981 research outputs found

    Multicore-optimized wavefront diamond blocking for optimizing stencil updates

    Full text link
    The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multi-core wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor

    Software concepts and algorithms for an efficient and scalable parallel finite element method

    Get PDF
    Software packages for the numerical solution of partial differential equations (PDEs) using the finite element method are important in different fields of research. The basic data structures and algorithms change in time, as the user\'s requirements are growing and the software must efficiently use the newest highly parallel computing systems. This is the central point of this work. To make efficiently use of parallel computing systems with growing number of independent basic computing units, i.e.~CPUs, we have to combine data structures and algorithms from different areas of mathematics and computer science. Two crucial parts are a distributed mesh and parallel solver for linear systems of equations. For both there exists multiple independent approaches. In this work we argue that it is necessary to combine both of them to allow for an efficient and scalable implementation of the finite element method. First, we present concepts, data structures and algorithms for distributed meshes, which allow for local refinement. The central point of our presentation is to provide arbitrary geometrical information of the mesh and its distribution to the linear solver. A large part of the overall computing time of the finite element method is spend by the linear solver. Thus, its parallelization is of major importance. Based on the presented concept for distributed meshes, we preset several different linear solver methods. Hereby we concentrate on general purpose linear solver, which makes only little assumptions about the systems to be solver. For this, a new FETI-DP (Finite Element Tearing and Interconnect - Dual Primal) method is proposed. Those the standard FETI-DP method is quasi optimal from a mathematical point of view, its not possible to implement it efficiently for a large number of processors (> 10,000). The main reason is a relatively small but globally distributed coarse mesh problem. To circumvent this problem, we propose a new multilevel FETI-DP method which hierarchically decompose the coarse grid problem. This leads to a more local communication pattern for solver the coarse grid problem and makes it possible to scale for a large number of processors. Besides the parallelization of the finite element method, we discuss an approach to speed up serial computations of existing finite element packages. In many computations the PDE to be solved consists of more than one variable. This is especially the case in multi-physics modeling. Observation show that in many of these computation the solution structure of the variables is different. But in the standard finite element method, only one mesh is used for the discretization of all variables. We present a multi-mesh finite element method, which allows to discretize a system of PDEs with two independently refined meshes.Softwarepakete zur numerischen Lösung partieller Differentialgleichungen mit Hilfe der Finiten-Element-Methode sind in vielen Forschungsbereichen ein wichtiges Werkzeug. Die dahinter stehenden Datenstrukturen und Algorithmen unterliegen einer ständigen Neuentwicklung um den immer weiter steigenden Anforderungen der Nutzergemeinde gerecht zu werden und um neue, hochgradig parallel Rechnerarchitekturen effizient nutzen zu können. Dies ist auch der Kernpunkt dieser Arbeit. Um parallel Rechnerarchitekturen mit einer immer höher werdenden Anzahl an von einander unabhängigen Recheneinheiten, z.B.~Prozessoren, effizient Nutzen zu können, müssen Datenstrukturen und Algorithmen aus verschiedenen Teilgebieten der Mathematik und Informatik entwickelt und miteinander kombiniert werden. Im Kern sind dies zwei Bereiche: verteilte Gitter und parallele Löser für lineare Gleichungssysteme. Für jedes der beiden Teilgebiete existieren unabhängig voneinander zahlreiche Ansätze. In dieser Arbeit wird argumentiert, dass für hochskalierbare Anwendungen der Finiten-Elemente-Methode nur eine Kombination beider Teilgebiete und die Verknüpfung der darunter liegenden Datenstrukturen eine effiziente und skalierbare Implementierung ermöglicht. Zuerst stellen wir Konzepte vor, die parallele verteile Gitter mit entsprechenden Adaptionstrategien ermöglichen. Zentraler Punkt ist hier die Informationsaufbereitung für beliebige Löser linearer Gleichungssysteme. Beim Lösen partieller Differentialgleichung mit der Finiten Elemente Methode wird ein großer Teil der Rechenzeit für das Lösen der dabei anfallenden linearen Gleichungssysteme aufgebracht. Daher ist deren Parallelisierung von zentraler Bedeutung. Basierend auf dem vorgestelltem Konzept für verteilten Gitter, welches beliebige geometrische Informationen für die linearen Löser aufbereiten kann, präsentieren wir mehrere unterschiedliche Lösermethoden. Besonders Gewicht wird dabei auf allgemeine Löser gelegt, die möglichst wenig Annahmen über das zu lösende System machen. Hierfür wird die FETI-DP (Finite Element Tearing and Interconnect - Dual Primal) Methode weiterentwickelt. Obwohl die FETI-DP Methode vom mathematischen Standpunkt her als quasi-optimal bezüglich der parallelen Skalierbarkeit gilt, kann sie für große Anzahl an Prozessoren (> 10.000) nicht mehr effizient implementiert werden. Dies liegt hauptsächlich an einem verhältnismäßig kleinem aber global verteilten Grobgitterproblem. Wir stellen eine Multilevel FETI-DP Methode vor, die dieses Problem durch eine hierarchische Komposition des Grobgitterproblems löst. Dadurch wird die Kommunikation entlang des Grobgitterproblems lokalisiert und die Skalierbarkeit der FETI-DP Methode auch für große Anzahl an Prozessoren sichergestellt. Neben der Parallelisierung der Finiten-Elemente-Methode beschäftigen wir uns in dieser Arbeit mit der Ausnutzung von bestimmten Voraussetzung um auch die sequentielle Effizienz bestehender Implementierung der Finiten-Elemente-Methode zu steigern. In vielen Fällen müssen partielle Differentialgleichungen mit mehreren Variablen gelöst werden. Sehr häufig ist dabei zu beobachten, insbesondere bei der Modellierung mehrere miteinander gekoppelter physikalischer Phänomene, dass die Lösungsstruktur der unterschiedlichen Variablen entweder schwach oder vollständig voneinander entkoppelt ist. In den meisten Implementierungen wird dabei nur ein Gitter zur Diskretisierung aller Variablen des Systems genutzt. Wir stellen eine Finite-Elemente-Methode vor, bei der zwei unabhängig voneinander verfeinerte Gitter genutzt werden können um ein System partieller Differentialgleichungen zu lösen

