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dbsfruct- Transparency and complexity are two major 
concerns of fumy rule-based systems. To improve accuracy and 
precision of the outputs, we need to increase the partitioning of  
the input space. However, this increases the number of rules 
exponentially, thereby increasing the complexity of the system 
and decreasing its transparency. The main factor behind these 
t w o  issues is the conjunctive canonical form of the fuzzy rules. 
We prment a novel method for replacing these rules with their 
singleton forms, and using aggregation operators to provide the 
mechanism for combining the crisp outputs. 

Keywords- Fuuy comiraint aggregation uperatur, fuziy 
ino&liing, singleton fuzzy rule 

1. 1NTRODUCTtON 
Until recently, it has generally been perceived that systems 

implementing fuzzy modclling [ 1 3  provide better transparency 
than the black box models such as artificial neural networks. 
By transparency, we mean interpretability of rules and 
outputs. The main reason for this perception is that most 
conventional rule-based fuzzy systems are abstracted from 
human experts or heuristics, and they are usually easy to 
comprehend. This providcs the transparency enabling one to 
gain insights into the system and acquire important 
knowledge. However, as more and more fuzzy rules are 
automatically generated using training or experimenta1 data, 
fuzzy modelling becomes less easily understood by humans 
because of the increase in complexity of these rules. Another 
issue is that the number of inputs has to be kept low because 
the dimension of the input space and complexity grows 
exponentially in terms of the number of input variables [2, 3j. 
So we have a dilemma:' On one hand, the requirement of 
accuracy calls for the use of dense ruIe bases with Iarge 
numbers of antecedent variables and linguistic terms, on the 
other hand, exponential growth in the size of rule base creates 
problems with computational time and storage space 
requirements. Reduction of rules is dcsirable but limiting the 
number of rules may destroy the property of the model as a 
universal approximator [4]. 

Many techniques have been proposed for rule reduction. 
We discuss briefly the problems associated with using these in 
Section 11. In Section 111 wc propose a new approach that 
aims to improve the interpretation of the much simpler fuzzy 
rules and reduce the complexity of the problem domain, using 
some examples to illustrate our approach. The paper 
concludes in Section IV. 
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11. TRADITLONAL FUZZY MODELLING METHODS 
Conventional fuzzy modelIing involves the transformation 

(or mapping) of the input space to the output space via a 
linguistic conjunctive canonical form of h z z y  rules like: 

Ri:Ifxl isA,,andx2isA2,and ... andqisA,then,vis B (1) 

where x,, i = I  ,..., k is the ith input to the fuzzy system, 
which is dcfined on the universe of discourse U,; A, is a fizzy 
sct on U,; y is the system output defined on a universe of 
discourse V, and B is a fuzzy set on V. For simpIicity we are 
assuming B in this case to be on a one-dimensional output 
space. We discuss a multi-dimensional output space in the 
next section. 

To derive the fuzzy if-then rules, several approaches have 
been proposed. Some of the common approaches are outlined 
in the following subscctions: 

A .  Grid Partitioning 
The most common method to construct fuzzy rules is to 

partition the input space into a specified number of 
membership functions in the form of a lattice or grid. The 
fbzzy sets of these functions are convex normal fuzzy sets in 
the sense that their a-cuts are connected and their core not 
empty. i.e. Va: B = {x: p(n) 2 a } ,  Ai f: 0, i = I ,  ..., n where n 
is the number of fuzzy sets in a variable. The rule base is then 
constructed to cover the antecedent space by using logical 
combinations of the antecedent terms. For the conjunctive 
form of the rules' antccedents, the number of rules k needed to 
cover the antecedent domain is k=p", wherep is the number of 
partitions in the input space. A clear drawback of this 
approach is thercfore that the numbcr of rules, k, in the model 
grows exponentially with the partitioned input space p and the 
number of antecedent variables n. This is an actively 
researched area, the main aim of which being basically to 
reduce the number of rules, and to optimize the input space. 
Some of the approaches include evolutionary computing 
techniques [ 5 ] ,  hierarchical construction of rules [6 ] ,  and 
identification of redundant input variables [7]. Other forms 
of combining rule antecedents have also been attempted, 
inchding disjunctive form, but with arguable success [X, 91. 

