2,853 research outputs found

    Pricing Policy for Selling Perishable Products under Demand Uncertainty and Substitution

    Get PDF

    Revenue Management and Demand Fulfillment: Matching Applications, Models, and Software

    Get PDF
    Recent years have seen great successes of revenue management, notably in the airline, hotel, and car rental business. Currently, an increasing number of industries, including manufacturers and retailers, are exploring ways to adopt similar concepts. Software companies are taking an active role in promoting the broadening range of applications. Also technological advances, including smart shelves and radio frequency identification (RFID), are removing many of the barriers to extended revenue management. The rapid developments in Supply Chain Planning and Revenue Management software solutions, scientific models, and industry applications have created a complex picture, which appears not yet to be well understood. It is not evident which scientific models fit which industry applications and which aspects are still missing. The relation between available software solutions and applications as well as scientific models appears equally unclear. The goal of this paper is to help overcome this confusion. To this end, we structure and review three dimensions, namely applications, models, and software. Subsequently, we relate these dimensions to each other and highlight commonalities and discrepancies. This comparison also provides a basis for identifying future research needs.Manufacturing;Revenue Management;Software;Advanced Planning Systems;Demand Fulfillment

    Buy Now and Price Later: Supply Contracts with Time-Consistent Mean-Variance Financial Hedging

    Get PDF
    We consider a two-stage supply chain comprising one risk-neutral manufacturer (he) and one risk-averse retailer (she), where the manufacturer procures consumption commodities in spot market as major inputs for production and sells the final products to the retailer. The retailer then sells the final products to the market at a stochastic clearance price. We investigate a flexible price contract that allows the manufacturer to determine the product wholesale price, and the retailer to determine the order quantity, based on the future spot price of consumption commodities. Compared with the simple wholesale price contract, a win-win situation can be achieved under the flexible price contract when the manufacturer's postponed processing cost is lower than a threshold. However, under this flexible price contract the retailer may suffer from the commodity price volatility, even if she does not procure the commodities directly. We further investigate how the risk-averse retailer conducts mean-variance financial hedging by purchasing consumption commodity futures contracts. We formulate the problem using a dynamic programming model and derive a closed-form time-consistent financial hedging policy. Through numerical experiments, we show that the commodity price risk from the manufacturer to the retailer is effectively mitigated with the hedging, and the benefits of the flexible price contract are maintained

    Solving Practical Dynamic Pricing Problems with Limited Demand Information

    Get PDF
    Dynamic pricing problems have received considerable attention in the operations management literature in the last two decades. Most of the work has focused on structural results and managerial insights using stylized models without considering business rules and issues commonly encountered in practice. While these models do provide general, high-level guidelines for managers in practice, they may not be able to generate satisfactory solutions to practical problems in which business norms and constraints have to be incorporated. In addition, most of the existing models assume full knowledge about the underlying demand distribution. However, demand information can be very limited for many products in practice, particularly, for products with short life-cycles (e.g., fashion products). In this dissertation, we focus on dynamic pricing models that involve selling a fixed amount of initial inventory over a fixed time horizon without inventory replenishment. This class of dynamic pricing models have a wide application in a variety of industries. Within this class, we study two specific dynamic pricing problems with commonly-encountered business rules and issues where there is limited demand information. Our objective is to develop satisfactory solution approaches for solving practically sized problems and derive managerial insights. This dissertation consists of three parts. We first present a survey of existing pricing models that involve one or multiple sellers selling one or multiple products, each with a given initial inventory, over a fixed time horizon without inventory replenishment. This particular class of dynamic pricing problems have received substantial attention in the operations management literature in recent years. We classify existing models into several different classes, present a detailed review on the problems in each class, and identify possible directions for future research. We then study a markdown pricing problem that involves a single product and multiple stores. Joint inventory allocation and pricing decisions have to be made over time subject to a set of business rules. We discretize the demand distribution and employ a scenario tree to model demand correlation across time periods and among the stores. The problem is formulated as a MIP and a Lagrangian relaxation approach is proposed to solve it. Extensive numerical experiments demonstrate that the solution approach is capable of generating close-to-optimal solutions in a short computational time. Finally, we study a general dynamic pricing problem for a single store that involves two substitutable products. We consider both the price-driven substitution and inventory-driven substitution of the two products, and investigate their impacts on the optimal pricing decisions. We assume that little demand information is known and propose a robust optimization model to formulate the problem. We develop a dynamic programming solution approach. Due to the complexity of the DP formulation, a fully polynomial time approximation scheme is developed that guarantees a proven near optimal solution in a manageable computational time for practically sized problems. A variety of managerial insights are discussed

