199 research outputs found

    Optimization of a dynamic supply portfolio considering risks and discount’s constraints

    Get PDF
    Purpose: Nowadays finding reliable suppliers in the global supply chains has become so important for success, because reliable suppliers would lead to a reliable supply and besides that orders of customer are met effectively . Yet, there is little empirical evidence to support this view, hence the purpose of this paper is to fill this need by considering risk in order to find the optimum supply portfolio. Design/methodology/approach: This paper proposes a multi objective model for the supplier selection portfolio problem that uses conditional value at risk (CVaR) criteria to control the risks of delayed, disrupted and defected supplies via scenario analysis. Also we consider discount’s constraints which are common assumptions in supplier selection problems. The proposed approach is capable of determining the optimal supply portfolio by calculating value-at-risk and minimizing conditional value-at-risk. In this study the Reservation Level driven Tchebycheff Procedure (RLTP) which is one of the reference point methods, is used to solve small size of our model through coding in GAMS. As our model is NP-hard; a meta-heuristic approach, Non-dominated Sorting Genetic Algorithm (NSGA) which is one of the most efficient methods for optimizing multi objective models, is applied to solve large scales of our model. Findings and Originality/value: In order to find a dynamic supply portfolio, we developed a Mixed Integer Linear Programming (MILP) model which contains two objectives. One objective minimizes the cost and the other minimizes the risks of delayed, disrupted and defected supplies. CVaR is used as the risk controlling method which emphases on low-probability, high-consequence events. Discount option as a common offer from suppliers is also implanted in the proposed model. Our findings show that the proposed model can help in optimization of a dynamic supplier selection portfolio with controlling the corresponding risks for large scales of real word problems. Practical implications: To approve the capability of our model various numerical examples are made and non-dominated solutions are generated. Sensitive analysis is made for determination of the most important factors. The results shows that how a dynamic supply portfolio would disperse the allocation of orders among the suppliers combined with the allocation of orders among the planning periods, in order to hedge against the risks of delayed, disrupted and defected supplies. Originality/value: This paper provides a novel multi objective model for supplier selection portfolio problem that is capable of controlling delayed, disrupted and defected supplies via scenario analysis. Also discounts, as an option offered from suppliers, are embedded in the model. Due to the large size of the real problems in the field of supplier selection portfolio a meta-heuristic method, NSGA II, is presented for solving the multi objective model. The chromosome represented for the proposed solving methodology is unique and is another contribution of this paper which showed to be adaptive with the essence of supplier selection portfolio problemPeer Reviewe

    The MOEADr Package – A Component-Based Framework for Multiobjective Evolutionary Algorithms Based on Decomposition

    Get PDF
    Multiobjective Evolutionary Algorithms based on Decomposition (MOEA/D) represent a widely used class of population-based metaheuristics for the solution of multicriteria optimization problems. We introduce the MOEADr package, which offers many of these variants as instantiations of a component-oriented framework. This approach contributes for easier reproducibility of existing MOEA/D variants from the literature, as well as for faster development and testing of new composite algorithms. The package offers an standardized, modular implementation of MOEA/D based on this framework, which was designed aiming at providing researchers and practitioners with a standard way to discuss and express MOEA/D variants. In this paper we introduce the design principles behind the MOEADr package, as well as its current components. Three case studies are provided to illustrate the main aspects of the package

    An evolutionary model to mine high expected utility patterns from uncertain databases

    Get PDF
    In recent decades, mobile or the Internet of Thing (IoT) devices are dramatically increasing in many domains and applications. Thus, a massive amount of data is generated and produced. Those collected data contain a large amount of interesting information (i.e., interestingness, weight, frequency, or uncertainty), and most of the existing and generic algorithms in pattern mining only consider the single object and precise data to discover the required information. Meanwhile, since the collected information is huge, and it is necessary to discover meaningful and up-to-date information in a limit and particular time. In this paper, we consider both utility and uncertainty as the majority objects to efficiently mine the interesting high expected utility patterns (HEUPs) in a limit time based on the multi-objective evolutionary framework. The benefits of the designed model (called MOEA-HEUPM) can discover the valuable HEUPs without pre-defined threshold values (i.e., minimum utility and minimum uncertainty) in the uncertain environment. Two encoding methodologies are also considered in the developed MOEA-HEUPM to show its effectiveness. Based on the developed MOEA-HEUPM model, the set of non-dominated HEUPs can be discovered in a limit time for decision-making. Experiments are then conducted to show the effectiveness and efficiency of the designed MOEA-HEUPM model in terms of convergence, hypervolume and number of the discovered patterns compared to the generic approaches.acceptedVersio

    A Preference-guided Multiobjective Evolutionary Algorithm based on Decomposition

    Get PDF
    Multiobjective evolutionary algorithms based on decomposition (MOEA/Ds) represent a class of widely employed problem solvers for multicriteria optimization problems. In this work we investigate the adaptation of these methods for incorporating preference information prior to the optimization, so that the search process can be biased towards a Pareto-optimal region that better satisfies the aspirations of a decision-making entity. The incorporation of the Preference-based Adaptive Region-of-interest (PAR) framework into the MOEA/D requires only the modification of the reference points used within the scalarization function, which in principle allows a straightforward use in more sophisticated versions of the base algorithm. Experimental results using the UF benchmark set suggest gains in diversity within the region of interest, without significant losses in convergence

