348 research outputs found

    Cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging

    Full text link
    The implementation challenges of cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging are discussed and work on the subject is reviewed. System architecture and sensor fusion are identified as key challenges. A partially decentralized system architecture based on step-wise inertial navigation and step-wise dead reckoning is presented. This architecture is argued to reduce the computational cost and required communication bandwidth by around two orders of magnitude while only giving negligible information loss in comparison with a naive centralized implementation. This makes a joint global state estimation feasible for up to a platoon-sized group of agents. Furthermore, robust and low-cost sensor fusion for the considered setup, based on state space transformation and marginalization, is presented. The transformation and marginalization are used to give the necessary flexibility for presented sampling based updates for the inter-agent ranging and ranging free fusion of the two feet of an individual agent. Finally, characteristics of the suggested implementation are demonstrated with simulations and a real-time system implementation.Comment: 14 page

    Filtering and Tracking for Pedestrian Dead-Reckoning System.

    Full text link
    This thesis proposes a leader-follower system in which a robot, equipped with relatively sophisticated sensors, tracks and follows a human whose equipped with a low-fidelity odometry sensor called a Pedestrian Dead-Reckoning (PDR) device. Such a system is useful for "pack mule" applications, where the robot carries heavy loads for the humans. The proposed system is not dependent upon GPS, which can be jammed or obstructed. This human-following capability is made possible due to several novel contributions. First, we perform an in-depth analysis of our Pedestrian Dead-Reckoning (PDR) system with the Unscented Kalman Filter (UKF) and models of varying complexity. We propose an extension that limits elevation errors, and show that our proposed method reduces errors by 63% compared to a baseline method. We also propose a method for integrating magnetometers into the PDR framework, which automatically and opportunistically calibrates for hard/soft-iron effects and sensor misalignments. In a series of large-scale experiments, we show that this system achieves positional errors of less than 1.9% of the distance traveled. Finally, we propose methods that allow a robot to use LIDAR data to improve the accuracy of the robot's estimate of the human’s trajectory. These methods include: 1) a particle filter method and 2) two multi-hypothesis maximum-likelihood approaches based on stochastic gradient descent optimization. We show that the proposed approaches are able to track human trajectories in several synthetic and real-world datasets.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113500/1/suratkw_1.pd

    Providing location everywhere

    Get PDF
    Anacleto R., Figueiredo L., Novais P., Almeida A., Providing Location Everywhere, in Progress in Artificial Intelligence, Antunes L., Sofia Pinto H. (eds), Lecture Notes in Artificial Intelligence 7026, Springer-Verlag, ISBN 978-3-540-24768-2, (Proceedings of the 15th Portuguese conference on Artificial Intelligence - EPIA 2011, Lisboa, Portugal), pp 15-28, 2011.The ability to locate an individual is an essential part of many applications, specially the mobile ones. Obtaining this location in an open environment is relatively simple through GPS (Global Positioning System), but indoors or even in dense environments this type of location system doesn’t provide a good accuracy. There are already systems that try to suppress these limitations, but most of them need the existence of a structured environment to work. Since Inertial Navigation Systems (INS) try to suppress the need of a structured environment we propose an INS based on Micro Electrical Mechanical Systems (MEMS) that is capable of, in real time, compute the position of an individual everywhere

    The four key challenges of advanced multisensor navigation and positioning

    Get PDF
    The next generation of navigation and positioning systems must provide greater accuracy and reliability in a range of challenging environments to meet the needs of a variety of mission-critical applications. No single navigation technology is robust enough to meet these requirements on its own, so a multisensor solution is required. Although many new navigation and positioning methods have been developed in recent years, little has been done to bring them together into a robust, reliable, and cost-effective integrated system. To achieve this, four key challenges must be met: complexity, context, ambiguity, and environmental data handling. This paper addresses each of these challenges. It describes the problems, discusses possible approaches, and proposes a program of research and standardization activities to solve them. The discussion is illustrated with results from research into urban GNSS positioning, GNSS shadow matching, environmental feature matching, and context detection