    The US fashion industry: A supply chain review

    Get PDF
    Cataloged from PDF version of article.The fashion industry has short product life cycles, tremendous product variety, volatile and unpredictable demand, and long and inflexible supply processes. These characteristics, a complex supply chain and wide availability of data make the industry a suitable avenue for efficient supply chain management practices. The industry has also been in a transition over the last 20 years: significant consolidation in retail, majority of apparel manufacturing operations moving overseas and, more recently, increasing use of electronic commerce in retail and wholesale trade. This paper aims to review the current state of operations and recent trends across the fashion supply chain in the US. We use industry-wide data, articles from business journals, industry reviews and extensive interviews with an apparel manufacturer in California, and a major US department store chain to describe the current operational practices and how the industry is restructuring itself during the transition, focusing at the apparel manufacture and retail segments of the supply chain. 2008 Elsevier B.V. All rights reserved

    Dynamic pricing and learning: historical origins, current research, and new directions

    Get PDF

    ํŒ๋งค์ด‰์ง„์„ ๋„์ž…ํ•œ ์ˆ˜์š” ๋ถˆํ™•์‹ค์„ฑ ์žฌ๊ณ ๊ด€๋ฆฌ ๋ชจํ˜•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2020. 8. ๋ฌธ์ผ๊ฒฝ.As the globalization of markets accelerates competition among companies, sales promotion, which refers to short-term incentives promoting sales of products or services, plays a prominent role. Although there are various types of sales promotions, such as price reduction, buy-x-get-y-free, and trade-in program, the common purpose is to induce the purchase of customers by offering benefits. This successful strategy has caught the attention of researchers, including operations management and supply chain management. Thus, various studies have been conducted to examine strategies for ongoing operations and to demonstrate the effects of the sales promotion, which are based on the strategic level. However, research at the tactical or operational level has been conducted insufficiently. This dissertation examines the inventory models considering (i) markdown sale, (ii) buy one get one free (BOGO), and (iii) trade-in program. First, the newsvendor model is considered. By introducing the decision variable, which represents the start time of markdown sale, the retailer can obtain the optimal combination of the start time of a markdown sale and an order quantity. Under certain conditions in