1,013 research outputs found

    CONTENT BASED RETRIEVAL OF LECTURE VIDEO REPOSITORY: LITERATURE REVIEW

    Get PDF
    Multimedia has a significant role in communicating the information and a large amount of multimedia repositories make the browsing, retrieval and delivery of video contents. For higher education, using video as a tool for learning and teaching through multimedia application is a considerable promise. Many universities adopt educational systems where the teacher lecture is video recorded and the video lecture is made available to students with minimum post-processing effort. Since each video may cover many subjects, it is critical for an e-Learning environment to have content-based video searching capabilities to meet diverse individual learning needs. The present paper reviewed 120+ core research article on the content based retrieval of the lecture video repositories hosted on cloud by government academic and research organization of India

    "You Tube and I Find" - personalizing multimedia content access

    Full text link
    Recent growth in broadband access and proliferation of small personal devices that capture images and videos has led to explosive growth of multimedia content available everywhereVfrom personal disks to the Web. While digital media capture and upload has become nearly universal with newer device technology, there is still a need for better tools and technologies to search large collections of multimedia data and to find and deliver the right content to a user according to her current needs and preferences. A renewed focus on the subjective dimension in the multimedia lifecycle, fromcreation, distribution, to delivery and consumption, is required to address this need beyond what is feasible today. Integration of the subjective aspects of the media itselfVits affective, perceptual, and physiological potential (both intended and achieved), together with those of the users themselves will allow for personalizing the content access, beyond today’s facility. This integration, transforming the traditional multimedia information retrieval (MIR) indexes to more effectively answer specific user needs, will allow a richer degree of personalization predicated on user intention and mode of interaction, relationship to the producer, content of the media, and their history and lifestyle. In this paper, we identify the challenges in achieving this integration, current approaches to interpreting content creation processes, to user modelling and profiling, and to personalized content selection, and we detail future directions. The structure of the paper is as follows: In Section I, we introduce the problem and present some definitions. In Section II, we present a review of the aspects of personalized content and current approaches for the same. Section III discusses the problem of obtaining metadata that is required for personalized media creation and present eMediate as a case study of an integrated media capture environment. Section IV presents the MAGIC system as a case study of capturing effective descriptive data and putting users first in distributed learning delivery. The aspects of modelling the user are presented as a case study in using user’s personality as a way to personalize summaries in Section V. Finally, Section VI concludes the paper with a discussion on the emerging challenges and the open problems

    A Closer Look into Recent Video-based Learning Research: A Comprehensive Review of Video Characteristics, Tools, Technologies, and Learning Effectiveness

    Full text link
    People increasingly use videos on the Web as a source for learning. To support this way of learning, researchers and developers are continuously developing tools, proposing guidelines, analyzing data, and conducting experiments. However, it is still not clear what characteristics a video should have to be an effective learning medium. In this paper, we present a comprehensive review of 257 articles on video-based learning for the period from 2016 to 2021. One of the aims of the review is to identify the video characteristics that have been explored by previous work. Based on our analysis, we suggest a taxonomy which organizes the video characteristics and contextual aspects into eight categories: (1) audio features, (2) visual features, (3) textual features, (4) instructor behavior, (5) learners activities, (6) interactive features (quizzes, etc.), (7) production style, and (8) instructional design. Also, we identify four representative research directions: (1) proposals of tools to support video-based learning, (2) studies with controlled experiments, (3) data analysis studies, and (4) proposals of design guidelines for learning videos. We find that the most explored characteristics are textual features followed by visual features, learner activities, and interactive features. Text of transcripts, video frames, and images (figures and illustrations) are most frequently used by tools that support learning through videos. The learner activity is heavily explored through log files in data analysis studies, and interactive features have been frequently scrutinized in controlled experiments. We complement our review by contrasting research findings that investigate the impact of video characteristics on the learning effectiveness, report on tasks and technologies used to develop tools that support learning, and summarize trends of design guidelines to produce learning video

    Multimedia search without visual analysis: the value of linguistic and contextual information

    Get PDF
    This paper addresses the focus of this special issue by analyzing the potential contribution of linguistic content and other non-image aspects to the processing of audiovisual data. It summarizes the various ways in which linguistic content analysis contributes to enhancing the semantic annotation of multimedia content, and, as a consequence, to improving the effectiveness of conceptual media access tools. A number of techniques are presented, including the time-alignment of textual resources, audio and speech processing, content reduction and reasoning tools, and the exploitation of surface features

