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Abstract

Preference disaggregation aims at capturing preference models by decomposing

indirect preference information that are in form of holistic choices or judgments.

From a multiple criteria decision aiding perspective, such information is taken as

input to an inference procedure that yields to a preference model based on all the,

usually conflicting, points of view that together form a basis for the judgments.

Studying human judgments and choices has received increasing attention in the

last few years from several disciplines, including behavioral science (decision anal-

ysis, preference disaggregation), artificial intelligence (preference learning), and

economics and marketing (choice modeling). The three streams, although orig-

inated from different philosophies, are converging rapidly to a comprehensive

understanding of human preferences, that is the main element of decisions and

actions. This doctoral dissertation sheds light on this phenomenon by introducing

an integrated analytical framework that allows capturing preferences of a complex

form by observing holistic choices, decisions, and judgments.
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As soon as questions of will or decision or reason or choice of

action arise, human science is at a loss.

Noam Chomsky

1
Introduction

Alice is passionate about art and sun. She recently spent a week in Barcelona to enjoy the great

art museums and warm sunny days that the city has to offer. During her trip, she stayed in a

hotel near the beach. At the end of her trip, as she usually does, Alice writes online reviews

about some of the places she has visited and the hotel that she was staying in. In her overall

review of the hotel, which is the number of stars that she gives to the hotel, Alice considers

several factors such as comfort and cleanness, ease of access to the central area, price, the staff

friendliness, as well as her overall feelings and impression of the hotel. Her overall assessment of

1



the hotel can change by some, probably less visible, factors such as the music that she has heard

in the lobby, the decoration and colors of the hotel, the ambiance of the restaurant in hotel, and

several other factors that Alice may or may not be aware of, but they change her feelings about

the hotel in a direct or indirect way. Alice evaluates other services and products in a similar

manner. Alice is not the only person whose decisions and judgments are based on multiple

evaluation criteria, but the same is true for all consumers in the marketplace.

When facing a decision situation such as choosing a product or a service amongst all the

other available alternatives, consumers typically consider several criteria to evaluate the existing

alternatives and to eventually make a final decision. Some of these criteria are visible to the

consumer who directly takes them into account, whereas some others can operate in an indirect

way and at a subconscious level. Whether direct or not, both types of criteria form the prefer-

ences of the consumer which result in her final decision. Decomposing the holistic preferences

based on the evaluation criteria and understanding how each of these criteria contributes to

the final decisions and choices made by the Decision Maker (DM) is critical in marketing and

consumer behavior studies. This is the focus in preference disaggregation paradigm based on

the Multiple Criteria Decision Aiding (MCDA) perspective.

1.1 Objective of the Thesis

Modeling of consumer preferences among multiattribute alternatives has been one of the ma-

jor activities in consumer research (Green and Srinivasan 1978, 1990; Gustafsson et al. 2013;

Rao et al. 2014). The main objective of this dissertation research is to develop techniques to

unfold the choices made by consumers in order to capture their preferences and predict their

choices. Such techniques enhance our understanding of consumers preferences as the basis of

their decisions, as well as the decision making strategies that they pursue to make a choice. This

2



dissertation is broadly motivated by two prevalent trends: developing efficient methodologies

for processing preference information of realistic size, and the increasing need in marketing

and branding contexts for analytical frameworks that enable us to explore the cognitive process

of decision making, to elicit complex preferences, and to identify the main factors influencing

consumers’ choices and the mechanism under which they operate to shape consumers’ prefer-

ences. This thesis addresses these questions from a MCDA perspective, a subfield of behavioral

operational research, and following a preference disaggregation approach.

1.2 Overarching Theoretical Framework

Research on understanding human preferences has received increasing attention in several dis-

ciplines, including psychology (Kahneman et al. 1982; Keeney and Raiffa 1993; Tversky and

Kahneman 1985), economics and marketing (Ben-Akiva and Lerman 1985; Rossi and Allenby

2003; Train 2003), artificial intelligence (De Gemmis et al. 2009; Fürnkranz and Hüllermeier

