2,751 research outputs found

    Review of Nature-Inspired Forecast Combination Techniques

    Get PDF
    Effective and efficient planning in various areas can be significantly supported by forecasting a variable like an economy growth rate or product demand numbers for a future point in time. More than one forecast for the same variable is often available, leading to the question whether one should choose one of the single models or combine several of them to obtain a forecast with improved accuracy. In the almost 40 years of research in the area of forecast combination, an impressive amount of work has been done. This paper reviews forecast combination techniques that are nonlinear and have in some way been inspired by nature

    Fuzzy modelling using a simplified rule base

    Get PDF
    Transparency and complexity are two major concerns of fuzzy rule-based systems. To improve accuracy and precision of the outputs, we need to increase the partitioning of the input space. However, this increases the number of rules exponentially, thereby increasing the complexity of the system and decreasing its transparency. The main factor behind these two issues is the conjunctive canonical form of the fuzzy rules. We present a novel method for replacing these rules with their singleton forms, and using aggregation operators to provide the mechanism for combining the crisp outputs

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Hybrid System for Ship-Aided Design Automation

    Get PDF

    A New Cognitive-Based Massive Alarm Management System in Electrical Power Administration

    Get PDF
    This paper presents a methodology that integrates several available techniques to manage the massive amount of alarm signals in electrical power dispatch control centres, as well as the contribution of each entity involved in the system. Artificial intelligence techniques that can be used in this problem are reviewed here based on the available information. The final objective is to find the root cause of avalanches of alarms (failure tree) and to reduce their number through grouping or clustering techniques so that the EEMUA 191 standards are followed. Even though other contributions in this topic have been made before, the alarm management problem continues to be practically unsolved for many applications in industry. Here, the integration is developed using the ontology of each system domains, i.e., the ontology corresponding to the alarms, controls, events, energy flow and trigger sequence. Additionally, in this methodology, a rule based expert system is used to treat the alarms with a neural net based approach to treat the historical database of alarms and failures

    Soft Computing Based Risk Management

    Get PDF

    Handling a large number of preferences in a multi-level decision-making process

    Get PDF
    The complexity of a decision is related to the number of persons that are involved, as well as to the diversity of their preferences based on their knowledge, experience or area of expertise. Consequently, it is a challenge to adequately handle a large number of heterogeneous preferences considering that all the participants are considered to be an important source of information to make better motivated decisions. Addressing this challenge constitutes the main motivation in this dissertation because these days decision makers seem to be increasingly interested in the opinions (or preferences) given by persons around a community (and sometimes around the world) through different sources including social media channels. This PhD study provides a set of tools that helps a decision maker to make better motivated decisions by a proper handling of a large number of preferences, identifying and evaluating relevant preferences and handling multiple perspectives. Herein, by 'preference' is meant a greater interest expressed by an individual for a particular alternative over others; by 'relevant' is meant a variety of preferences which are significant (or important) to a particular person acting as a decision maker; and by 'perspective' is understood a position (e.g., social, technical, financial or environmental) adopted by a decision maker when expressing his/ her preferences or constraints

    Fuzzy Interpolation Systems and Applications

    Get PDF
    Fuzzy inference systems provide a simple yet effective solution to complex non-linear problems, which have been applied to numerous real-world applications with great success. However, conventional fuzzy inference systems may suffer from either too sparse, too complex or imbalanced rule bases, given that the data may be unevenly distributed in the problem space regardless of its volume. Fuzzy interpolation addresses this. It enables fuzzy inferences with sparse rule bases when the sparse rule base does not cover a given input, and it simplifies very dense rule bases by approximating certain rules with their neighbouring ones. This chapter systematically reviews different types of fuzzy interpolation approaches and their variations, in terms of both the interpolation mechanism (inference engine) and sparse rule base generation. Representative applications of fuzzy interpolation in the field of control are also revisited in this chapter, which not only validate fuzzy interpolation approaches but also demonstrate its efficacy and potential for wider applications

    ANFIS Used as a Maximum Power Point Tracking Algorithm for a Photovoltaic System

    Get PDF
    Photovoltaic (PV) modules play an important role in modern distribution networks; however, from the beginning, PV modules have mostly been used in order to produce clean, green energy and to make a profit. Working effectively during the day, PV systems tend to achieve a maximum power point accomplished by inverters with built-in Maximum Power Point Tracking (MPPT) algorithms. This paper presents an Adaptive Neuro-Fuzzy Inference System (ANFIS), as a method for predicting an MPP based on data on solar exposure and the surrounding temperature. The advantages of the proposed method are a fast response, non-invasive sampling, total harmonic distortion reduction, more efficient usage of PV modules and a simple training of the ANFIS algorithm. To demonstrate the effectiveness and accuracy of the ANFIS in relation to the MPPT algorithm, a practical sample case of 10 kW PV system and its measurements are used as a model for simulation. Modelling and simulations are performed using all available components provided by technical data. The results obtained from the simulations point to the more efficient usage of the ANFIS model proposed as an MPPT algorithm for PV modules in comparison to other existing methods
    • …
    corecore