B. Tree Partitioning 
Tree partitioning is a method that eliminates the problems 

associated with grid-partitioning. It can be used to build the 
decision rules based on a hierarchical structure e.g. b y  
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decision trees [lo] or quad trces [ l l ] .  Although these 
methods curtail the explosion of rules, they tend to have a lot 
of non-uniform overlapping membership functions to which it 
is hard to a s s i s  an understandable linguistic term. In 
addition, it is a common practice in fuzzy expert systems to 
update the fuzzy rules that are abstracted from experts using 
different learning methods in order to improve their 
performance. This can also lead to the loss of interpretability 
of the fizzy model. 

C. Scatter Partitioning 
The scatter partitioning method [12, 131 allows the 1F- 

parts of the fuzzy rules to be positioned at arbitrary locations 
in the input space. The Gaussian membership function (often 
used in scatter partitioning) covers across several partitions 
and only in the subset of the input space where data exist. 
Thus, assigning meaningful linguistic labels to these functions 
is difficult if not impossible. 

D. Compncr Fuzzy Ride Bmes 
An important objectivc of rule reduction is to produce a 

compact hzzy rule base. Some of these approaches are: 

Irrelevant feature elimination algorithm [ 141; 
rulc selection based on evolutionary algorithms 
[ 15, 161; and 
Fuzzy feature clustering [ 171. 

Generally transparency and complexity still remain an 
issue in these rule bases. Yubazaki and Hirota [IS] report the 
successful application of a Single Input Rule Modules 
(SIRMs) dynamically connected model as a controller in 
inverted pendulum simulations. However, its success depends 
on the ability of the system to dcfine the importance degrce of 
each input variable and to prioritize these importance degrees. 

In conclusion, there has been little progress towards 
resolving the complexity and transparency issues associated 
with hzzy rules. Mendel and Liang [19] are of the opinion 
that replacing the multi-antecedent rules will be a significant 
contribution towards eliminating the associated rule explosion. 
We observe that it will aIso resolve the complexity and 
transparency problems. 

111. A SIMPLER APPROACH TO MAPPING 

A review of the literature shows that all these approaches 
do not consider the dependencelindependence between the 
input variables, thus side-stcpping the possibility of a much 
simpler approach to addressing the issues raised earlier. 

Consider a hypothetical example of‘ tipping of a restaurant 
dinner. We want to give tips in proportion to the two input 
variables service and food. Let’s partition each of the two 
input variables into three regions - poor, good and excellent 
€or service, and rancid, good and dericious for food. Without 
reducing the number of rules, either heuristically or otherwise, 
if we are to apply the conventional grid partitioning method to 
the input domain, we need 3’ = 9 fuzzy rules, e.g.: 

R u l e  1:  If service is poor and food is rancid 
then t i p  i s  cheap 
R u l e  2: If service is poor and food is good then 

t i p  i s  better-than-cheap 
... 
... 
R u l e  9: If service i s  excellent and food is 
delicious then t i p  is generous 
As can be seen from the rules presented abovc, the 

interpretability of the rules will be significantly degraded as 
the number of rules increases. When multiple memberships 
are ANDed to form a rule, its transparency is reduced as the 
dimension of the input space is proportional to the numbcr of 
input variables. Fig. 1 below shows the grid partitions of the 
relevant input space. Since there are two input variables, we 
have a 2-dimensional input space. By the same token, if there 
are n input variables, there will be an n-dimensional space. 

Poor Good Excellent 

Service 

A.  