2010), and behavioral operational research (Figueira et al. 2016). These paradigms, however,

view ”preferences” from a different perspective, employ different approaches in analyzing them,

and seek for different implications of such understanding. According to Lichtenstein and Slovic,

preferences can be conceived of as an individual’s attitude towards a set of objects, typically

reflected in an explicit decision-making process (Lichtenstein and Slovic 2006). In economics

and marketing, however, preferences are viewed slightly different than the psychological per-

spective by Lichtenstein and Slovic. From this point of view, preferences reflect satisfaction, en-

joyment, or utility that is gained by some alternatives/items, and form a basis for judgments and

choice. Studying preferences in economics and marketing mainly addresses analysis of demand

and consumer’s willingness to pay, product development, brand preference studies, and qual-

ity improvements in multiple dimensions. The implications in artificial intelligence, however,

3



direct towards recommender systems and human-computer interactions. From a behavioral

research perspective, understanding preferences are of interest for decision support systems and

decision aiding practices. The three paradigms, although differ in their theoretical approach,

prevalent contexts, methodologies (statistical modeling versus mathematical programming ver-

sus machine learning techniques), even terminology (decision maker versus consumer versus

user or agent), but are converging rapidly to gain a comprehensive understanding of human

judgments and choices.

The assessment of alternatives in real-world decision making requires consideration of a vari-

ety of criteria. With an indirect elicitation of preferences, the preference model is constructed in

order to identify a rational basis underlying the provided holistic judgments (Jacquet-Lagrèze

and Siskos 2001). Within MCDA, various preference models can be used for this purpose, see,

e.g., (de Almeida 2007; Kadziński et al. 2015; Sarabando and Dias 2010; Słowiński et al. 2002;

Soylu 2011; Vetschera and de Almeida 2012; Zheng et al. 2014), but the most prevailing one

is Multiattribute Value Theory (MAVT) (Keeney and Raiffa 1993). MAVT is built on utility

theory which was developed during the 1940s and 1950s by Von Neuman and Morgenstern

(Von Neumann and Morgenstern 1944) and Savage (Savage Leonard 1954). In general, utility

is a real number representing the preferability of an item. Utility theory, although initially de-

veloped for normative decision making, has been one of the main methodological streams of

multiple criteria analysis (Zopounidis and Pardalos 2010). MAVT is often found to be appro-

priate for practical decision support due to the high interpretability of numerical scores that can

be decomposed into per-criterion marginal values and easily explained due to low amount of

inter-criteria parameters (Greco et al. 2012; Sarabando and Dias 2010).

In decision making involving multiple criteria, the main attempt concerns the way by which

the final decision should be made. In this spirit, several aggregation procedures have been

developed to identify the best alternative amongst the available solutions, by simultaneously

4



considering several conflicting points of view. Goal programming (Charnes and Cooper 1961)

has largely impacted the philosophy and evolution of this paradigm. A comprehensive taxon-

omy of such procedures is provided in Hwang and Yoon (2012). These procedures mainly

follow a normative approach that is based on the axioms of rationality and optimality, assuming

that the decision behavior is purposive and goal directed (Einhorn and Hogarth 1981). Follow-

ing this view, therefore, the aim is to find the decisions thatmust be made in order to ensure the

efficient use of means to attain certain ends (Fishburn 1970; Tversky 1972; Von Neumann and

Morgenstern 1944). When such goals conflict, the notion of optimality does not make much

sense as the problem is not maximizing or minimizing an explicit criterion, but it seeks for

compromises between the conflicting goals that reflect one’s values. Therefore, in presence of

multiple conflicting criteria, the notion of optimality is replaced by consistency with one’s values

(Einhorn and Hogarth 1981).

The main interest in many decision making situations, however, is in the opposite direction

(Jacquet-Lagrèze and Siskos 2001). Given the final decisions made by the DM, how is it pos-

sible to find the rational basis through which the decisions are made? The actual behavior of

a DM often involves several cognitive biases and limitations, henceforth deviating from pre-

dictions derived from normative approaches (Simon 1957). Descriptive theories of human

judgments and choices are developed along this direction by analyzing the decisions that are

already made by the DM in order to discover, understand, and explain the rational behind

them (Kahneman and Tversky 1984; Slovic et al. 1977; Tversky and Kahneman 1975; Von Win-

terfeldt and Edwards 1993). According to Tsoukiàs, the main difference between normative

and descriptive approaches is the sources that they derive their model of rationality from. Ac-

cording to this view, normative approaches derive rationality models from the norms that are

established a priori (e.g. maximizing expected utility), whereas source of rationality model for

the descriptive approaches is by observing how DMs make decisions (Tsoukiàs 2007). Dis-
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aggregation techniques in MCDA aim at understanding judgments and choices of a DM by

decomposing the holistic preferences over the set of relevant criteria that form the basis for the

preferences.

