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Background
Antenna arrays are widely used in wireless communications due to their ability to 
enhance performance by providing high gain, high directivity, increased spectrum effi-
ciency and beam steering capability (Balanis 1997). Due to increased electromagnetic 
pollution, null placement in the field of interferences has gained much importance (Ves-
covo 2000). Specifically, null placement is of critical importance to radar, sonar and wire-
less communication systems as it minimizes the degradation of signal-to-noise ratio 
performance due to undesired interference (Akdagli 2001). Thus, null placement along 
with suppression of side lobe level (SLL) is key to the design of antenna arrays.

Extensive study of linear antenna array synthesis has been reported in the literature 
(Er 1990; Panduro et al. 2005; Bianchi et al. 2014). For optimal pattern synthesis of lin-
ear array, SLL minimization and null placement can be achieved in two ways: either by 
optimizing the excitation amplitude and phase while at the same time maintaining uni-
form spacing similar to conventional array or by optimizing element spacing and assum-
ing uniform amplitude and phase excitation. Various evolutionary algorithms such 
as genetic algorithm (GA) (Zhang et  al. 2014; Goswami and Mandal 2013), simulated 
annealing (SA) (Murino et al. 1996), particle swarm optimization (PSO) (Khodier and 
Christodoulou 2005; Li et al. 2010; Jin and Rahmat-Samii 2007), ant colony optimization 
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(ACO) (Rajo-Iglesias and Quevedo-Teruel 2007), invasive weed optimization (IWO) 
(Karimkashi and Kishk 2010) and cat swarm optimization (CSO) (Pappula and Ghosh 
2014) have been successfully applied for the optimization of linear arrays.

In this paper, a new nature-inspired evolutionary algorithm, flower pollination algo-
rithm (FPA) (Yang 2012; Yang et al. 2014) is proposed for linear antenna array optimiza-
tion. FPA is a metaheuristic algorithm inspired by the pollination process of flowering 
plants. It was developed by Xin-She Yang in 2012 (Yang 2012). FPA has been applied 
to solve practical optimization problems in engineering (Yang et al. 2014) such as disc 
brake design, spring design optimization, welded beam design, speed reducer design and 
pressure vessel design. FPA has also been used in areas like solar PV parameter esti-
mation (Alam et al. 2015), fuzzy selection for dynamic economic dispatch (Dubey et al. 
2015), etc. However, to the best of the authors’ knowledge, this is the first time that FPA 
is being proposed for linear antenna array synthesis. In this paper, FPA is applied to lin-
ear antenna array in order to obtain array pattern with minimum SLL. In addition, nulls 
are placed in desired directions by optimizing the spacing between the antenna array 
elements. Furthermore, in this paper, the design problem of minimization of peak SLL, 
and that of imposing deeper nulls in the interference directions under the constraints of 
a reduced SLL of linear antenna arrays is modeled as an optimization problem. To solve 
this design goal, the flower pollination algorithm (FPA) is used to determine optimum 
antenna positions in the array.

This section has presented a brief introduction to linear antenna array, the FPA and 
its applications in optimization problems, and the main objective of this work. The rest 
of the paper is organized as follows: the linear antenna array geometry, configuration 
and array factor equations are discussed in “Linear antenna array” section. “Flower pol-
lination algorithm” section presents an elaborate description of the flower pollination 
algorithm along with a flowchart outlining the steps of FPA implementation. Various 
design examples for linear array synthesis, and the FPA optimized antenna locations and 
corresponding array patterns are put forward in “Results and discussion” section. The 
validation of the obtained results, when compared to other nature-inspired evolutionary 
algorithms, is also presented in this section. “Conclusion” section offers the conclusion.

Linear antenna array
A linear antenna array of 2N isotropic elements placed symmetrically along the x-axis is 
considered in this work, as illustrated in Fig. 1.

Due to symmetry, the array factor (AF) (Balanis 1997; Khodier and Christodoulou 
2005) in the azimuth plane is given by (1).

where In, ψn and xn are the excitation amplitude, phase and position of nth element in 
the array. k is the wave number and is given by 2π/λ and θ is the azimuth angle. It is 
assumed that the antenna array is subjected to uniform amplitude and phase excitation, 
that is, In = 1 and ψn = 0. Thus, the AF in (1) gets modified to (2).

