4,375 research outputs found

    A Survey of Methods for Encrypted Traffic Classification and Analysis

    Get PDF
    With the widespread use of encrypted data transport network traffic encryption is becoming a standard nowadays. This presents a challenge for traffic measurement, especially for analysis and anomaly detection methods which are dependent on the type of network traffic. In this paper, we survey existing approaches for classification and analysis of encrypted traffic. First, we describe the most widespread encryption protocols used throughout the Internet. We show that the initiation of an encrypted connection and the protocol structure give away a lot of information for encrypted traffic classification and analysis. Then, we survey payload and feature-based classification methods for encrypted traffic and categorize them using an established taxonomy. The advantage of some of described classification methods is the ability to recognize the encrypted application protocol in addition to the encryption protocol. Finally, we make a comprehensive comparison of the surveyed feature-based classification methods and present their weaknesses and strengths.Šifrování síťového provozu se v dnešní době stalo standardem. To přináší vysoké nároky na monitorování síťového provozu, zejména pak na analýzu provozu a detekci anomálií, které jsou závislé na znalosti typu síťového provozu. V tomto článku přinášíme přehled existujících způsobů klasifikace a analýzy šifrovaného provozu. Nejprve popisujeme nejrozšířenější šifrovací protokoly, a ukazujeme, jakým způsobem lze získat informace pro analýzu a klasifikaci šifrovaného provozu. Následně se zabýváme klasifikačními metodami založenými na obsahu paketů a vlastnostech síťového provozu. Tyto metody klasifikujeme pomocí zavedené taxonomie. Výhodou některých popsaných klasifikačních metod je schopnost rozeznat nejen šifrovací protokol, ale také šifrovaný aplikační protokol. Na závěr porovnáváme silné a slabé stránky všech popsaných klasifikačních metod

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Network Intrusion Detection System:A systematic study of Machine Learning and Deep Learning approaches

    Get PDF
    The rapid advances in the internet and communication fields have resulted in ahuge increase in the network size and the corresponding data. As a result, manynovel attacks are being generated and have posed challenges for network secu-rity to accurately detect intrusions. Furthermore, the presence of the intruderswiththeaimtolaunchvariousattackswithinthenetworkcannotbeignored.Anintrusion detection system (IDS) is one such tool that prevents the network frompossible intrusions by inspecting the network traffic, to ensure its confidential-ity, integrity, and availability. Despite enormous efforts by the researchers, IDSstillfaceschallengesinimprovingdetectionaccuracywhilereducingfalsealarmrates and in detecting novel intrusions. Recently, machine learning (ML) anddeep learning (DL)-based IDS systems are being deployed as potential solutionsto detect intrusions across the network in an efficient manner. This article firstclarifiestheconceptofIDSandthenprovidesthetaxonomybasedonthenotableML and DL techniques adopted in designing network-based IDS (NIDS) sys-tems. A comprehensive review of the recent NIDS-based articles is provided bydiscussing the strengths and limitations of the proposed solutions. Then, recenttrends and advancements of ML and DL-based NIDS are provided in terms ofthe proposed methodology, evaluation metrics, and dataset selection. Using theshortcomings of the proposed methods, we highlighted various research chal-lenges and provided the future scope for the research in improving ML andDL-based NIDS

    Hierarchical clustered register file organization for VLIW processors

    Get PDF
    Technology projections indicate that wire delays will become one of the biggest constraints in future microprocessor designs. To avoid long wire delays and therefore long cycle times, processor cores must be partitioned into components so that most of the communication is done locally. In this paper, we propose a novel register file organization for VLIW cores that combines clustering with a hierarchical register file organization. Functional units are organized in clusters, each one with a local first level register file. The local register files are connected to a global second level register file, which provides access to memory. All intercluster communications are done through the second level register file. This paper also proposes MIRS-HC, a novel modulo scheduling technique that simultaneously performs instruction scheduling, cluster selection, inserts communication operations, performs register allocation and spill insertion for the proposed organization. The results show that although more cycles are required to execute applications, the execution time is reduced due to a shorter cycle time. In addition, the combination of clustering and hierarchy provides a larger design exploration space that trades-off performance and technology requirements.Peer ReviewedPostprint (published version