    The LifeV library: engineering mathematics beyond the proof of concept

    Get PDF
    LifeV is a library for the finite element (FE) solution of partial differential equations in one, two, and three dimensions. It is written in C++ and designed to run on diverse parallel architectures, including cloud and high performance computing facilities. In spite of its academic research nature, meaning a library for the development and testing of new methods, one distinguishing feature of LifeV is its use on real world problems and it is intended to provide a tool for many engineering applications. It has been actually used in computational hemodynamics, including cardiac mechanics and fluid-structure interaction problems, in porous media, ice sheets dynamics for both forward and inverse problems. In this paper we give a short overview of the features of LifeV and its coding paradigms on simple problems. The main focus is on the parallel environment which is mainly driven by domain decomposition methods and based on external libraries such as MPI, the Trilinos project, HDF5 and ParMetis. Dedicated to the memory of Fausto Saleri.Comment: Review of the LifeV Finite Element librar

    A high-performance open-source framework for multiphysics simulation and adjoint-based shape and topology optimization

    Get PDF
    The first part of this thesis presents the advances made in the Open-Source software SU2, towards transforming it into a high-performance framework for design and optimization of multiphysics problems. Through this work, and in collaboration with other authors, a tenfold performance improvement was achieved for some problems. More importantly, problems that had previously been impossible to solve in SU2, can now be used in numerical optimization with shape or topology variables. Furthermore, it is now exponentially simpler to study new multiphysics applications, and to develop new numerical schemes taking advantage of modern high-performance-computing systems. In the second part of this thesis, these capabilities allowed the application of topology optimiza- tion to medium scale fluid-structure interaction problems, using high-fidelity models (nonlinear elasticity and Reynolds-averaged Navier-Stokes equations), which had not been done before in the literature. This showed that topology optimization can be used to target aerodynamic objectives, by tailoring the interaction between fluid and structure. However, it also made ev- ident the limitations of density-based methods for this type of problem, in particular, reliably converging to discrete solutions. This was overcome with new strategies to both guarantee and accelerate (i.e. reduce the overall computational cost) the convergence to discrete solutions in fluid-structure interaction problems.Open Acces

