8,243 research outputs found

    Space Station Human Factors Research Review. Volume 4: Inhouse Advanced Development and Research

    Get PDF
    A variety of human factors studies related to space station design are presented. Subjects include proximity operations and window design, spatial perceptual issues regarding displays, image management, workload research, spatial cognition, virtual interface, fault diagnosis in orbital refueling, and error tolerance and procedure aids

    Analysis of Software Design Patterns in Human Cognitive Performance Experiments

    Get PDF
    As Air Force operations continue to move toward the use of more autonomous systems and more human-machine teaming in general, there is a corresponding need to swiftly evaluate systems with these capabilities. We support this development through software design improvements of the execution of human cognitive performance experiments. This thesis sought to answer the following two research questions addressing the core functionality that these experiments rely on for execution and analysis: 1) What data infrastructure software requirements are necessary to execute the experimental design of human cognitive performance experiments? 2) How effectively does a central data mediator design pattern meet the time-alignment requirements of human cognitive performance studies? To answer these questions, this research contributes an exploration of establishing design patterns to reduce the cost of conducting human cognitive performance studies. The activities included in this exploration were a method for requirements gathering, a meta-study of recent experiments, and a design pattern evaluation all focused on the experimental design domain

    Collaborative Control for a Robotic Wheelchair: Evaluation of Performance, Attention, and Workload

    Get PDF
    Powered wheelchair users often struggle to drive safely and effectively and in more critical cases can only get around when accompanied by an assistant. To address these issues, we propose a collaborative control mechanism that assists the user as and when they require help. The system uses a multiple–hypotheses method to predict the driver’s intentions and if necessary, adjusts the control signals to achieve the desired goal safely. The main emphasis of this paper is on a comprehensive evaluation, where we not only look at the system performance, but, perhaps more importantly, we characterise the user performance, in an experiment that combines eye–tracking with a secondary task. Without assistance, participants experienced multiple collisions whilst driving around the predefined route. Conversely, when they were assisted by the collaborative controller, not only did they drive more safely, but they were able to pay less attention to their driving, resulting in a reduced cognitive workload. We discuss the importance of these results and their implications for other applications of shared control, such as brain–machine interfaces, where it could be used to compensate for both the low frequency and the low resolution of the user input

    NtoM: a concept of operations for pilots of multiple remotely piloted aircraft

    Get PDF
    The concept of operations proposed here pursues the feasibility, from a human factors perspective, of having a single pilot/aircrew controlling several remotely piloted aircraft systems at once in non-segregated airspace. To meet such feasibility, this multitasking must be safe and not interfere with the job of the air traffic controllers due to delays or errors associated with parallel piloting. To that end, a set of measures at several levels is suggested, which includes workload prediction and balance, pilot activity monitoring, and a special emphasis on interface usability and the pilot’s situational awareness. The concept relies greatly on the exploitation of the potential of Controller-Pilot Data Link Communications, anticipating future widespread implementation and full use. Experiments comparing the performance of the same pseudo-pilots before and after the implementation of part of the measures showed a decrease in the number of errors, oversights and subjective stress.Peer ReviewedPostprint (published version

    Autonomous Tissue Scanning under Free-Form Motion for Intraoperative Tissue Characterisation

    Full text link
    In Minimally Invasive Surgery (MIS), tissue scanning with imaging probes is required for subsurface visualisation to characterise the state of the tissue. However, scanning of large tissue surfaces in the presence of deformation is a challenging task for the surgeon. Recently, robot-assisted local tissue scanning has been investigated for motion stabilisation of imaging probes to facilitate the capturing of good quality images and reduce the surgeon's cognitive load. Nonetheless, these approaches require the tissue surface to be static or deform with periodic motion. To eliminate these assumptions, we propose a visual servoing framework for autonomous tissue scanning, able to deal with free-form tissue deformation. The 3D structure of the surgical scene is recovered and a feature-based method is proposed to estimate the motion of the tissue in real-time. A desired scanning trajectory is manually defined on a reference frame and continuously updated using projective geometry to follow the tissue motion and control the movement of the robotic arm. The advantage of the proposed method is that it does not require the learning of the tissue motion prior to scanning and can deal with free-form deformation. We deployed this framework on the da Vinci surgical robot using the da Vinci Research Kit (dVRK) for Ultrasound tissue scanning. Since the framework does not rely on information from the Ultrasound data, it can be easily extended to other probe-based imaging modalities.Comment: 7 pages, 5 figures, ICRA 202