(1)AF(θ) = 2

N
∑

n=1

In cos (kxn cos (θ)+ ψn)
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The objective of this work is to apply the flower pollination algorithm to determine the 
optimized element positions,xn, in order to achieve an array pattern with minimum SLL 
as well as placement of nulls in desired directions.

In linear antenna arrays, proper placement of antennas is very essential. If the anten-
nas are placed too close to each other, it leads to mutual coupling effects. On the other 
hand, if the antennas are placed too far away, it leads to grating lobes. Thus, while solv-
ing this optimization problem, the following conditions must be satisfied:

(i) 
∣

∣xi − xj
∣

∣ > 0.25�

(ii)  min{xi} > 0.125�; i = 1, 2, . . . ,N . i �= j where, xj is the antenna position adjacent 
to the antenna position xi and {xi} is the set of all antenna positions.

Flower pollination algorithm
Inspired by the pollination process of flowering plants, the flower pollination algorithm 
(FPA) was developed by Xin-She Yang in 2012 (Yang 2012). FPA is extensively used for 
optimization of multi-objective real-world design problems (Yang et  al. 2014). FPA is 
based on the following four rules (Yang 2012):

(i)   Biotic and cross-pollination can be considered processes of global pollination, and 
pollen-carrying pollinators move in a way that obeys Levy flights.

(ii)  For local pollination, abiotic pollination and self-pollination are used.
(iii)  Pollinators, such as insects, can develop flower constancy. This in turn is equiva-

lent to a reproduction probability that is proportional to the similarity of two flow-
ers involved.

(iv)  The interaction or switching of local pollination and global pollination can be con-
trolled by a switch probability p ∈ [0, 1].

The basic parameters of FPA are defined as follows (Yang 2012; Yang et al. 2014):

(2)AF(θ) = 2

N
∑

n=1

cos (kxn cos (θ))

Fig. 1 Antenna array geometry
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1. Population Size (n): FPA is a population-based metaheuristic algorithm in which 
candidate solutions to the optimization problem play the role of individuals in a pop-
ulation, and the fitness function determines the quality of the solutions. Thus, FPA 
uses a population of (n) flowers/pollen gametes with random solutions as the starting 
point.

2. Switching Probability (p): Flower pollination activities can occur at both scales, local 
as well as global. However, the probability of local pollination is slightly higher than 
global pollination because adjacent flower patches or flowers in close vicinity are 
more likely to be pollinated by local flower pollen than those far away. To mimic this 
feature, a switching probability or proximity probability (p) can be effectively used 
to switch between common global pollination and intensive local pollination. This 
switching probability is slightly biased towards local pollination. During the execu-
tion of FPA, a random number between 0 and 1 is generated and is compared with 
the switching probability. If this number is less than (p), then global pollination is 
performed, otherwise local pollination is carried out.

3. L(β): In the case of global pollination, flower pollen gametes are carried by pollina-
tors, such as insects over long distances due to their ability to fly. The strength of the 
pollination is modelled by L(β) which is a step-size parameter, more specifically the 
Levy-flights-based step size. Since insects can travel extensively with various distance 
steps, a Levy flight is used to mimic this characteristic efficiently.

4. γ: It is used as a scaling factor to control the step size of the Levy flights for global 
pollination.

5. ε: For local pollination, pollen is selected from different flowers of the same plant 
species or from the same population. This mimics the flower constancy in a limited 
neighborhood. ε is drawn from a uniform distribution [0,1] so as to mimic a local 
random walk.

The parameters used in FPA along with their corresponding value/range are described 
in Table 1 (Yang et al. 2014).

The implementation of FPA begins with the definition of the objective function and 
initialization of the population of flowers (n) with random solutions. The best solution in 
the initial population is computed. A switching probability [p ∈ (0, 1)] is defined. It con-
trols the selection of either local pollination or global pollination. The choice between 
global pollination and local pollination is determined by generating a random number. If 
this random number is less than the switching probability (p), then global pollination is 
performed using (3). Otherwise, local pollination is carried out using (7).