Rancid 

Fig. 1. Partitions ofthe input space of tipping example 

Divide and Conquer 
The conventional conjunctive form of if-then rule assumes 

that both input variables-(in this case, the quality of service 
andjbod) must be present in order to contribute towards the 
output tip. The fact is that service and food are independent 
variables and there is no inter-relationship between these two. 
Fig. 2 shows a graph created by plotting curves of tips for food 
with services kept constant at 0, 0.6 and 1. As can be seen, a 
change in senices causes a “shift“ in the curve for food. This 
is because the input variables are independcnt of each other. 
In the real world we encounter many such instances. For 
example, in economics, it is well known that a change in 
consumers’ taste preferences causes a shift in the demand for 
goods. 

Since the contribution of one variable towards rip does not 
affect the contribution of the other, we can treat the two input 
variables service and food separately, thus effectively splitting 
the input space into two one-dimensional spaces. We can 
then have a set of rules for each of the input space. The two 
sets of fuzzy rules are as follows: 

For service input variabIe: 
Rule  1: If service i s  poor then tip is cheap 
R u l e  2: If service i s  good then  t i p  is average 
R u l e  3: If service is excellent then t i p  i s  
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generous 

If service i s  good Crisp 
input 

Service 
-b then tip is average 

I f  service is 

For Jood input variable: 
Rule 4 :  I f  food is  rancid then t i p  is cheap 
R u l e  5: If food is good then tip is average 
R u l e  6: If food is delicious then t i p  is generous 

by the respective set of fuzzy rules. For each input variable, 
the input is hzzificd. Each of the fuzzy rules is fired to a 
certain degree depending upon the degree of membership. The 
output is thcn defuzzified. As can be seen, the input is crisp 
and the output is also crisp. This allows us to perform same 
simple combination of the defuzzified outputs. 

1 

0.9 
0.8 
0.7 

0.6 
8 0.5 

0.4 

0.3 
0.2 
0.1 
0 

0 o? o?. ,? $- $J ,.j? o> Q? . 
Food 

Fig. 2. Graph of tips farfood with services kept constant at 0,0.6, and I 

As can be seen from the sets of fuzzy rules, even with0 
further techniqucs to reduce the fuzzy rules, the number of 
rufes rcquired is reduced, the linguistic clarity is maintained, 
and the rules are simple (i.e. singleton) if-then rules. Fig. 3 
shows the process of mapping the input variables to the output 

I If food is rancid I 

I generous I 

Fig.3, Application of appropriate sets of fuzzy rules to individual input 
variables (a) service and (b)fuod. 

B. Constraint Aggregation Operator 
Although the two input variables are independent, their 

contribution towards the output may vary. For example, wc 
have thc rule “If service is excellent then tip is generous”. 
That does not translate to a maximum tip output. We say that 
the output tip has been constrained. Sewice is only part of the 
contributions towards tip. We also need to consider the 
contribution fromfood This can be reasoned as follows: 

Suppose we have a traditional if-then rule with n IF-parts 
as in (1) in Section IT. If  an IF-part is true to a certain degree, 
then the rule is considered to be true to a certain degree. 
However, the total contributions of truth of all the IF-parts 
must be within the maximum truth the set o f  fbzzy rules can 
have, which’.is 1. Therefore the defkzzified outputs kom the 
sets of singleton fuzzy rules have to be scaled and combined 
to give an aggregated output for the whole system. This 
process is performed by the consfruinf aggregation 
operotor[20]. Fig. 4 shows a diagram of the constraint and 
combinatorial operation. The dehzzified outputs from X I  and 
X, are passed through the constraint aggregation operator 
which scales the outputs such that the final aggregated output 
Y, is always in the interval [0, 11. This is explained shortly. 