Following MAVT perspective in MCDA, preferences of a DM are captured by constructing

an additive value function. Additive value functions represent the preferences of the DM by

computing an overall score for each alternative (Vetschera et al. 2014). This comprehensive

value indicates the alternative’s quality from all relevant points of view considered jointly. Fol-

lowing this perspective, the most representative preference disaggregation approach in MCDA

is the family of UTA methods (Jacquet-Lagrèze and Siskos 1982).

1.2.1 State of the art

Multiple criteria decision aiding is a rapidly growing field of study which has increasingly at-

tracted attention in recent years from various fields of applications. The main goal of MCDA

is to achieve a set of criteria aggregation procedures that enables the development of decision

support models considering preferences and evaluations of the DM (Doumpos and Zopouni-

dis 2013). A criterion can be viewed as a tool which allows one to represent consequences

related to a point of view so as to be able to establish partial preferences (Bouyssou 1990).

Tsoukiàs formally defines a criterion as a preference relation, that is a binary relation, on the

set of alternatives, or a function representing the criterion (Tsoukiàs 2007). In fact, a criterion

is a function that measures performances of the alternatives on each of their characteristics

(Doumpos and Zopounidis 2013). For a decision aiding purpose, the family of criteria is

needed to be consistent, which means i)it needs to address every important point of view (ex-

haustive), ii)the partial preferences have to be consistent with the comprehensive preference,

i.e. if one alternative is preferred over another according to all points of view, the same should
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hold at the comprehensive level, and finally iii)the criteria should not be redundant (Bouyssou

1990).

Analytical frameworks based on MCDA, being mathematically sound and practically flexi-

ble, have provided powerful toolkits to effectively tackle complex decision problems of various

kinds. These frameworks have been successfully applied in different contexts such as finance,

sustainability, health care, urban design, customer satisfaction measurement, supply chain man-

agement, and marketing (Angilella et al. 2016; Bisdorff et al. 2015; Doumpos et al. 2015;

Grigoroudis and Siskos 2002, 2009; Kadziński et al. 2016; Spronk et al. 2016).

Following the framework suggested by (Pardalos et al. 2013), four main streams can be

distinguished in MCDA research:

• multiobjective mathematical programming,

• multiattribute utility/value theory,

• outranking relations approach,

• preference disaggregation.

The aim of multiobjective mathematical programming is to discover the set of non-dominated

solutions/alternatives - usually a set of large size - in presence of conflicting objectives/criteria

(Ehrgott 2006; Koopmans et al. 1951). Multiattribute utility/value theory attempts to model

the preferences of a DM by means of a value function (certain environment) or a utility func-

tion (decision under uncertainty) (Keeney and Raiffa 1993). The principles of outranking rela-

tions have been established by Bernard Roy by introducing the family of ELECTRE methods.

An outranking relation, according to Roy, is a binary relation such that alternative a outranks

alternative b if there are sufficient arguments in favor of this assertion, while there are not many

arguments against it. Outranking relations are used to model the preferences of the DM by
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constructing preference, indifference, and incomparability relations (Figueira et al. 2005; Roy

1968, 1991). Finally, preference disaggregation, the main focus of this dissertation, aims at

inferring preference models from indirect preference information. This approach is discussed in

more details in the next section.

1.2.2 Preference Disaggregation

The disaggregation paradigm in MCDA formally started with the introduction of the UTA

method in 1982 (Jacquet-Lagrèze and Siskos 1982). Preference disaggregation, the focus of this

dissertation, aims to identify the aggregation model behind the indirect and holistic preference

information from the DM (Jacquet-Lagrèze and Siskos 1982). Additive value function is the

most common form of preference model used in disaggregation analysis. Ordinal regression

techniques are employed to infer a value function, or a set of value functions in case of robust

ordinal regressions (Greco et al. 2008), compatible with the decision examples provided by the

DM. In this regards, decision examples can take different forms such as ordering of reference al-

ternatives, pairwise comparisons, assigning alternatives to a set of predefined ordered categories,

and choice of the best alternatives. Moreover, several other types of preference information,

such as ordering of the evaluation criteria, intensities of preferences, or desired ranks of some

alternatives, can be incorporated in disaggregation analysis to enrich the inference procedure.