    Personal Navigation Based on Wireless Networks and Inertial Sensors

    Get PDF
    Tato práce se zaměřuje na vývoj navigačního algoritmu pro systémy vhodné k lokalizaci osob v budovách a městských prostorech. Vzhledem k požadovaným nízkým nákladům na výsledný navigační systém byla uvažována integrace levných inerciálních senzorů a určování vzdálenosti na základě měření v bezdrátových sítích. Dále bylo předpokládáno, že bezdrátová síť bude určena k jiným účelům (např: měření a regulace), než lokalizace, proto bylo použito měření síly bezdrátového signálu. Kvůli snížení značné nepřesnosti této metody, byla navrhnuta technika mapování ztrát v bezdrátovém kanálu. Nejprve jsou shrnuty různé modely senzorů a prostředí a ty nejvhodnější jsou poté vybrány. Jejich efektivní a nové využití v navigační úloze a vhodná fůze všech dostupných informací jsou hlavní cíle této práce.This thesis deals with navigation system based on wireless networks and inertial sensors. The work aims at a development of positioning algorithm suitable for low-cost indoor or urban pedestrian navigation application. The sensor fusion was applied to increase the localization accuracy. Due to required low application cost only low grade inertial sensors and wireless network based ranging were taken into account. The wireless network was assumed to be preinstalled due to other required functionality (for example: building control) therefore only received signal strength (RSS) range measurement technique was considered. Wireless channel loss mapping method was proposed to overcome the natural uncertainties and restrictions in the RSS range measurements. The available sensor and environment models are summarized first and the most appropriate ones are selected secondly. Their effective and novel application in the navigation task, and favorable fusion (Particle filtering) of all available information are the main objectives of this thesis.

    Inertial sensors for smartphones navigation

    Get PDF
    The advent of smartphones and tablets, means that we can constantly get informa- tion on our current geographical location. These devices include not only GPS/GNSS chipsets but also mass-market inertial platforms that can be used to plan activities, share locations on social networks, and also to perform positioning in indoor and outdoor scenarios. This paper shows the performance of smartphones and their inertial sensors in terms of gaining information about the user’s current geographical loca- tion considering an indoor navigation scenario. Tests were carried out to determine the accuracy and precision obtainable with internal and external sensors. In terms of the attitude and drift estimation with an updating interval equal to 1 s, 2D accuracies of about 15 cm were obtained with the images. Residual benefits were also obtained, however, for large intervals, e.g. 2 and 5 s, where the accuracies decreased to 50 cm and 2.2 m, respectively

    Wheel-SLAM: Simultaneous Localization and Terrain Mapping Using One Wheel-mounted IMU

    Full text link
    A reliable pose estimator robust to environmental disturbances is desirable for mobile robots. To this end, inertial measurement units (IMUs) play an important role because they can perceive the full motion state of the vehicle independently. However, it suffers from accumulative error due to inherent noise and bias instability, especially for low-cost sensors. In our previous studies on Wheel-INS \cite{niu2021, wu2021}, we proposed to limit the error drift of the pure inertial navigation system (INS) by mounting an IMU to the wheel of the robot to take advantage of rotation modulation. However, Wheel-INS still drifted over a long period of time due to the lack of external correction signals. In this letter, we propose to exploit the environmental perception ability of Wheel-INS to achieve simultaneous localization and mapping (SLAM) with only one IMU. To be specific, we use the road bank angles (mirrored by the robot roll angles estimated by Wheel-INS) as terrain features to enable the loop closure with a Rao-Blackwellized particle filter. The road bank angle is sampled and stored according to the robot position in the grid maps maintained by the particles. The weights of the particles are updated according to the difference between the currently estimated roll sequence and the terrain map. Field experiments suggest the feasibility of the idea to perform SLAM in Wheel-INS using the robot roll angle estimates. In addition, the positioning accuracy is improved significantly (more than 30\%) over Wheel-INS. The source code of our implementation is publicly available (https://github.com/i2Nav-WHU/Wheel-SLAM).Comment: Accepted to IEEE Robotics and Automation Letter
    corecore