Table 1 Parameters of FPA

Parameter Description Value/range

n Population size 5–50

p Switching probability 0.05–0.95

γ Scaling factor (for step size) 0.1

ε Uniform distribution 0–1

L(β) Levy-flights based step size >0, drawn from Levy distribution, 1 ≤ β ≤ 1.9
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The mathematical representation of global pollination [rule (i)] and flower constancy 
[rule (iii)] (Yang 2012) is given by (3).

where xti  is the solution vector xi at iteration t, and gbest is the current best solution. γ is a 
scaling factor to control step size. L denotes the Levy flights-based step size, which cor-
responds to the strength of the pollination. Since insects may travel over long distances 
with varying distance steps, a Levy flight can be used to model this characteristic effi-
ciently. L is drawn from a Levy distribution by using (4).

Γ (β) is the standard gamma function. Mantegna proposed a fast and accurate algorithm 
to generate a stochastic variable whose probability density is close to a Levy stable dis-
tribution (Mantegna 1994). The required Levy stable stochastic process is generated in a 
single step by this algorithm. The pseudo-random step size (s) which obeys Levy distri-
bution is drawn by using Mantegna algorithm for two Gaussian distributions U and V as 
follows in (5).

U and V are drawn from a Gaussian normal distribution with a zero mean and vari-
ance σ 2 given by (6).

For local pollination, the following mathematical formulation is used (Yang 2012).

where xtj  and xtk are pollen from different flowers of the same plant species. If xtj  and xtk 
are selected from the same population, this is equivalent to a local random walk given 
that ε is obtained from a uniform distribution in [0,1].

The basic steps of FPA are illustrated in the flowchart depicted in Fig. 2.

Results and discussion
In this section, the FPA is applied to linear antenna array in order to determine the 
optimized antenna element positions to minimize the peak SLL, and to place nulls in 
desired directions. In design example A, the optimized antenna element locations are 
determined to minimize the peak SLL in the specified spatial region. Design examples 
B and C illustrate the application of FPA to determine the optimized antenna element 
positions in order to minimize SLL as well as place deep nulls in the desired directions. 
The FPA is implemented on MATLAB® and executed 15 times. The number of iterations 

(3)xt+1
i = xti + γL

(

gbest − xti
)

(4)L ∼
βΓ (β) sin (πβ/2)

π

1

s1+β

(5)s =
U

|V |1/β

(6)σ 2 =

[

Γ (1+ β)

βΓ
(

(1+ β)
/

2
) ·

sin
(

πβ
/

2
)

2(β−1)/ 2

]1/β

(7)xt+1
i = xti + ε

(

xtj − xtk

)
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for each run is set equal to 1000. All results were obtained using n = 25, β = 1.5, p = 0.8, 
and γ = 0.1.

Peak SLL minimization

The fitness function used for the minimization of peak SLL is formulated as given by (8)

Design example A

This example illustrates the design of 2N = 10 element linear array for achieving mini-
mum SLL in the regions, θ =  [0°,74°] and θ =  [106°,180°]. The flower pollination algo-
rithm with fitness function given by (8) is used for the determination of optimized 

(8)Fitness = min
(

max
(

20 log |AF(θ) |
))

No 

No 

No Yes 
Is rand<p? 

Is  < M? 

Display the best solution 

Stop 
Is  

> n? 

Yes 

Start 

Objective function min or max f (x), 
x=(x1,x2,…,xd) 

Initialize flower population (n), switching 
probability (p) and max generations (M ) 

Find the best solution gbest in the initial population 

Yes 

Evaluate new solutions. If new 
solutions are better, update them in 

the population. 

Local pollination using 
( )tkt

j
t
i

t
i xxxx −+=+ ε1

= +1 
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t
i

t
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Fig. 2 Flowchart of FPA
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element locations, xn. Uniform amplitude and phase excitations are assumed, i.e., In = 1 
and ψn = 0.