    Cognitive Processing Disruptions Affecting Flight Deck Performance: Implications for Cognitive Resilience

    Get PDF
    The flight deck of a commercial aircraft has become progressively digitized and operates in multiple modes with displays and indicators that require increasing levels of comprehension. Examining several aspects of cognitive processing is important to understand how threats to safety might occur and what actions might be taken to reduce severity or to eliminate the threat altogether. This paper presents the elements of cognition to consider, relevant characteristics of working memory and cognitive processing speed, types of disruptions and how they are addressed, results from overload or confusion, and the need for effective cognitive resilience to recover and repair the threat. Data from Aviation Safety Reporting System (ASRS) databases indicate 30% of cases could represent a distinct threat of cognitive overload. These are evaluated to identify sources and likelihood for surprise disruptions and to assess the potential of cognitive resilience. Adaptation of the CRMTEM model is considered for potential application in training and investigations

    Autogenic-feedback training improves pilot performance during emergency flying conditions

    Get PDF
    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. The effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance was examined. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group comprised four pilots of HC-130 Hercules aircraft and four HH-65 Dolphin helicopter pilots; the control group comprised three pilots of HC-130's and six Dolphin helicopter pilots. During an initial flight physiological data were recorded for each crewmember and individual crew performance and rated by an instructor pilot. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training (AFT). The remaining subjects received no training. During a second flight, treatment subjects showed significant improvement in performance, while controls did not improve. The results indicate that AFT management of high states of physiological arousal may improve pilot performance during emergency flying conditions

    A Psychophysiological Assessment of the Efficacy of Event-Related Potentials and Electroencephalogram for Adaptive Task Allocation

    Get PDF
    The present study was designed to test the efficacy of using Electroencephalogram (EEG) and Event-Related Potentials (ERPs) for making task allocations decisions. Thirty-six participants were randomly assigned to an experimental, yoked, or control group condition. Under the experimental condition, a compensatory tracking task was switched between manual and automatic task modes based upon the participant\u27s EEG. ERPs were also gathered to an auditory, oddball task. Participants in the yoked condition performed the same tasks under the exact sequence of task allocations that participants in the experimental group experienced. The control condition consisted of a random sequence of task allocations that was representative of each participant in the experimental group condition. Therefore, the design allowed a test of whether the performance and workload benefits seen in previous studies using this biocybernetic system were due to adaptive aiding or merely to the increase in task mode allocations. The results showed that the use of adaptive aiding improved performance and lowered subjective workload under negative feedback as predicted. Additionally, participants in the adaptive group had significantly lower tracking errors scores and NASA-TLX ratings than participants in either the yoked or control group conditions. Furthermore, the amplitudes of the N1 and P3 ERP components were significantly larger under the experimental group condition than under either the yoked or control group conditions. These results are discussed in terms of their implications for adaptive automation design

    Data, Data Everywhere, and Still Too Hard to Link: Insights from User Interactions with Diabetes Apps

    Get PDF
    For those with chronic conditions, such as Type 1 diabetes, smartphone apps offer the promise of an affordable, convenient, and personalized disease management tool. How- ever, despite significant academic research and commercial development in this area, diabetes apps still show low adoption rates and underwhelming clinical outcomes. Through user-interaction sessions with 16 people with Type 1 diabetes, we provide evidence that commonly used interfaces for diabetes self-management apps, while providing certain benefits, can fail to explicitly address the cognitive and emotional requirements of users. From analysis of these sessions with eight such user interface designs, we report on user requirements, as well as interface benefits, limitations, and then discuss the implications of these findings. Finally, with the goal of improving these apps, we identify 3 questions for designers, and review for each in turn: current shortcomings, relevant approaches, exposed challenges, and potential solutions

    Event-driven displays for manipulator control

    Get PDF
    The problem of constructing event-related information displays from multidimensional data generated by proximity, force-torque and tactile sensors integrated with the terminal device of a remotely controlled manipulator is considered. Event-driven displays are constructed by using appropriate algorithms acting on sensory data in real time. Event-driven information displays lessen the operator's workload and improve control performance. The paper describes and discusses several event-driven display examples that were implemented in the JPL teleoperator project, including a brief outline of the data handling system which drives the graphics display in real time. The paper concludes with a discussion of future plans to integrate event-driven displays with visual (TV) information
    corecore