344 research outputs found

    Conflicting Parameter Pair Optimization for Linear Aperiodic Antenna Array using Chebyshev Taper based Genetic Algorithm

    Get PDF
    In this study, the peak side lobe level (PSLL) in the radiation pattern of a linear antenna array (LAA) is lowered without affecting its first null beam width (FNBW). Antenna array synthesis is commonly applied to achieve high directivity, low side lobes, high gain and desired null positions in the output radiation pattern. But output parameters like PSLL, null positions and beam width conflict with each other, i.e. as one parameter improves, the other deteriorates. To avoid this problem, a multi-objective optimization algorithm can be implemented, in which both the conflicting parameters can be simultaneously optimized. This work proposes a multi-objective algorithm, which takes advantages of the well-known Chebyshev tapering and genetic algorithm (GA), to lower the PSLL without broadening the beam further. Array elements are fed using Chebyshev tapered excitations while GA is incorporated to optimize the elemental spacing. The results of 28-element LAA are compared with those of multi-objective Cauchy mutated cat swarm optimization (MO-CMCSO) existing in literature, which has also been proven to be superior to multi-objective cat swarm optimization (MO-CSO) and multi-objective particle swarm optimization (MO-PSO). Results indicate that the proposed algorithm performs better by further reducing the PSLL from -21.57 dB (MO-CMCSO) to -28.18 dB, while maintaining the same FNBW of 7.4 degrees

    Comparison of Weighted Sum Fitness Functions for PSO Optimization of Wideband Medium-gain Antennas

    Get PDF
    In recent years PSO (Particle Swarm Optimization) has been successfully applied in antenna design. It is well-known that the cost function has to be carefully chosen in accordance with the requirements in order to reach an optimal result. In this paper, two different wideband medium-gain arrays are chosen as benchmark structures to test the performance of four PSO fitness functions that can be considered in such a design. The first one is a planar 3 element, the second one a linear 4 element antenna. A MoM (Method of Moments) solver is used in the design. The results clearly show that the fitness functions achieve a similar global best candidate structure. The fitness function based on realized gain however converges slightly faster than the others

    A Brief Analysis of Gravitational Search Algorithm (GSA) Publication from 2009 to May 2013

    Get PDF
    Gravitational Search Algorithm was introduced in year 2009. Since its introduction, the academic community shows a great interest on this algorith. This can be seen by the high number of publications with a short span of time. This paper analyses the publication trend of Gravitational Search Algorithm since its introduction until May 2013. The objective of this paper is to give exposure to reader the publication trend in the area of Gravitational Search Algorithm

    Multi-Objective Optimization of Wire Antennas: Genetic Algorithms Versus Particle Swarm Optimization

    Get PDF
    The paper is aimed to the multi-objective optimization of wire multi-band antennas. Antennas are numerically modeled using time-domain integral-equation method. That way, the designed antennas can be characterized in a wide band of frequencies within a single run of the analysis. Antennas are optimized to reach the prescribed matching, to exhibit the omni-directional constant gain and to have the satisfactory polarization purity. Results of the design are experimentally verified. The multi-objective cost function is minimized by the genetic algorithm and by the particle swarm optimization. Results of the optimization by both the multi-objective methods are in detail compared. The combination of the time domain analysis and global optimization methods for the broadband antenna design and the detailed comparison of the multi-objective particle swarm optimization with the multi-objective genetic algorithm are the original contributions of the paper

    Multiobjective Optimization Design of Time-Modulated Concentric Circular Ring Arrays

    Get PDF
    A multiobjective approach based on the third evolution step of generalized differential evolution (GDE3) algorithm is proposed for optimizing the time-modulated array (TMA) in this paper. Different from the single-objective optimization, which optimizes a weighted sum of the peak sidelobe level (PSLL) and the peak sideband level (PSBL) of the array, the multiobjective algorithm treats the PSLL and the PSBL as two distinct objectives that are to be optimized simultaneously. Furthermore, not only one outstanding optimization result can be acquired but also a set of solutions known as Pareto front is obtained by using the GDE3 algorithm, which will guide the design of time-modulated array more effectively. Users can choose one appropriate outcome which has a suitable tradeoff between the PSLL and the PSBL. This approach is illustrated through a time-modulated concentric circular ring array (CCRA). The optimal parameters and the corresponding radiation patterns are presented at last. Experimental results reveal that the multiobjective optimization can be an effective approach for the TMA synthesis problems
    corecore