Disaggregation approach is of interest because it requires a low level of cognitive effort and

interaction time from the DM. With its flexibility in processing several types of preference

information, its ability to address different types of decision problems such as ranking, sorting,

and choice, and its data driven approach that yields generic outcomes without relying on prior

assumptions about the DM’s shape of preferences, preference disaggregation can be a powerful

approach in marketing to study consumers behavior.
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1.3 Main Research Problems andContributions

This chapter presents the main motivations of this dissertation, as well as the main contribu-

tions to the addressed research problems.

Most of the existing preference disaggregation methods assume a monotonic relationship be-

tween input attributes and preferences. The few methods currently addressing non-monotonicity

demand excessive computational effort or require extra information from the DM. Developing

an efficient methodology for learning non-monotonic preference models is therefore of great

importance.

The assumption of monotonicity is widely used because it seems reasonable for many criteria

(such as price of a product, level of risk, security, safety and ease of use of a service, required

time and effort for accomplishing a task). However, this is not the case for many other at-

tributes. In a medical context, for instance, attributes such as sugar and cholesterol levels in

blood are clear examples of non-monotonic attributes. In finance, there are many indicators

used to depict the financial performance of a firm that experts believe must be controlled within

a specific range. For instance, a large value for the cash to total assets ratio implies that the firm

is losing many profitable investment opportunities, whereas a low value indicates a low capacity

of the firm to cope with operating expenditures (Despotis and Zopounidis 1995). In marketing,

non-monotonic preferences are widely prevalent in product design. Examples include screen

size for a smartphone, sweetness of a chocolate, or any design attribute based on ideal point

model (Rao 2014).

This dissertation mainly addresses the following three problems:

• As a motivating example, the thesis elaborates on the case of non-monotonic prefer-

ences in the context of branding by investigating the impact of brand color on customers

perception of a brand (Ghaderi et al. 2015). In this regard, the main question is how
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can MCDA be used for exploring the cognitive role that color plays in determin-

ing brand perception? This question will be addressed by proposing an analytical

framework and analyzing the secondary survey data combined with the data that is inde-

pendently collected by measuring the colors of the well-known beauty and care brands

that have a single dominating color (chapter 2).

• Inspired by the example of brand color, the second research problem is how can we cap-

ture preferences of non-monotonic form? The assumption of monotonicity limits the

applicability of the MCDA methods in many fields, therefore it is crucial to overcome

this limitation. The analytical framework to elicit such complex preference models still

needs to be tractable and efficient in terms of computational demand, in order to ensure

its applicability to data sets of realistic size. These requirements inspired the research

presented in chapter 3. The problem is addressed by developing an analytical framework

based on a Linear Programming (LP) approach. The framework is discussed through an

illustrative example, a comparison with some benchmark methods, and a comprehensive

experimental analysis (Ghaderi et al. 2017).

• The preference disaggregation frameworks in MCDA, including the one introduced in

this dissertation, involves the choice of some parameters which might affect the perfor-

mance of the inference process. The quality of the outcomes of a disaggregation analysis,

in addition to the parametrization of the problem, could depend also on the settings of

the decision problem. In this respect, the next questions addressed in this dissertation

is how and to what extent the parametrization procedures and problem settings

can change outcome quality of the inference model? Which procedures should

be followed in different settings in order to ensure a desired level of quality? To

address these questions, chapter 4 will argue how expressiveness of the inferred prefer-
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ence model, as well as the robustness of the recommendations resulting from the derived

model (the two main dimensions of the outcome quality), are influenced by different

characteristics of a decision problem and by different procedures for selection of the

characteristic points on the scale of evaluation criteria (Kadziński et al. 2017).

1.4 Structure of the Thesis

This thesis is structured as a compendium of publications, organized as follows.