    Using ELECTRE TRI outranking method to sort MOMILP nondominated solutions

    Get PDF
    Several interactive methods exist to identify nondominated solutions in a Multiple Objective Mixed Integer Linear Program. But what if the Decision Maker is also interested in sorting those solutions (assigning them to pre-established ordinal categories)? We propose an interactive "branch-and-bound like" technique to progressively build the nondominated set, combined with ELECTRE TRI method (Pessimistic procedure) to sort identified nondominated solutions. A disaggregation approach is considered in order to avoid direct definition of all ELECTRE TRI preference parameters. Weight-importance coefficients are inferred and category reference profiles are determined based on assignment examples provided by the Decision Maker. A computation tool was developed with a twofold purpose: support the Decision Maker involved in a decision process and provide a test bed for research purposes.http://www.sciencedirect.com/science/article/B6VCT-48GF3RT-B/1/55841cf788557c60dac156a4e7b1890

    Hybridization of SBX based NSGA-II and sequential quadratic programming for solving multi-objective optimization problems

    Get PDF
    Most real-world search and optimization problems involve multiple conflicting objectives and results in a Pareto-optimal set. Various multi-objective optimization algorithms have been proposed for solving such problems with the goals of finding as many trade-off solutions as possible and maintaining diversity among them. Since last decade, evolutionary multi-objective optimization (EMO) algorithms have been applied successfully to various test and real-world optimization problems. These population based algorithms provide a diverse set of non-dominated solutions. The obtained non-dominated set is close to the true Pareto-optimal front but it's convergence to the true Pareto-optimal front is not guaranteed. Hence to ensure the same, a local search method using classical algorithm can be applied. In the present work, SBX based NSGA-II is used as a population based approach and the sequential quadratic programming (SQP) method is used as a local search procedure. This hybridization of evolutionary and classical algorithms approach provides a confidence of converging near to the true Pareto-optimal set with a good diversity. The proposed procedure is successfully applied to 13 test problems consisting two, three and five objectives. The obtained results validate our motivation of hybridizing evolutionary and classical methods

    Multi-Objective Stochastic Optimization Programs for a non-Life Insurance Company under Solvency Constraints

    Get PDF
    In the paper, we introduce a multi-objective scenario-based optimization approach for chance-constrained portfolio selection problems. More specifically, a modified version of the normal constraint method is implemented with a global solver in order to generate a dotted approximation of the Pareto frontier for bi- and tri-objective programming problems. Numerical experiments are carried out on a set of portfolios to be optimized for an EU-based non-life insurance company. Both performance indicators and risk measures are managed as objectives. Results show that this procedure is effective and readily applicable to achieve suitable risk-reward tradeoff analysis

    A Comprehensive Review of Control Strategies and Optimization Methods for Individual and Community Microgrids

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Community Microgrid offers effective energy harvesting from distributed energy resources and efficient energy consumption by employing an energy management system (EMS). Therefore, the collaborative microgrids are essentially required to apply an EMS, underlying an operative control strategy in order to provide an efficient system. An EMS is apt to optimize the operation of microgrids from several points of view. Optimal production planning, optimal demand-side management, fuel and emission constraints, the revenue of trading spinning and non-spinning reserve capacity can effectively be managed by EMS. Consequently, the importance of optimization is explicit in microgrid applications. In this paper, the most common control strategies in the microgrid community with potential pros and cons are analyzed. Moreover, a comprehensive review of single objective and multi-objective optimization methods is performed by considering the practical and technical constraints, uncertainty, and intermittency of renewable energies sources. The Pareto-optimal solution as the most popular multi-objective optimization approach is investigated for the advanced optimization algorithms. Eventually, feature selection and neural network-based clustering algorithms in order to analyze the Pareto-optimal set are introduced.This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MICINN)–Agencia Estatal de Investigación (AEI), and by the European Regional Development Funds (ERDF), a way of making Europe, under Grant PGC2018-098946-B-I00 funded by MCIN/AEI/10.13039/501100011033/.Peer ReviewedPostprint (published version

    Pilot3 D2.1 - Trade-off report on multi criteria decision making techniques

    Get PDF
    This deliverable describes the decision making approach that will be followed in Pilot3. It presents a domain-driven analysis of the characteristics of Pilot3 objective function and optimisation framework. This has been done considering inputs from deliverable D1.1 - Technical Resources and Problem definition, from interaction with the Topic Manager, but most importantly from a dedicated Advisory Board workshop and follow-up consultation. The Advisory Board is formed by relevant stakeholders including airlines, flight operation experts, pilots, and other relevant ATM experts. A review of the different multi-criteria decision making techniques available in the literature is presented. Considering the domain-driven characteristics of Pilot3 and inputs on how the tool could be used by airlines and crew. Then, the most suitable methods for multi-criteria optimisation are selected for each of the phases of the optimisation framework
    • …
    corecore