    Automatic Quality Assessment of Lecture Videos Using Multimodal Features

    Get PDF
    Multimedia Retrieval, eine entwickelte Methodologie, welche aus Information Retrieval stammt, wird in der digitalisierten Gesellschaft weit verbreitet eingesetzt. Bei der Suche nach Videos im Internet, mĂŒssen diese nach ihrer Relevanz sortiert werden. Die meisten AnsĂ€tze berechnen die Relevanz jedoch nur aus grundlegenden Inhaltsinformationen. Ziel dieser Arbeit ist es, Relevanz in verschiedenen ModalitĂ€ten zu analysieren. FĂŒr den konkreten Fall von Vortragsvideos, Merkmale von folgenden ModalitĂ€ten werden von dementsprechenden Kursmaterialien extrahiert: akustische, linguistische, und visuelle ModalitĂ€t. Außerdem sind modalitĂ€tsĂŒbergreifende Merkmale insbesondere in dieser Arbeit zunĂ€chst vorgeschlagen und berechnet durch die Verarbeitung von Audio, Bilder, Transkripte und Texte. Eine Benutzerevaluation wurde durchgefĂŒhrt, um Benutzermeinungen in Bezug auf die erzeugten Merkmale zu erheben. Die Ergebnisse haben gezeigt, dass die meisten Merkmale ein Video in verschiedenen Aspekten widerspiegeln können. Die Art und Weise, wie der Lerneffekt durch diese Merkmale beeinflusst wird, wird ebenfalls berĂŒcksichtigt. FĂŒr die weitere Forschung baut diese Studie eine solide Basis fĂŒr die Extraktion der Merkmale auf. Zudem gewinnt die Arbeit ein besseres VerstĂ€ndnis zum Lernen.Mutimedia retrieval, a developed methodology based on information retrieval, is broadly used in the digitalised society. When searching videos online, they need to be sorted according to their relevance. However, most approaches calculate the relevance only from basic content information. This thesis aims to analyse the relevance in multiple modalities. For the specific case of lecture videos, features from following modalities are extracted from corresponding course materials: audio, linguistic, and visual modality. Furthermore, cross-modal features are specifically first proposed in this thesis and calculated by processing audio, images, transcripts, and texts. A user evaluation has been conducted to collect user's opinions with regards to these generated features. The results have shown that most features can reflect a video in multiple aspects. The way the learning effect is influenced by these features is considered as well. For further research, this study builds a solid base for feature extraction and gains a better understanding of learning

    Extracting Relevance and Affect Information from Physiological Text Annotation

    Get PDF
    We present physiological text annotation, which refers to the practice of associating physiological responses to text content in order to infer characteristics of the user information needs and affective responses. Text annotation is a laborious task, and implicit feedback has been studied as a way to collect annotations without requiring any explicit action from the user. Previous work has explored behavioral signals, such as clicks or dwell time to automatically infer annotations, and physiological signals have mostly been explored for image or video content. We report on two experiments in which physiological text annotation is studied first to 1) indicate perceived relevance and then to 2) indicate affective responses of the users. The first experiment tackles the user’s perception of relevance of an information item, which is fundamental towards revealing the user’s information needs. The second experiment is then aimed at revealing the user’s affective responses towards a -relevant- text document. Results show that physiological user signals are associated with relevance and affect. In particular, electrodermal activity (EDA) was found to be different when users read relevant content than when they read irrelevant content and was found to be lower when reading texts with negative emotional content than when reading texts with neutral content. Together, the experiments show that physiological text annotation can provide valuable implicit inputs for personalized systems. We discuss how our findings help design personalized systems that can annotate digital content using human physiology without the need for any explicit user interaction

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Context-based multimedia semantics modelling and representation

    Get PDF
    The evolution of the World Wide Web, increase in processing power, and more network bandwidth have contributed to the proliferation of digital multimedia data. Since multimedia data has become a critical resource in many organisations, there is an increasing need to gain efficient access to data, in order to share, extract knowledge, and ultimately use the knowledge to inform business decisions. Existing methods for multimedia semantic understanding are limited to the computable low-level features; which raises the question of how to identify and represent the high-level semantic knowledge in multimedia resources.In order to bridge the semantic gap between multimedia low-level features and high-level human perception, this thesis seeks to identify the possible contextual dimensions in multimedia resources to help in semantic understanding and organisation. This thesis investigates the use of contextual knowledge to organise and represent the semantics of multimedia data aimed at efficient and effective multimedia content-based semantic retrieval.A mixed methods research approach incorporating both Design Science Research and Formal Methods for investigation and evaluation was adopted. A critical review of current approaches for multimedia semantic retrieval was undertaken and various shortcomings identified. The objectives for a solution were defined which led to the design, development, and formalisation of a context-based model for multimedia semantic understanding and organisation. The model relies on the identification of different contextual dimensions in multimedia resources to aggregate meaning and facilitate semantic representation, knowledge sharing and reuse. A prototype system for multimedia annotation, CONMAN was built to demonstrate aspects of the model and validate the research hypothesis, H₁.Towards providing richer and clearer semantic representation of multimedia content, the original contributions of this thesis to Information Science include: (a) a novel framework and formalised model for organising and representing the semantics of heterogeneous visual data; and (b) a novel S-Space model that is aimed at visual information semantic organisation and discovery, and forms the foundations for automatic video semantic understanding
    • 

    corecore