Chapter 2 addresses the challenging question in branding literature about how colors can

shape customer perceptions of a brand. It will be demonstrated how the problem can be

formulated by employing a MCDA framework. By introducing an analytical framework, a real

data set of customers perceptions of dozens of cosmetics brands are analyzed. The results

demonstrate a strong connection between perceptions of a brand and its color. It will also be

shown how this analytical framework can be employed to create an intuitive perception-color

map in order to help brand managers to better position their brands in customers minds. To

this aim, forty main attributes of a brand image are mapped on a color space, based on the

findings of the analysis.

Chapter 3, inspired by chapter 2, introduces a framework for inferring non-monotonic addi-

tive preference models from a set of indirect pairwise comparisons. Moreover, the applicability

and effectiveness of the proposed methodology is demonstrated through an extensive experi-

mental analysis covering a broad class of decision problem settings.

Chapter 4 investigates the impact of the parametrization of a decision problem, as well as the

settings of a decision problem, on the outcome quality of the elicitation process. The quality

of the outcomes is defined based on the expressiveness of a preference model derived from the

supplied indirect preference information, and robustness of the recommendations derived from
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the inferred preference model. Amongst others, particularly special attention will be given to

the impact of various procedures for selection of characteristic points, which define shape of

marginal value functions in a preference model. In the thesis, a new procedure for selection of

characteristic points will be introduced. The results from experimental analysis confirm that the

introduced procedure demonstrates overall better performance than the existing ones, and its

performance improves when more preference information is becoming available.

Chapter 5 presents a general discussion by addressing theoretical, as well as practical im-

plications, and concludes the thesis. Finally, the references of the thesis are provided in the

end.

1.5 Main outputs of the Thesis

The three central chapters are already published in Pattern Recognition Letters, European Jour-

nal of Operational Research, and Computers & Operations Research journals. An overview of

the three central chapters is provided in Table 1.5.1. The three papers have been presented in

several conferences at different stages of their development and have evolved based on the con-

structive feedbacks received at each presentation. The list of conferences is provided in Table

1.5.2.
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2
Understanding the Impact of BrandColour on Brand

Image: a PreferenceDisaggregation Approach1

What is the role that colour plays in perception of a brand by customers? How can we ex-

plore the cognitive role that colour plays in determining brand perception? To answer these

questions we propose a preference disaggregation method based on multi-criteria decision aid.

We identify the criteria aggregation model that underlies the global preference of a brand with

1This chapter is published in Pattern Recognition Letters by Ghaderi, M., Ruiz, F., Agell, N., (Volume 67, issue
1, pages 107-115, 2015), Journal Metrics: ABS 3 SJR Q1, Impact Factor: 1.586 (Ghaderi et al. 2015)
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respect to each brand image attribute. The proposed method is inspired by the well-known

UTASTAR algorithm, but unlike the original formulation, it represents preferences by means

of non-monotonic value functions. The method is applied to a database of brands ranked on

each brand image attribute. For each brand image attribute, non-monotonic marginal value

functions from each component of the brand colour are obtained separately. These functions

contain the fitness between each colour component and each brand image attribute, in an

understandable manner.

2.1 Introduction

Colour is one of the key ingredients of brands which plays an important role in the purchase de-

cisions of customers. As an aesthetic stimuli, colour can shape consumer preferences and alter

perceptions by communicating meaningful messages (Zaltner 1975). As an essential element of

a brand, colour can signal quality (Lohse and Rosen 2001), affect perception of quality (Chebat

and Morrin 2007), contribute to brand recognition and brand image (Lightfoot and Gerst-

man 1998), and affect brand personality (Labrecque and Milne 2012). Colour, in addition,

intrinsicly communicates the desired image (Bottomley and Doyle 2006) and is considered a

strategic tool for marketers and brand managers for differentiating brands from competitors,

signalling product attributes, and grabbing customer attention (Schindler 1986).

Colour operates via two mechanisms: sensory and cognitive. In the sensory mechanism,

colour helps retrieve information in blurry conditions, by distinguishing, for example, an object

from its background. In the cognitive mechanism, colour helps perception by playing a diagnos-

tic role and characterising the object that is being represented (an orange sunset and the blue

of the sea have specific meaning). As brand image is characterised by the perception of the
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customers, brand colour influences brand image through the cognitive mechanism (Wu et al.

2014).

The importance of colour to the marketers is not limited to brand colours. Studies support

a significant impact of packaging colours on customer intention to buy and perceived quality.