    Graphics hardware acceleration for rotorcraft simulations

    Get PDF
    Interest in scientific programming using graphics processing units (GPUs) has exploded in recent years. The advent of NVIDIA\u27s CUDA programming language in early 2007 enabled GPU acceleration of numerical software to become mainstream. Relative to central processing units (CPUs), these devices have extremely high floating point operation capability and memory bandwidth. Combined with relatively low cost, they are attractive alternatives to more expensive traditional supercomputers. Porting existing computational fluid dynamics methods to the new hardware is not always straightforward. Modern GPUs are massively parallel, some consisting of over 400 processors, utilizing a unique hierarchy of computational units and memory management. Fully exploiting this architecture for CFD solvers requires the development of new algorithms tailored to the devices. To that end, this work presents a solution method for the Navier-Stokes equations using the SIMPLER algorithm on structured Cartesian grids. A block-iterative scheme with a parallel recursive tridiagonal solver is used for the discretized equations, giving considerable performance advantages over prior point-iterative implementations. Using a $200 GPU in a standard workstation, accelerations of over 20x are observed compared to a serial CPU implementation for rotorcraft simulations

    HPC-enabling technologies for high-fidelity combustion simulations

    Get PDF
    With the increase in computational power in the last decade and the forthcoming Exascale supercomputers, a new horizon in computational modelling and simulation is envisioned in combustion science. Considering the multiscale and multiphysics characteristics of turbulent reacting flows, combustion simulations are considered as one of the most computationally demanding applications running on cutting-edge supercomputers. Exascale computing opens new frontiers for the simulation of combustion systems as more realistic conditions can be achieved with high-fidelity methods. However, an efficient use of these computing architectures requires methodologies that can exploit all levels of parallelism. The efficient utilization of the next generation of supercomputers needs to be considered from a global perspective, that is, involving physical modelling and numerical methods with methodologies based on High-Performance Computing (HPC) and hardware architectures. This review introduces recent developments in numerical methods for large-eddy simulations (LES) and direct-numerical simulations (DNS) to simulate combustion systems, with focus on the computational performance and algorithmic capabilities. Due to the broad scope, a first section is devoted to describe the fundamentals of turbulent combustion, which is followed by a general description of state-of-the-art computational strategies for solving these problems. These applications require advanced HPC approaches to exploit modern supercomputers, which is addressed in the third section. The increasing complexity of new computing architectures, with tightly coupled CPUs and GPUs, as well as high levels of parallelism, requires new parallel models and algorithms exposing the required level of concurrency. Advances in terms of dynamic load balancing, vectorization, GPU acceleration and mesh adaptation have permitted to achieve highly-efficient combustion simulations with data-driven methods in HPC environments. Therefore, dedicated sections covering the use of high-order methods for reacting flows, integration of detailed chemistry and two-phase flows are addressed. Final remarks and directions of future work are given at the end. }The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the CoEC project, grant agreement No. 952181 and the CoE RAISE project grant agreement no. 951733.Peer ReviewedPostprint (published version

    HPCCP/CAS Workshop Proceedings 1998

    Get PDF
    This publication is a collection of extended abstracts of presentations given at the HPCCP/CAS (High Performance Computing and Communications Program/Computational Aerosciences Project) Workshop held on August 24-26, 1998, at NASA Ames Research Center, Moffett Field, California. The objective of the Workshop was to bring together the aerospace high performance computing community, consisting of airframe and propulsion companies, independent software vendors, university researchers, and government scientists and engineers. The Workshop was sponsored by the HPCCP Office at NASA Ames Research Center. The Workshop consisted of over 40 presentations, including an overview of NASA's High Performance Computing and Communications Program and the Computational Aerosciences Project; ten sessions of papers representative of the high performance computing research conducted within the Program by the aerospace industry, academia, NASA, and other government laboratories; two panel sessions; and a special presentation by Mr. James Bailey
    • …
    corecore