The optimized element positions are shown in Table 2 and the array pattern is illus-
trated in Fig.  3. For benchmarking purpose, the peak SLL obtained for this design 
example using the proposed method (FPA) and other nature-inspired optimization tech-
niques is summarized in Table 3. In comparison to (non-optimized) conventional arrays, 
and arrays optimized using other opitimization algorithms such as PSO (Khodier and 
Christodoulou 2005), ACO (Rajo-Iglesias and Quevedo-Teruel 2007) and CSO (Pappula 
and Ghosh 2014), the proposed approach (FPA) shows a marked reduction in SLL.

The proposed method (FPA) gives a peak SLL of −23.45 dB. This is 10.22 dB lower 
in comparison to conventional array. The peak SLL has been lowered from −20.72 

Table 2 Optimized positions of the positive half of the 10 element array of design exam-
ple A

Method Optimized element positions

CSO (Pappula and Ghosh 2014) 0.1516 λ 0.4115 λ 0.7899 λ 1.1048 λ 1.6843 λ

Proposed 0.1342 λ 0.375 λ 0.7522 λ 0.9875 λ 1.5661 λ

Fig. 3 Array pattern for design example A

Table 3 Optimized peak SLL for 10 element linear array of design example A

Sr. no. Approach Peak SLL (in dB)

1 Conventional (without optimization) −13.23

2 PSO (Khodier and Christodoulou 2005) −20.72

3 ACO (Rajo-Iglesias and Quevedo-Teruel 2007) −22.66

4 CSO (Pappula and Ghosh 2014) −22.89

5 Proposed −23.45
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to −23.45  dB (by 2.73  dB) as compared to PSO optimized array, and from −22.66 to 
−23.45  dB as compared to ACO optimized array, and from −22.89 to −23.45  dB as 
compared to CSO optimized array.

SLL minimization along with null placement

The fitness function used for SLL minimization as well as for placement of nulls in 
desired directions is formulated as given in (9).

where, θli and θui are the spatial regions in which SLL is suppressed and �θi = θui-θli. The 
null direction is given by θk. In (9), the first term of the fitness function is for SLL sup-
pression and the second term accounts for the placement of nulls in desired directions.

Design example B

This design example illustrates the synthesis of 28 element linear antenna array in order 
to achieve SLL minimization in the regions θ =  [0°,84°] and θ =  [96°,180°] along with 
null placement at θ = 55°, 57.5°, 60°, 120°, 122.5° and 125°. The fitness function used by 
the FPA for this design example is given by (9). The array pattern is shown in Fig. 4, and 
the optimized positions of the antenna elements are given in Table  4. It is seen from 
Fig. 4 that the proposed method using FPA enables the placement of deep nulls (as deep 
as −95.12 dB) at desired directions.

The null depths obtained by the proposed method using FPA at each of the speci-
fied directions are summarized in Table 5. The comparative analysis of minimum null 
depth and peak SLL obtained using the proposed method (FPA) and various other state-
of-the-art optimization algorithms is shown in Table  6. It is seen that for this design 

(9)Fitness =
∑

i

1

�θi

θui
∫

θli

|AF(θ) |2dθ +
∑

k

|AF(θk) |
2

Fig. 4 Array pattern for design example B
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example, the minimum null depth obtained by using FPA is −89.42  dB. This implies 
that the obtained nulls are at least as deep as −89.42 dB. There is an improvement of 
around 39 dB in null depth obtained using PSO (Khodier and Christodoulou 2005) and 
ACO (Rajo-Iglesias and Quevedo-Teruel 2007). Compared to CSO (Pappula and Ghosh 
2014), the proposed FPA approach improves null depth by around 24 dB. The peak SLL 
obtained using the proposed method (FPA) is −20.46 dB, which is about 7.23 dB lower 
than conventional array and PSO optimized array (Khodier and Christodoulou 2005), 
about 5.46 dB lower than ACO(Rajo-Iglesias and Quevedo-Teruel 2007) optimized array, 
and about 7.67 dB lower than CSO optimized array (Pappula and Ghosh 2014).