Hoegg and Alba found that colour cues dominate taste cues. In their experiment using orange

juice, participants perceived a significantly greater difference in the taste of two identical sam-

ples with different colours, than two different samples with the same colour (Hoegg and Alba

2007). Garber et al, in their experimental study, found that colour affects identification and

flavour perception of both congruently and incongruently coloured beverages (Garber et al.

2000).

The common practice for understanding colour trends in industry is based on the opinion of

field experts, whose judgements are based on past experiences and are difficult to substitute by

analytic models. In this paper, we explore the relationship between brand colour and customer

perception of brand image in an understandable and interpretable manner. To this end, we pro-

pose a preference disaggregation method based on a multi-criteria decision analysis (MCDA)

framework. The aim of this approach is to analyse the holistic preferences of a set of alterna-

tives in a multi-criteria setting in order to identify the criteria aggregation model that underlies

global preferences, and represent the existing preferential system using a set of marginal value

functions.

To address this paradigm, several methods have been proposed in the literature considering

different forms of comprehensive preferences and various tasks, for instance UTA (UTilités

Additives) (Jacquet-Lagrèze and Siskos 1982), Pairwise comparisons UTA (Doumpos 2012),

UTADIS (UTilités Additives DIScriminantes) (Devaut et al. 1980), fuzzy UTASTAR (Patin-

iotakis et al. 2011) and many others (Doumpos 2012; Kliegr 2009). Most of these methods

assume a monotonic relationship between preferences and attribute levels. However, as the
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relationship between brand perception and colour attributes, for example colour hue, is not

necessarily monotone, we introduce a new method based on UTASTAR, that is applicable in

non-monotonic settings.

The paper is organised as follows. A brief introduction on colour measurement is provided

in the next section. An overview of the theoretical framework of preference disaggregation

is then presented. Because we are focusing on the ranking problem, the section contains a

review of the most widely used UTA variant, UTASTAR, and some of the non-monotonic

UTA-like methodologies for the ranking problem. In Section 2.4, the proposed methodology

is introduced, followed by an illustrative example to make a comparison with the UTA-NM

method. In Section 2.5 the method is applied to a comprehensive set of brand image attributes,

in order to explore the impact of brand colour on brand image. Finally, we conclude the paper

and present possible future directions.

2.2 Colour coordinates and colour spaces

Several numeric specifications for colour definition can be found in the literature. We refer the

interested reader to the recent study in (Falomir et al. 2015). The most classic and internation-

ally accepted of these are based on tristimulus values or coordinates. The most known of these

is RGB, proposed by the Commission International de l’Eclairage (CIE) in 1931. RGB uses addi-

tive colour mixing and describes what type of light (red, green or blue) needs to be emitted to

produce a given colour. The RGB colour model is implemented in different ways, depending on

the capabilities of the system used. By far the most common is the 24-bit implementation. This

model is thus limited to a range of 256 × 256 × 256 ≈ 16.7 million colours. It is a convenient

colour model for computer graphics, but it can be unintuitive in practice. The specification of a

desired colour can be difficult for untrained people (for example, selecting brown using an RGB
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vector can be difficult). HSV is another colour space which was developed to approximate the

way humans perceive colours. For this reason, in marketing studies HSV colour space is widely

used. In this single-hexcone model of colour space, hue (H) of a colour refers the pure colour it

resembles and demonstrates its position on the colour wheel, where it starts from 0 for red, and

continues to 60 for yellow, 120 for green, and ends up at 360 or the starting position. Saturation

(S) refers to the intensity of the pure colour. In other words, it describes the purity of the colour

with respect to white. The value of 100 means a very vivid colour, while 0 means the least purity,

where too much white dominates the colour. Value (V) measures the brightness of the colour

where 100 means a totally bright and 0 means a totally dark colour. Most colour researchers

in marketing focus only on colour hue and usually do not consider the other two attributes.

Geometrical representation of the two colour systems RGB and HSV is presented in Fig. 2.2.1.

Figure 2.2.1: RGB (a) and HSV (b) coordinates

2.3 Preference disaggregationmethodologies

UTA (Utilités Additives) is one of the most representative preference disaggregation methods.