a decentralized system, however, the start time of a markdown sale where the retailer obtains the highest profit is the least profitable for the manufacturer. To avoid irrational ordering behavior by a retailer against a manufacturer, a revenue-sharing contract is proposed. Second, the mobile application, ``My Own Refrigerator'', is considered in the inventory model. It enables customers to store BOGO products in their virtual storage for later use. That is, customers can drop by the store to pick up the extra freebies in the future. The promotion involves a high degree of uncertainty regarding the revisiting date because customers who buy the product do not need to take both products on the day of purchase. To deal with this uncertainty, we propose a robust multiperiod inventory model by addressing the approximation of a multistage stochastic optimization model. Third, the trade-in program is considered. It is one of the sales promotions that companies collect used old-generation products from customers and provide them with new-generation products at a discount price. It also helps to acquire the additional products which are required for the refurbishment service. A multiperiod stochastic inventory model based on the closed-loop supply chain system is proposed by incorporating the trade-in program and refurbishment service simultaneously. The stochastic optimization model is approximated to the robust counterpart, which features a deterministic second-order cone program.์‹œ์žฅ์˜ ์„ธ๊ณ„ํ™”์— ๋”ฐ๋ฅธ ๊ธฐ์—… ๊ฐ„์˜ ๊ฒฝ์Ÿ์ด ๊ฐ€์†ํ™”๋จ์— ๋”ฐ๋ผ, ๋‹จ๊ธฐ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ํ†ตํ•ด ๊ณ ๊ฐ์˜ ์ œํ’ˆ ๋˜๋Š” ์„œ๋น„์Šค ๊ตฌ๋งค๋ฅผ ์œ ๋„ํ•˜๋Š” ํŒ๋งค์ด‰์ง„์˜ ์—ญํ• ์ด ์ค‘์š”ํ•ด์กŒ๋‹ค. ๊ฐ€๊ฒฉ ์ธํ•˜, ํ–‰์‚ฌ์ƒํ’ˆ ์ฆ์ •, ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ํŒ๋งค์ด‰์ง„ ์ „๋žต์ด ์กด์žฌํ•˜์ง€๋งŒ, ๊ณตํ†ต๋œ ์ฃผ์š” ๋ชฉ์ ์€ ๊ธฐ์—…์ด ๊ณ ๊ฐ์—๊ฒŒ ํ˜œํƒ์„ ์ œ๊ณตํ•˜์—ฌ ๊ณ ๊ฐ์˜ ์ˆ˜์š”๋ฅผ ์ฆ๋Œ€์‹œํ‚ค๋Š” ๊ฒƒ์ด๋‹ค. ํŒ๋งค์ด‰์ง„์˜ ์„ฑ๊ณต์ ์ธ ์ „๋žต์€ ๊ฒฝ์˜๊ณผํ•™ ๋˜๋Š” ๊ณต๊ธ‰๋ง๊ด€๋ฆฌ ๋ถ„์•ผ๋ฅผ ํฌํ•จํ•œ ๊ด€๋ จ ํ•™๊ณ„์˜ ๊ด€์‹ฌ์„ ์ด๋Œ์—ˆ๋‹ค. ์ง€์†์ ์ธ ์šด์˜์„ ์œ„ํ•œ ์ „๋žต์„ ๊ฒ€ํ† ํ•˜๊ณ  ์ „๋žต์  ์ˆ˜์ค€ ๊ณ„ํš์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ํŒ๋งค ์ด‰์ง„์˜ ํšจ๊ณผ๋ฅผ ์ž…์ฆํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์šด์˜ ์ˆ˜์ค€์˜ ์†Œ๋งค์—…์ฒด ์ž…์žฅ์—์„œ์˜ ์—ฐ๊ตฌ๋Š” ๋ฏธํกํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” (i) ๋งˆํฌ ๋‹ค์šด (ii) buy one get one free (BOGO), ๋ฐ (iii) ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ์„ ๊ณ ๋ คํ•œ ์žฌ๊ณ ๊ด€๋ฆฌ๋ชจํ˜•์„ ๋‹ค๋ฃฌ๋‹ค. ๋จผ์ €, ์‹ ๋ฌธ๊ฐ€ํŒ์› ๋ชจํ˜•์— ๋งˆํฌ ๋‹ค์šด ์‹œ์ž‘ ์‹œ์ ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒฐ์ • ๋ณ€์ˆ˜๋ฅผ ๋„์ž…ํ•˜์—ฌ ์ตœ์ ์˜ ๋งˆํฌ ๋‹ค์šด ์‹œ์ž‘ ์‹œ์ ๊ณผ ์ฃผ๋ฌธ๋Ÿ‰์˜ ์กฐํ•ฉ์„ ์ œ๊ณตํ•˜๋Š” ๋ชจํ˜•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ถ„์‚ฐ ์‹œ์Šคํ…œ์˜ ํŠน์ • ์กฐ๊ฑด์—์„œ๋Š” ์†Œ๋งค์—…์ž๊ฐ€ ๊ฐ€์žฅ ๋†’์€ ์ด์ต์„ ์–ป๋Š” ์‹œ์ ์ด ์ œ์กฐ์—…์ž์—๊ฒŒ ๋‚ฎ์€ ์ˆ˜์ต์„ฑ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ œ์กฐ์—…์ž์— ๋Œ€ํ•œ ์†Œ๋งค์—…์ž์˜ ๋น„ํ•ฉ๋ฆฌ์  ์ฃผ๋ฌธ์„ ๋ง‰๊ธฐ ์œ„ํ•œ ์ด์ต๋ถ„๋ฐฐ๊ณ„์•ฝ์„ ์ œ์•ˆํ•œ๋‹ค. ์ด์ต๋ถ„๋ฐฐ๊ณ„์•ฝ์„ ํ†ตํ•œ ์ค‘์•™์ง‘๊ถŒํ™” ์‹œ์Šคํ…œ์€ ๋ถ„์‚ฐ ์‹œ์Šคํ…œ์—์„œ ์–ป์€ ์ด์ต์— ๋น„ํ•ด ์†Œ๋งค์—…์ž์™€ ์ œ์กฐ์—…์ž์˜ ์ด์ต์„ ํ–ฅ์ƒ์‹œํ‚ด์„ ์ˆ˜์น˜์‹คํ—˜์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ๋‘˜์งธ, ๋ชจ๋ฐ”์ผ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ``๋‚˜๋งŒ์˜ ๋ƒ‰์žฅ๊ณ ''๋ฅผ ๊ณ ๋ คํ•œ ์žฌ๊ณ ๋ชจํ˜•์„ ๊ณ ๋ คํ•œ๋‹ค. ์ด ์•ฑ์„ ํ†ตํ•ด BOGO ํ–‰์‚ฌ์ œํ’ˆ์„ ๊ตฌ๋งคํ•œ ๊ณ ๊ฐ์€ ์ฆ์ •ํ’ˆ์„ ๊ตฌ๋งค ๋‹น์ผ ๋‚  ๊ฐ€์ ธ๊ฐ€์ง€ ์•Š๊ณ  ๋ฏธ๋ž˜์— ์žฌ๋ฐฉ๋ฌธํ•˜์—ฌ ์ˆ˜๋ นํ•  ์ˆ˜ ์žˆ๋Š” ํ˜œํƒ์„ ๋ฐ›๋Š”๋‹ค. ํ•˜์ง€๋งŒ ์†Œ๋งค์—…์ž ์ž…์žฅ์—์„œ๋Š” ๊ณ ๊ฐ์ด ์ฆ์ •ํ’ˆ์„ ์–ธ์ œ ์ˆ˜๋ นํ•ด ๊ฐˆ ์ง€์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•˜๋ฉฐ ์ด๋Š” ๊ธฐ์กด์˜ ์žฌ๊ณ ๊ด€๋ฆฌ ์šด์˜๋ฐฉ์‹์—๋Š” ํ•œ๊ณ„์ ์ด ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ๊ฐ์˜ ์žฌ๋ฐฉ๋ฌธ์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์ถ”๊ณ„๊ณ„ํš ์žฌ๊ณ ๋ชจํ˜•์„ ์ˆ˜๋ฆฝํ•˜๋ฉฐ ์ด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ•๊ฑด์ตœ์ ํ™” ๋ชจํ˜•์œผ๋กœ ๊ทผ์‚ฌํ™”ํ•˜์˜€๋‹ค. ์…‹์งธ, ๋ฆฌํผ์„œ๋น„์Šค์™€ ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ์„ ๊ณ ๋ คํ•œ ํํšŒ๋กœ ๊ณต๊ธ‰๋ง ์‹œ์Šคํ…œ ๊ธฐ๋ฐ˜์˜ ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์žฌ๊ณ ๊ด€๋ฆฌ๋ชจํ˜•์„ ์ œ์•ˆํ•œ๋‹ค. ์‹ ์„ธ๋Œ€ ์ œํ’ˆ, ๋ฆฌํผ์„œ๋น„์Šค ๋ฐ ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ์— ๋Œ€ํ•œ ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์˜ ๋ถˆํ™•์‹คํ•œ ์ˆ˜์š”์— ๋Œ€ํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ฐ˜์˜ํ•จ์— ๋”ฐ๋ผ ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์ถ”๊ณ„๊ณ„ํš ์žฌ๊ณ ๋ชจํ˜•์ด ์ˆ˜๋ฆฝ๋œ๋‹ค. ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์ถ”๊ณ„๊ณ„ํš ์žฌ๊ณ ๋ชจํ˜•์˜ ๊ณ„์‚ฐ์ด ์–ด๋ ต๋‹ค๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ๊ฐ•๊ฑด์ตœ์ ํ™” ๋ชจํ˜•์œผ๋กœ ๊ทผ์‚ฌํ™”ํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 1.1 Sales promotion 1 1.2 Inventory management 3 1.3 Research motivations 6 1.4 Research contents and contributions 8 1.5 Outline of the dissertation 10 Chapter 2 Optimal Start Time of a Markdown Sale Under a Two-Echelon Inventory System 11 2.1 Introduction and literature review 11 2.2 Problem description 17 2.3 Analysis of the decentralized system 21 2.3.1 Newsvendor model for a retailer 21 2.3.2 Solution procedure for an