.03506. By
analysing the differences in operation cost and in𝐿-index (see
Figure 22), it is possible to see higher differences in the 𝐿-
index than in the operation costs.Thedifferences in operation
costs are mainly due to the electric vehicles scheduling.
In fact, in some periods the EVs discharge happens to
supply the charge of other EVs (see Figure 23). However,
the charge and discharge allows reducing the power flow in
some lines of the network, reducing the differences in the
voltage magnitude and angle and consequently reducing the
𝐿-index. Furthermore, the systemuses a better reactive power
scheduling to reduce the voltage differences between buses,
reducing the 𝐿-index values. The 𝐿-index value is the same
in most of periods (9 to 21), in the case of “best” solution.
However, this value is not constant in the buses. In fact, the 𝐿-
index is imposed in each period by different buses according
to the resources scheduling.

By analysing all the presented resources, it is possible to
conclude that the proposed multiobjective energy resource
scheduling and the two proposed weighted-sum and adapted
goal programming methodologies can be successfully used
in real networks with large penetration of distributed energy
resources. The inclusion of 𝐿-index objective function in the
distribution networks can support significantly the manage-
ment of all power system.

5. Conclusions

The future power systems will be operated considering a large
range of different distributed energy resources connected in
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Figure 18: 937 bus distribution network configuration [72].
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different voltage levels. This new reality involves a better
management of the distributed energy resources in order to
improve the system stability.

A methodology to integrate the voltage stability in the
scheduling of distributed energy resources in a distribu-
tion level was presented in this paper. The proposed for-
mulation results in a multiobjective optimization problem
considering the operation costs and the voltage stability.
The voltage stability is “measured” by the load index value
(𝐿-index).

Two case studies are presented considering a 33-bus dis-
tribution network and a real Portuguese distribution network
with 937 buses. In both cases, the obtained results show the
advantage of the proposed methodologies mainly when a
combination of the two objective functions is used. By using
the “best” solution objective function, it is possible obtain a
significantly better 𝐿-index values with a short operation cost
increase.

The voltage stability margin is evaluated in a peak period
(in the 33-bus distribution network case study) consider-
ing the three objective functions, showing the effectiveness
of the method. Additionally, a sensitivity analysis is pre-
sented considering extreme cases allowing evaluating the
behaviour of the proposed method in complex operation
scenarios.
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: Load increment parameter in period 𝑡

𝜂
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: Grid-to-vehicle efficiency

𝜂
𝑑
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Figure 23: Electric vehicles charge and discharge considering the
“best” solution.

𝐵: Imaginary part in admittance matrix [S]
𝑐
𝐴
: Fixed component of cost function [m.u./h]

𝑐
𝐵
: Linear component of cost function

[m.u./kW]
𝑐
𝑐
: Quadratic component of cost function

[m.u./kW2]
𝑐: Resource cost in period 𝑡 [m.u./kW]
𝐸: Stored energy in the battery of vehicle at the

end of period 𝑡 [kWh]
𝐸Initial: Energy stored in the battery of vehicle at the

beginning of period 1 [kWh]
𝐸Trip: Energy consumption in the battery during a

trip that occurs in period 𝑡 [kWh]
𝐹: Objective function
𝐺: Real part in admittance matrix [S]
𝑁: Total number of resources
num steps: Number of steps
𝐿: Load index value in the bus
𝑆: Maximum apparent [kVA]
SF: Voltage stability price factor
𝑇: Total number of periods
𝑇𝐿: Set of lines connected to a certain bus
𝑉: Complex amplitude of voltage [V]
Up: Utopia point
𝑦: Series admittance of line that connects two

buses [S]
𝑦sh: Shunt admittance of line that connects two

buses [S].

Variables

Δ𝑉: Voltage difference
𝜃: Voltage angle
𝐹Aux: Epigraph variable to handle with the load index
𝑃: Active power [kW]
𝑄: Reactive power [kVAr]
𝑆: Apparent power [kVA]
𝑉: Voltage magnitude [V]
𝑋: Binary variable.
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Indices

1: Operation cost function
2: Load index function
Base: Base value
BatMax: Battery energy capacity
BatMin: Minimum stored energy to be guaranteed

at the end of period 𝑡
Bus: Bus
Ch: Charge process of the electric vehicle
𝑑
+: Positive deviation
𝑑
−: Negative deviation

Dch: Discharge process of the electric vehicle
DG: Distributed generation unit
DGForecast: Forecast power of distributed generation

unit in period 𝑡
EV: Electric vehicle
𝑔: Objective function solution for the goal

programming
GCP: Generation curtailment power
𝑖, 𝑗: Bus 𝑖 and bus 𝑗
𝐿, Load: Load
Max: Upper bound limit
Min: Lower bound limit
NSD: Nonsupplied demand
Res Sche: Resource scheduled
SP: External supplier
Stored: Stored energy in the battery of the vehicle
STP: Tap step
TFR: Power transformer
TFR HV MV: Transformer that connects from high

voltage to medium voltage
TFR MV LV: Transformer that connects from medium

voltage to low voltage
𝑇𝐿: Line.
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Libraria, 1906.

[18] W. Stadler,Multicriteria Optimization in Engineering and in the
Sciences, Springer US, 1988.

[19] T. Van Cutsem, “Voltage instability: phenomena, countermea-
sures, and analysis methods,” Proceedings of the IEEE, vol. 88,
no. 2, pp. 208–227, 2000.
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