It was first introduced by Jacquet-Lagrèze and Siskos as a linear programming (LP) model

to capture the preferential system of the decision maker (DM) through nonlinear (piecewise

linear) monotonic additive value functions (Jacquet-Lagrèze and Siskos 1982). The aim of
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the UTA method is to reproduce, through a set of value functions, the ranking made by the

DM over the set of alternatives by minimising the level of ranking errors. Ranking errors

are generally defined as the distance between the global values of two consecutive alternatives

that are ranked incorrectly. However, the definition of the error slightly differs in the variants

of UTA. The method leads to a simple LP model where the optimal solution can be easily

obtained.

Several extensions of UTA method have been introduced in the MCDA literature since then,

incorporating variations on the original algorithm and considering different forms of global

preference and optimality criteria. In most of the extensions of UTA method, the input at-

tributes are normally expected to be monotone with respect to the preferences. The assumption

of monotonicity is widely used, and it seems reasonable for many criteria, such as price, risk

level, security, safety, comfort, required time, and effort. However, this is not the case for

many other attributes, such as colour coordinates. In this paper, we propose an extension

for UTA method to handle non-monotone preferences suitable for addressing the problem of

understanding the impact of brand colour on brand image. In the following subsections, we

present the most representative UTA method for ranking (UTASTAR) and briefly introduce

some variants of the method which attempts to consider non-monotonic attributes.

2.3.1 UTASTAR method

Suppose thatG = {g1, g2, · · · , gm} is a set of criteria to evaluate a set of preordered alternatives

A = {a1, a2, · · · , aN} in which a1 is the most and aN is the least preferred alternative in the

ranking list. Each criterion is defined as a function gi : A → R, where gi(an) = xni . The

value xni is the performance of the alternative an over the criterion gi. Given a weak ordering

(ranking) over the set of alternatives specified by the DM, the aim of the UTASTAR algorithm

is to represent the underlying preference model of the given ranking through estimating a set of
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monotonic additive value functions (as consistent as possible with the preferential structure of

the DM). Specifically, the UTA method estimates a set of marginal value functions vi : gi →

[0, 1] to be aggregated in an additive manner in order to estimate the comprehensive value

associated with each alternative. Finally, alternatives are ranked based on the comprehensive

values. The formulation of the UTASTAR method involves defining αi characteristic points and

henceforth αi − 1 subintervals [g0i , g1i ], [g1i , g2i ], · · · , [gαi−2
i , gαi−1

i ] on the ith criterion, in which g0i

and gαi−1
i are the minimum and maximum performance levels over the ith scale, respectively. The

marginal value at a characteristic point gli on criterion i is expressed as in equation (2.1).

vi(gli) =
l∑

j=1

(vi(g
j
i)− vi(g

j−1
i )) =

l∑
j=1

vij (2.1)

where vij ≡ vi(g
j
i)− vi(g

j−1
i ) ≥ 0 due to the monotonicity of the criteria.

The marginal value for an alternative an whose performance on the ith scale is xni ∈ [gli, g
l+1
i ] is

obtained by linear interpolation between vi(gli) and vi(g
l+1
i ) as follows:

vi(xni ) =
l∑

j=1

vij +
xni − gli
gl+1
i − gli

· vi,l+1 (2.2)

The comprehensive value of an alternative an is obtained by the sum of all the marginal values,

as in equation (2.3).

V(an) =
m∑
i=1

vi(xni ) (2.3)
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The UTASTAR linear programming problem is provided in (2.4).

min z =
∑N

n=1(σ
+(an) + σ−(an))

subject to

V′(an)− V′(an+1) ≥ δ iff an ≻ an+1,∀n = 1, 2, · · · ,N− 1

V′(an)− V′(an+1) = 0 iff an ∼ an+1,∀n = 1, 2, · · · ,N− 1∑m
i=1

∑αi−1
j=1 vij = 1

V′(an) = V(an)− σ+(an) + σ−(an)

vij, σ+(an), σ−(an) ≥ 0,∀i, j, n

(2.4)

in which σ+(an) and σ−(an) are the overestimation and underestimation error terms, respec-

tively. The term δ is a parameter (a small value), and the first two constraints represent the

preorder relations provided by the DM. The third constraint ensures that the maximal shares

of the criteria in the comprehensive value of the alternatives sum up to 1, and the objective

function minimises the deviation of the estimated value function from the preferential model

of the DM. By solving this model, the marginal value function over each criterion scale will be

constructed based on the expression in (2.1).