Construint 
Aggregation 
Operator 

OIl tPUt 

Each link represents a 
Input set offiazy d e s  

Fig. 4. Mapping of input variablesservice andfoodto output tip via the 
consfruini uggregurion operator 

The constraint aggregation operutor (CAO) serves two 
purposes: 

1. Constraint weighting. The idea of weighting the 
hzzy rules or input variables is not new. For 
example, weighting was applied to h z z y  d e s  to 
allow for importance weight factors designated to the 
different rules in a fuzzy. expert system in [Zl]. 
Weighting was used in uncertainty reasoning to 
determine the fuzzy truth values of conditions in a 
fuzzy Petri net [22]. As far as we know, the weighting 
in all the cases in the literature were applied to the 
antecedents, whereas we apply the weighting to the 
consequents. Our constraint aggregation operator is 
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based on the premise that the total output from various 
input variables should be within certain predefined 
limit, usually in the interval [O, 11. This is not 
unreasonable as in the conventional fuzzy model, if 
the maximum output is 1, then the final combined 
value of the output (as in the tipping example) should 
also lie within the interval LO, 11, where 0 denotes 
minimum value and 1 denotes the maximum value. 
Thus, the C A 0  allows one to design the fuzzy rules in 
two modes: 
*Local View Mode: Whcn mapping an input variable 

in a set of multiple input variables to the output 
space, we are in the local view mode. We 
consider only a single input (as if all other input 
variables remain constant) and the dehzzified 
output in the interval [O. 11. 

Global View Mode: When considering thc complete 
set of dehzzified crisp outputs from all the 
multiple input variables, we are in the global view 
mode. Thus the dcfbzzified outputs kom the 
individual input variables have to be scaled to 
match their actual contribution to the output. The 
scaling is pcrformed by CAO. 

2.  Importance of Cuntribrrlion. The importance of the 
contnbutions of inputs towards the output decides the 
weighting of CAO. In normal circumstances, all 
inputs are expected to contribute equally towards the 
output. However, there are occasions when cmphasis 
may be placed on the contribution of certain input 
variable (factor) such as management policy, market 
factors, etc. over other input variables. 

Eachlink . D@+fiEd 
represents a set oulpzit 

Constrain1 
aggregutbn 

n 
A(&, ..., Xn)= x w i d  

i= 1 

n 

i= I 
where W =  (wI, wZ, ..., w , ) ~ ,  W; =1 

If there is no specific importance attached to any input 
variable, a simpler approach is to treat all input variables to be 
equally important. Thus, the weight for an input variable is 
given by w,, = l/n, where n is the number of  input variables 
related to the output variable c,J = 1, ..., m. where m is the 
number of output variables. 

Going back to the tipping example, as we want to treat 
both the input variables service and food as equal1 im ortant, 
the weight vector for CA0 is therefore (0.5 0.5) . Suppose 
now that the contribution to tips be skewed, say, 75% towards 
service and 25% to food. We can easily accomplish this by 
merely changing the weights parameter in CA0 without 
making any change to the hzzy rules, or redesigning all the 
related fuzzy rules as would be the case in a conventional 
fuzzy rule based system. This is a great advantage in some 
applications such as decision making, dynamic systems and 
hzzy  expert systems. 

C. Rule Selection Operator 
The constraint aggregatiun operutur works on the premise 

that the input variables are independent of each other. 
However, there are cases where an input variable is dependent 
of another. By dependence, we mean the degree of the effect 
of one variabk on the output is dependent on the degree of the 
membership of another variable. We call an input variable 
that affects another input variable as the auxiliary variable, 
and the variable being affected as the dependent variable. If 
we plot a graph of the totaI output against the dependent 
variable while holding the auxiliary .variable constant at 

P P  

I 

a 

Weigfit 
W vector 

input 
Fig. 5.  Multiple input variables X, mapped to the outpui variable 5 via the 
respectivc sets of fuzzy rules as indicated by the arrow-headed links. The 

defuzeifjed outputs are subjected to the conslrainr oggrrgalion oprrulor for 
scaling and aggegation 

Consider the input variables xi, i = I ,  __. n, in relation to a 
dependent output variable q, together with associated weights 
w ~ ,  as depicted in Fig. 5. The defuzzified outputs d, i = 1, . . . 
n from the n individual independent variables are scaled and 
combined using an n-dimensional aggregation operator A, 
A: %" + R, given b y  

g i; 
5 0.4 

f 0.3 
E 0.2 
3 0.1 

----c Smooth 
-a..-- Flat 

+ Forest - suaurb 

I J 

Fig. 6. Wind height correction factors against wind heights for various 
ground elements 
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various values in the universe of discourse, we may havc a 
graph similar to Fig. 6. The graph is taken from our 
experiment described in [23]. The wind height correciion 

fiefor’ (and therefore wind speed) changes disproportionately 
for different wes of ground elements (i.e. ground surface 
features) against changes in the heights of wind above ground 
tevel. As can be seen, the behaviour of the curves is differcnt 
from that in Fig. 2. 