    Autonomous mobility in multilevel networks

    Get PDF
    Autonomous Mobile Programs (AMPs) are mobile agents that are aware of their resource needs and sensitive to the execution environment. AMPs are unusual in that, instead of using some external load management system, each AMP periodically recalculates network and program parameters and independently moves to a new location if it provides a better execution environment. Dynamic load management emerges from the behaviour of collections of AMPs. AMPs have previously been measured using mobile languages like Java Voyager on local area networks (LANs). The thesis develops an accurate simulation for AMPs on networks and validates it by reproducing the behaviour of collections of AMPs on homogeneous and heterogeneous LANs. The analysis shows that AMPs exhibit thrashing like other distributed load balancers. This thrashing is investigated in collections of AMPs, and two types of redundant movement (greedy effect) are identified. The thesis explores the extent of greedy effects by simulating collections of AMPs, and proposes negotiating AMPs (NAMPs) to ameliorate the problem. The design of AMPs with a competitive negotiation scheme (cNAMPs) is presented, followed by a performance comparison AMPs and cNAMPs using simulation. To estimate the significance of the greedy effects the properties of balanced states are established, such as independent balance, singleton optimality, and consecutive optimality. The balanced states are characterised for homogeneous and heterogeneous networks where AMPs are analysed as the general case. The significance of the cNAMP greedy effect is established by conducting a worst case analysis of redundant movements, and the maximum number, and probability of, redundant movements are calculated for homogeneous and heterogeneous networks. One of three theorems proves that in a heterogeneous network of q subnetworks the number of redundant movements does not exceed q − 1. i The thesis proposes and evaluates a multilevel cNAMP architecture that abstracts over network topologies to effectively distribute cNAMPs in large networks. The thesis investigates alternatives for implementation of this multilevel architecture and proposes a fusion-based scheme where information is first available to neighbour nodes. These neighbour nodes modify the information and pass it to remote locations. The effectiveness of the scheme is evaluated by simulating networks with up to five levels, varying the number of locations from 5 to 336, and the number of cNAMPs from 8 to 3360. The experiments investigate the effects depending on the number of levels, topologies, number of locations, number of cNAMPs, work of cNAMPs, type of cNAMPs, speed of locations, and type of rebalancing. The architecture is found to be effective because it delivers performance close to the hypothetical, e.g. each additional level increases mean cNAMP completion time by just 2%

    BUDOWA SYSTEMÓW WYKRYWANIA ATAKÓW NA PODSTAWIE METOD INTELIGENTNEJ ANALIZY DANYCH

    Get PDF
    Nowadays, with the rapid development of network technologies and with global informatization of society problems come to the fore ensuring a high level of information system security. With the increase in the number of computer security incidents, intrusion detection systems (IDS) started to be developed rapidly.Nowadays the intrusion detection systems usually represent software or hardware-software solutions, that automate the event control process, occurring in an information system or network, as well as independently analyze these events in search of signs of security problems. A modern approach to building intrusion detection systems is full of flaws and vulnerabilities, which allows, unfortunately, harmful influences successfully overcome information security systems. The application of methods for analyzing data makes it possible identification of previously unknown, non-trivial, practically useful and accessible interpretations of knowledge necessary for making decisions in various spheres of human activity. The combination of these methods along with an integrated decision support system makes it possible to build an effective system for detecting and counteracting attacks, which is confirmed by the results of imitation modeling.W chwili obecnej szybki rozwój technologii sieciowych i globalnej informatyzacji społeczeństwa uwypukla problemy związane z zapewnieniem wysokiego poziomu bezpieczeństwa systemów informacyjnych. Wraz ze wzrostem liczby incydentów komputerowych związanych z bezpieczeństwem nastąpił dynamiczny rozwój systemów wykrywania ataków. Obecnie systemy wykrywania włamań i ataków to zazwyczaj oprogramowanie lub sprzętowo-programowe rozwiązania automatyzujące proces monitorowania zdarzeń występujących w systemie informatycznym lub sieci, a także samodzielnie analizujące te zdarzenia w poszukiwaniu oznak problemów bezpieczeństwa. Nowoczesne podejście do budowy systemów wykrywania ataków na systemy informacyjne jest pełne wad i słabych punktów, które niestety pozwalają szkodliwym wpływom na skuteczne pokonanie systemów zabezpieczania informacji. Zastosowanie metod inteligentnej analizy danych pozwala wykryć w danych nieznane wcześniej, nietrywialne, praktycznie użyteczne i dostępne interpretacje wiedzy niezbędnej do podejmowania decyzji w różnych sferach ludzkiej działalności. Połączenie tych metod wraz ze zintegrowanym systemem wspomagania decyzji umożliwia zbudowanie skutecznego systemu wykrywania i przeciwdziałania atakom, co potwierdzają wyniki modelowania
    corecore