313 research outputs found

    Addressing missing values in kernel-based multimodal biometric fusion using neutral point substitution

    Get PDF
    In multimodal biometric information fusion, it is common to encounter missing modalities in which matching cannot be performed. As a result, at the match score level, this implies that scores will be missing. We address the multimodal fusion problem involving missing modalities (scores) using support vector machines with the Neutral Point Substitution (NPS) method. The approach starts by processing each modality using a kernel. When a modality is missing, at the kernel level, the missing modality is substituted by one that is unbiased with regards to the classification, called a neutral point. Critically, unlike conventional missing-data substitution methods, explicit calculation of neutral points may be omitted by virtue of their implicit incorporation within the SVM training framework. Experiments based on the publicly available Biosecure DS2 multimodal (scores) data set shows that the SVM-NPS approach achieves very good generalization performance compared to the sum rule fusion, especially with severe missing modalities

    Benchmarking Quality-Dependent and Cost-Sensitive Score-Level Multimodal Biometric Fusion Algorithms

    Get PDF
    Automatically verifying the identity of a person by means of biometrics is an important application in day-to-day activities such as accessing banking services and security control in airports. To increase the system reliability, several biometric devices are often used. Such a combined system is known as a multimodal biometric system. This paper reports a benchmarking study carried out within the framework of the BioSecure DS2 (Access Control) evaluation campaign organized by the University of Surrey, involving face, fingerprint, and iris biometrics for person authentication, targeting the application of physical access control in a medium-size establishment with some 500 persons. While multimodal biometrics is a well-investigated subject, there exists no benchmark for a fusion algorithm comparison. Working towards this goal, we designed two sets of experiments: quality-dependent and cost-sensitive evaluation. The quality-dependent evaluation aims at assessing how well fusion algorithms can perform under changing quality of raw images principally due to change of devices. The cost-sensitive evaluation, on the other hand, investigates how well a fusion algorithm can perform given restricted computation and in the presence of software and hardware failures, resulting in errors such as failure-to-acquire and failure-to-match. Since multiple capturing devices are available, a fusion algorithm should be able to handle this nonideal but nevertheless realistic scenario. In both evaluations, each fusion algorithm is provided with scores from each biometric comparison subsystem as well as the quality measures of both template and query data. The response to the call of the campaign proved very encouraging, with the submission of 22 fusion systems. To the best of our knowledge, this is the first attempt to benchmark quality-based multimodal fusion algorithms

    Addressing missing values in kernel-based multimodal biometric fusion using neutral point substitution

    Get PDF
    In multimodal biometric information fusion, it is common to encounter missing modalities in which matching cannot be performed. As a result, at the match score level, this implies that scores will be missing. We address the multimodal fusion problem involving missing modalities (scores) using support vector machines with the Neutral Point Substitution (NPS) method. The approach starts by processing each modality using a kernel. When a modality is missing, at the kernel level, the missing modality is substituted by one that is unbiased with regards to the classification, called a neutral point. Critically, unlike conventional missing-data substitution methods, explicit calculation of neutral points may be omitted by virtue of their implicit incorporation within the SVM training framework. Experiments based on the publicly available Biosecure DS2 multimodal (scores) data set shows that the SVM-NPS approach achieves very good generalization performance compared to the sum rule fusion, especially with severe missing modalities