Design example C

In this design example, FPA is used to optimize the antenna element positions for SLL 
minimization and null placement of 32 element linear antenna array. The fitness func-
tion used by the FPA for this design example is given by (9). SLL reduction is desired in 
the spatial regions θ = [0°,85°] and θ = [95°,180°] whereas nulls are desired to be placed 
at θ = 81° and θ = 99° (very close to the first sidelobe).

The array pattern is shown in Fig. 5 and the optimized positions of the antenna ele-
ments are given in Table 7. The array optimized by the proposed approach of using FPA 
has almost the same length as that obtained by CSO (Pappula and Ghosh 2014). It is 
seen from Fig. 5 that the proposed approach of using FPA enables the placement of nulls 

Table 4 Optimized positions of the positive half of the 28 element array of design exam-
ple B

Method Optimized element positions

CSO (Pappula and Ghosh 2014) 0.2720 λ 0.7547 λ 1.1399 λ 1.7065 λ 2.3287 λ 2.8675 λ 3.3536 λ

3.7693 λ 4.2222 λ 4.8991 λ 5.4061 λ 5.7389 λ 6.1564 λ 6.7173 λ

Proposed 0.1515 λ 0.5415 λ 0.879 λ 1.2672 λ 1.6341 λ 2.0648 λ 2.3989 λ

2.8480 λ 3.2977 λ 3.7082 λ 4.4512 λ 4.9587 λ 5.4789 λ 6.1333 λ

Table 5 Null depths after optimization by FPA for design example B

Linear array type Null depth (in dB)

55° 57.5° 60° 120° 122.5° 125°

28 Element array −89.42 −95.12 −90.81 −90.81 −95.12 −89.42

Table 6 Comparative analysis of  null depth and  peak SLL obtained by  various optimiza-
tion algorithms for design example B

Method

PSO (Khodier 
and Christodoulou 
2005)

ACO (Rajo-Iglesias 
and Quevedo- 
Teruel 2007)

CSO (Pappula 
and Ghosh 2014)

Proposed

Minimum null depth (in dB) −50 ~−50 −65 −89.42

Peak SLL (in dB) −13.23 −15 −12.79 −20.46
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as deep as −85.27 dB at the desired directions (θ = 81° and θ = 99°); very close to the 
first sidelobe.

For this design example, PSO (Khodier and Christodoulou 2005) offers null depth of 
−60 dB, ACO (Rajo-Iglesias and Quevedo-Teruel 2007) gives −50 dB nulls whereas CSO 
(Pappula and Ghosh 2014) places deep nulls of −80  dB as seen in Table  8. However, 
the proposed approach (FPA) places the deepest null of −85.27 dB. The first side lobe 
obtained by FPA is about 3 dB higher than that obtained using CSO (Pappula and Ghosh 

Fig. 5 Array pattern for design example C

Table 7 Optimized positions of the positive half of the 32 element array of design exam-
ple C

Method Optimized element positions

CSO (Pappula and Ghosh 2014) 0.2883 λ 0.6830 λ 1.1929 λ 1.5199 λ

1.9768 λ 2.3247 λ 2.6886 λ 3.1362 λ

3.4848 λ 3.9538 λ 4.3822 λ 4.9252 λ

5.4817 λ 6.2091 λ 7.0412 λ 7.7500 λ

Proposed 0.25 λ 0.7496 λ 1.2498 λ 1.7467 λ

2.2260 λ 2.6477 λ 3.0084 λ 3.4055 λ

3.7633 λ 4.2562 λ 4.75 λ 5.2504 λ

5.7510 λ 6.4361 λ 7.2490 λ 7.9975 λ

Table 8 Comparative analysis of null depth obtained by various optimization algorithms 
for design example C

Method

PSO (Khodier and  
Christodoulou 2005)

ACO (Rajo-Iglesias 
and Quevedo-Teruel 2007)

CSO (Pappula 
and Ghosh 2014)

Pro-
posed

Null depth (in dB) −60 −50 −80 −85.27
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2014). However, the remaining sidelobes are almost similar to those obtained by using 
CSO (Pappula and Ghosh 2014).