optimal combination of the start time of the markdown sale and the order quantity 25 2.3.3 Profi t function of a manufacturer 25 2.3.4 Numerical experiments of the decentralized system 27 2.4 Analysis of a centralized system 35 2.4.1 Revenue-sharing contract 35 2.4.2 Numerical experiments of the centralized system 38 2.5 Summary 40 2.5.1 Managerial insights 41 Chapter 3 Robust Multiperiod Inventory Model with a New Type of Buy One Get One Promotion: "My Own Refrigerator" 43 3.1 Introduction and literature review 43 3.2 Problem description 51 3.2.1 Demand modeling 52 3.2.2 Sequences of the ordering decision 54 3.3 Mathematical formulation of the IMMOR 56 3.3.1 Mathematical formulation of the IMMOR under the deterministic demand 58 3.3.2 Mathematical formulation of the IMMOR under the stochastic demand 58 3.3.3 Distributionally robust optimization approach for the IMMOR 60 3.4 Computational experiments 76 3.4.1 Experiment 1: tractability of the RIMMOR 77 3.4.2 Experiment 2: robustness of the RIMMOR 78 3.4.3 Experiment 3: e ect of duration of the expiry date under the different customers' revisiting propensities 78 3.5 Summary 83 3.5.1 Managerial insights 83 Chapter 4 Robust Multiperiod Inventory Model Considering Refurbishment Service and Trade-in Program 85 4.1 Introduction 85 4.2 Literature review 91 4.2.1 Effects of the trade-in program and strategic-level decisions for the trade-in program 91 4.2.2 Inventory or lot-sizing model in a closed-loop supply chain system 94 4.2.3 Distinctive features of this research 97 4.3 Problem description 100 4.3.1 Demand modeling 103 4.3.2 Decision of the inventory manager 105 4.4 Mathematical formulation 108 4.4.1 Mathematical formulation of the IMRSTIP under the deterministic demand model 108 4.4.2 Mathematical formulation of the IMRSTIP under the stochastic demand model 110 4.4.3 Distributionally robust optimization approach for the IMRSTIP 111 4.5 Computational experiments 125 4.5.1 Demand process 125 4.5.2 Experiment 1: tractability of the RIMRSTIP 128 4.5.3 Experiment 2: approximation error from the expected value given perfect information 129 4.5.4 Experiment 3: protection against realized uncertain factors 130 4.5.5 Experiment 4: di erences between modeling demands from VARMA and ARMA 131 4.5.6 Experiments 5 and 6: comparisons of backlogged refurbishment service with or without trade-in program 133 4.6 Summary 136 Chapter 5 Conclusions 138 5.1 Summary 138 5.2 Future research 140 Bibliography 142 Chapter A 160 A.1 160 A.2 163 A.3 163 A.4 164 A.5 165 A.6 166 Chapter B 168 B.1 168 B.2 171 B.3 172 Chapter C 174 C.1 174 C.2 174 ๊ตญ๋ฌธ์ดˆ๋ก 179Docto
    • โ€ฆ
    corecore