    Hybrid Data Storage Framework for the Biometrics Domain

    Get PDF
    Biometric based authentication is one of the most popular techniques adopted in large-scale identity matching systems due to its robustness in access control. In recent years, the number of enrolments has increased significantly posing serious issues towards the performance and scalability of these systems. In addition, the use of multiple modalities (such as face, iris and fingerprint) is further increasing the issues related to scalability. This research work focuses on the development of a new Hybrid Data Storage Framework (HDSF) that would improve scalability and performance of biometric authentication systems (BAS). In this framework, the scalability issue is addressed by integrating relational database and NoSQL data store, which combines the strengths of both. The proposed framework improves the performance of BAS in three areas (i) by proposing a new biographic match score based key filtering process, to identify any duplicate records in the storage (de-duplication search); (ii) by proposing a multi-modal biometric index based key filtering process for identification and de-duplication search operations; (iii) by adopting parallel biometric matching approach for identification, enrolment and verification processes. The efficacy of the proposed framework is compared with that of the traditional BAS and on several values of False Rejection Rate (FRR). Using our dataset and algorithms it is observed that when compared to traditional BAS, the HDSF is able to show an overall efficiency improvement of more than 54% for zero FRR and above 60% for FRR values between 1-3.5% during identification search operations

    Biometrics

    Get PDF
    Biometrics-Unique and Diverse Applications in Nature, Science, and Technology provides a unique sampling of the diverse ways in which biometrics is integrated into our lives and our technology. From time immemorial, we as humans have been intrigued by, perplexed by, and entertained by observing and analyzing ourselves and the natural world around us. Science and technology have evolved to a point where we can empirically record a measure of a biological or behavioral feature and use it for recognizing patterns, trends, and or discrete phenomena, such as individuals' and this is what biometrics is all about. Understanding some of the ways in which we use biometrics and for what specific purposes is what this book is all about

    A Modified Neutral Point Method for Kernel-Based Fusion of Pattern-Recognition Modalities with Incomplete Data Sets

    Get PDF
    It is commonly the case in multi-modal pattern recognition that certain modality-specific object features are missing in the training set. We address here the missing data problem for kernel-based Support Vector Machines, in which each modality is represented by the respective kernel matrix over the set of training objects, such that the omission of a modality for some object manifests itself as a blank in the modality-specific kernel matrix at the relevant position. We propose to fill the blank positions in the collection of training kernel matrices via a variant of the Neutral Point Substitution (NPS) method, where the term ”neutral point” stands for the locus of points defined by the ”neutral hyperplane” in the hypothetical linear space produced by the respective kernel. The current method crucially differs from the previously developed neutral point approach in that it is capable of treating missing data in the training set on the same basis as missing data in the test set. It is therefore of potentially much wider applicability. We evaluate the method on the Biosecure DS2 data set

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    Evaluation of Biometric Systems

    Get PDF
    International audienceBiometrics is considered as a promising solution among traditional methods based on "what we own" (such as a key) or "what we know" (such as a password). It is based on "what we are" and "how we behave". Few people know that biometrics have been used for ages for identification or signature purposes. In 1928 for example, fingerprints were used for women clerical employees of Los Angeles police department as depicted in Figure 1. Fingerprints were also already used as a signature for commercial exchanges in Babylon (-3000 before JC). Alphonse Bertillon proposed in 1879 to use anthropometric information for police investigation. Nowadays, all police forces in the world use this kind of information to resolve crimes. The first prototypes of terminals providing an automatic processing of the voice and digital fingerprints have been defined in the middle of the years 1970. Nowadays, biometric authentication systems have many applications [1]: border control, e-commerce, etc. The main benefits of this technology are to provide a better security, and to facilitate the authentication process for a user. Also, it is usually difficult to copy the biometric characteristics of an individual than most of other authentication methods such as passwords. Despite the obvious advantages of biometric systems, their proliferation was not as much as attended. The main drawback is the uncertainty of the verification result. By contrast to password checking, the verification of biometric raw data is subject to errors and represented by a similarity percentage (100% is never reached). Others drawbacks related to vulnerabilities and usability issues exist. In addition, in order to be used in an industrial context, the quality of a biometric system must be precisely quantified. We need a reliable evaluation methodology in order to put into obviousness the benefit of a new biometric system. Moreover, many questions remain: Shall we be confident in this technology? What kind of biometric modalities can be used? What are the trends in this domain? The objective of this chapter is to answer these questions, by presenting an evaluation methodology of biometric systems
    • 

    corecore