Convergence of FPA

Figure 6 shows the convergence of the fitness function versus the number of iterations 
for all the three design examples. The comparative relation based on the number of 
iterations taken by different optimization techniques to reach the optimal solution is 
depicted in Table 9. It is observed that although FPA is simpler to implement and also 
yields improved performance, it takes more number of iterations to converge on to the 
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Fig. 6 Convergence curve of FPA. a Design example A, b design example B, c design example C

Table 9 No. of iterations required for convergence by different optimization algorithms

Algorithm No. of iterations required for convergence

Design example A Design example B Design example C

PSO (Khodier and Christodoulou 2005) 400 – 200

ACO (Rajo-Iglesias and Quevedo-Teruel 2007) 800 100 260

Proposed (FPA) 482 173 204
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optimum solution as compared to PSO. In PSO, all the particles move through global 
search and end with local search in the last generation. The momentum effects on par-
ticle movement (e.g. when a particle is moving in the direction of a gradient) generally 
allow faster convergence. On the other hand, in FPA, global and local pollination tech-
niques are carried out in each generation to create a balance between explorations and 
exploitations with the help of switching probability. Thus, the algorithm is more likely 
to escape locally optimal points, and yield a global optimum solution. FPA has to per-
form the process of global search, thus making it more computationally time consuming 
than PSO as depicted in Table 9. It is seen that FPA converges to the optimum solution 
much faster than ACO. ACO algorithm takes too long to converge, and also traps in 
local optima in order to find an optimal solution as there is no mechanism to control the 
randomness of ants.

Effect of control parameters on quality of solution
The control parameters of FPA have been tuned in order to achieve better quality of 
solution. This section presents the statistical results in terms of best, worst, mean and 
median fitness obtained by carrying out a detailed parametric study to tune the param-
eters of FPA.

Effect of variation in population size (n)

The final fitness values corresponding to the minimum side lobe level (design example 
A) and to the minimum SLL and null depth (design example B and C) with variation in 
population size are shown in Table 10. FPA is executed 15 times for different popula-
tion sizes, keeping all other parameters constant. As the population size is increased, the 
fitness values converge to a minimum. However, the computational time also increases 
with increase in population size. It is seen from Table  10 that n =  25 is an optimum 
choice, as the fitness values are minimum for this case and do not show significant 
change on further increase in n.

Table 10 Statistical values of the fitness function with variation in population size (n)

Italic values represent mean and median for the optimum value of tuned parameter

Fitness Population size (n)

5 10 15 20 25 30 35 40 45 50

Design example A Best 0.0048 0.0045 0.0039 0.0036 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034

Worst 0.0067 0.0066 0.0064 0.0063 0.0063 0.0063 0.0063 0.0063 0.0063 0.0063

Mean 0.0058 0.0056 0.0053 0.0053 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051

Median 0.0052 0.0051 0.0047 0.0047 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045

Design example B Best 0.0660 0.0533 0.0532 0.0496 0.0483 0.0483 0.0498 0.0490 0.0534 0.0539

Worst 0.3634 0.0770 0.0804 0.0818 0.0763 0.0763 0.0763 0.0764 0.0769 0.0763

Mean 0.1777 0.0641 0.0643 0.0651 0.0619 0.0620 0.0626 0.0621 0.0628 0.0648

Median 0.1685 0.0645 0.0632 0.0684 0.0603 0.0632 0.0628 0.0624 0.0614 0.0661

Design example C Best 0.0683 0.0553 0.0450 0.0438 0.0436 0.0438 0.0441 0.0438 0.0439 0.0440

Worst 0.2249 0.5533 0.5533 0.0961 0.0463 0.0506 0.0468 0.0515 0.0524 0.0516

Mean 0.1455 0.5533 0.5685 0.0518 0.0442 0.0453 0.0448 0.0453 0.0456 0.0451

Median 0.1209 0.5533 0.5521 0.0452 0.0438 0.0444 0.0447 0.0449 0.0445 0.0447
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Effect of switching probability (p)

The final fitness values corresponding to the minimum side lobe level (design example 
A) and to the minimum SLL and null depth (design example B and C) with variation in 
switching probability are shown in Table 11. FPA is executed 15 times for the different 
values of switching probability, keeping all other parameters constant. FPA essentially 
controls the degrees of explorations and exploitations with the switching probability (p). 
Global and local pollination techniques are used to balance explorations and exploita-
tions. A higher value of p is more likely to explore the search space globally and escape 
from local minima points. It is seen from Table 11 that p = 0.8 is a good choice since it 
offers minimum value of fitness function. However, if p is increased the quality of solu-
tion degrades. This is because it leads to too much exploration at the cost of too little 
exploitation, which in turn compromises the overall search performance.