In this paper, we will only consider the case of a single 
auxiliary variable, using our wind speed experiment [23] as an 
example. The case of multiple auxiliary variables will be 
discussed in a future paper. 

To adequately cover the complctc 2-dimensional input 
space (D.x A )  between the dependent input variable D and 
auxiliary variable A .  we need multiple sets of fuzzy rules to 
map input space to output space. However, for an input 
dataset, only one set of the fuzzy rules will be fired with 
maximum output, corresponding to the auxiliary input variable 

Fig. 7 .  Partitioning of the wind height correction factor in the 2D input space 
(wind heighrs x grumd elements) corresponding to the seven ground 

elements: Smooth, Ftat, Open, Woods, Forest, Suburb, and Urban 

Wind height correction factor is the wind shear factor 
caused by wind turbulences due to ground surfaces. Interested 
readers are referred to [24 251. 

I 

in the universe of discourse. For examplc, in ow previous 
example in Fig. 6, if we have the auxiliary variablc ground 
element corresponding to Urban, then the set of fuzzy rules 
selected for firing will correspond to the curve Urban. In 
another words, membership functions can be constructed with 
the universe of discourse along dependent variable D to form a 
fuzzy subsct for each partition in the auxiliary variable A. Fig. 
7 shows the partitioning of the wind height correction factor 
in the 2-D input space (height x groimd elements) along the 
seven sets of ground elements. Seven sets of fuzzy rules are 
then constructed corresponding to each of thc ground 
elemenls. 

Instead of the constrainf aggregation operator, we use a 
nile selection operator @SO) to select the appropriate set of 
fuzzy rules for the transformation from the input spacc to the 
output space. Fig. 8 shows a topology using RSO to map a 2- 
D input space onto the output space for the example model 
under consideration. RSO is a hnction that takes two 
parameters - one dependent input variable and one auxiliary 
input variable. It selects a set of the fuzzy rules, based on the 
maximum membership grades of grmnd elements of thc input 
dataset. The input heighr is transformed to the output by 
applying the selected set of fuzzy rules, and the output is 
defuzzified to arrive at a crisp output for thc correction factor. 

Dependent i n p r  
variable 

A uxiiiary 
input variable 

Fig. 8. Input variable beighf is mapped to the output via a set of hzzyrules 
which is selected by the nr/esc/ec/im operafur by selecting the maximum 

membership grades of the grorind elernen/. 

IV CONCLUSION 
The Conventional linguistic conjunctive canonical form of 

h z z y  rules has been known to cause transparency and 
complexity problems in fizzy systems. The literature shows 
that so far there has been little progress to overcome the 
concerns despite considerable research interest and numerous 
attempts. 

The method discussed in this paper can replace these 
multi-IF-part rules by a set of singleton fuzzy rules and an 
operator. This is a significant proposition because it 
eliminates the rule explosion problem associated with the 
conjunctive canonical form of fuzzy rules and significantty 
simplifies the logic reasoning processes. 

In our approach, each IF-part of fuzzy rules is evaluated 
only once per input variable per input datum, as compared 
with multiple evaluations of the IF-parts in the conventional 
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rule base. However, dehzzification is required for each input, 
as compared with only once in the conventional system. 
When the number of IF-parts is large and the number of rules 
increases, our approach has a clear advantage in terms of 
computational overheads, and transparency and complexity of 
rules. Furthcrmore, maintenance of rule bases arc greatly 

. simplified because of the simplicity associated with the 
singleton rules. 

. 
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