Effect of β

β is the index used in Levy distribution for generating Levy-flights for global pollination. 
The final fitness values corresponding to the minimum side lobe level (design example 
A) and to the minimum SLL and null depth (design example B and C) with variation in 
β are shown in Table 12. FPA is executed 15 times for different values of β while keep-
ing all other parameters constant. It is seen that β = 1.5 is a good choice as it gives the 
lowest value of fitness function. For small β, random walks tend to get crowded around a 
central location, and occasionally jump quite a big step to a new location. As β increases, 
the probability of performing a long jump decreases. For β =  1, the Levy distribution 
reduces to the Cauchy distribution, and for β = 2, a Gaussian distribution is obtained. As 
β varies from 1 to 2, the Levy distribution varies from Gaussian to Cauchy, and the tail 
probabilities vary from light to heavy. This makes β = 1.5 a good choice for an interme-
diate Levy distribution and Levy flight.

Table 11 Statistical values of  the fitness function with  variation in  switching probability 
(p)

Italic values represent mean and median for the optimum value of tuned parameter

Fitness Switching probability (p)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Design example A Best 0.0066 0.0058 0.0051 0.0048 0.0045 0.0039 0.0036 0.0034 0.0039

Worst 0.0089 0.0074 0.0070 0.0067 0.0066 0.0064 0.0063 0.0063 0.0064

Mean 0.0078 0.0069 0.0062 0.0058 0.0056 0.0053 0.0053 0.0051 0.0053

Median 0.0072 0.0063 0.0056 0.0052 0.0051 0.0047 0.0047 0.0045 0.0047

Design example B Best 0.0668 0.0533 0.0561 0.0516 0.0548 0.0486 0.0489 0.0483 0.0570

Worst 0.0834 0.0789 0.0770 0.0765 0.0764 0.0764 0.0763 0.0763 0.0944

Mean 0.0743 0.0669 0.0627 0.0624 0.0624 0.0624 0.0624 0.0619 0.0786

Median 0.0747 0.0659 0.0636 0.0634 0.0639 0.0671 0.0603 0.0603 0.0794

Design example C Best 0.0439 0.0437 0.0436 0.0436 0.0436 0.0436 0.0437 0.0436 0.0446

Worst 0.0495 0.0473 0.0495 0.0463 0.0487 0.0481 0.0513 0.0463 0.1423

Mean 0.0458 0.0444 0.0443 0.0443 0.0443 0.0443 0.0442 0.0442 0.0682

Median 0.0460 0.0441 0.0441 0.0442 0.0438 0.0438 0.0438 0.0438 0.0504
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Conclusion
This paper introduced the flower pollination algorithm for the optimization of linear 
antenna arrays. FPA was applied to obtain optimized antenna positions in order to achieve 
desired array pattern with minimum SLL along with null placement in specified directions.

Design examples were presented for the following conditions: peak SLL suppression 
(design example A), SLL minimization along with placement of multiple nulls close to 
each other in the spatial region (design example B), and SLL minimization along with 
placement of nulls close to the first side lobe (design example C). The obtained results 
have been compared with conventional array (non-optimized), and with arrays opti-
mized using other nature-inspired evolutionary algorithms such as PSO, ACO and CSO. 
The results indicate that FPA yields improved performance in peak SLL suppression as 
well as in terms of placement of strong nulls in desired directions along with SLL mini-
mization. In the field of antenna array optimization, FPA’s performance demonstrates its 
suitability for the antenna and electromagnetics community.
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