2.3.2 Non-monotonic UTA-like algorithms

The input attributes in the UTASTAR method are normally expected to be monotone with

respect to the preferences. However, this is not a reasonable requirement for colourimetric

components. Obviously, no one can expect a monotonic relationship between a colour prefer-

ence degree and its degree of greenness, or hue. Therefore, an improvement in the UTASTAR

algorithm for handling non-monotonic preferences is of a great importance in this setting.

Although several attempts have been made in the literature to overcome the mentioned

shortcoming (Despotis and Zopounidis 1995; Doumpos 2012; Eckhardt and Kliegr 2012;
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Kliegr 2009), all are computationally intensive, or require extra information from the DM. One

way to address non-monotone preferences is to divide the range of the criteria into intervals so

that the preferences are monotonic in each interval, and then treat each interval separately. Fol-

lowing this idea, in the approach of Despotis and Zopounidis, it is assumed that each marginal

value function is non-decreasing from the starting point of the range to a middle point, and

it is non-increasing from this middle point to the end of the range (Despotis and Zopounidis

1995). This middle point corresponds to the most preferable value of the criterion. The main

drawback of this method is that the exact value function shape and the most preferable value

need to be known beforehand. Kliegr proposed another non-monotone methodology called

UTA-NM, which relaxes the monotonicity condition of the UTASTAR algorithm, that in the-

ory allows any shape for the marginal value function (Kliegr 2009). To avoid the over-fitting

problem, UTA-NM simultaneously minimise the sum of the errors and the complexity of the

model expressed by the number of changes in the sign of the marginal value functions. The

method suffers from severe performance issues. Even for very small toy problems, tens of

binary variables were involved, causing the method to be computationally infeasible for real-

world problems. In another paper, Eckhardt and Kliegr propose local preferences transformation,

a heuristic attribute preprocessing algorithm that transforms arbitrary input attributes into a

space approximately monotone with respect to user preferences, thus making it suitable for

UTA (Eckhardt and Kliegr 2012). Finally, non-monotonic additive value functions, introduced

by Doumpos in 2012 (Doumpos 2012), consider a broader class of non-monotonic value func-

tions that leads to a nonlinear integer programming problem, which is difficult to solve with

data sets of realistic size. Thus, an evolutionary approach is employed, based on the differential

evolution algorithm.
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2.4 Proposed methodology

The method we introduce here, inspired by the UTA methodology, is fast and tractable. The

general idea is to relax sign constraint in the decision variables that represent difference of value

levels between two consecutive breakpoints. Therefore, marginal value function can change the

monotonicity at any breakpoint.

This may lead to two problems: the first is the over-fitting problem in the case that mono-

tonicity changes arbitrarily many times. This potential problem is handled simultaneously in

two ways. Firstly, we defined a small, but reasonable, number of breakpoints. The break-

points are constructed so that each sub-interval contains the same number of data points and

hence the same amount of information. Secondly, the slope of the marginal value function in

each sub-interval is controlled by defining upper and lower bounds for the associated decision

variables. The bounds for each decision variable is defined with respect to the length of the cor-

responding sub-interval. The longer the sub-interval, the wider the bound. This constraint not

only controls the over-fitting problem, but also increase interpretability of the extracted value

functions.

The second problem is about normalisation. By normalisation, we mean that the minimum

and maximum global values must be equal to zero and one, respectively. Fixing the minimum

and maximum global values is essential for obtaining the relative importance of the criteria.

The challenge is that we cannot predict where the maximum value will be achieved on each

criterion scale in order to force the sum to be one. Furthermore, we do not know the attribute

level corresponding to the minimum marginal value on each criterion to set them equal to

zero. To solve this problem, an iterative approach is followed. Whenever the maximum global

value is less than one, its value is forced to be increased in the next iteration, by adding a new

constraint considering the performance level corresponding to the highest marginal value in the
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current stage. The added constraint is applied in the next iteration, and will be removed from

the LP model in the following iterations, because it does not have to be necessarily satisfied

in the final solution. Whenever the maximum global utility is greater than one, a restrictive

constraint is imposed to ensure that the global utility of the attribute levels corresponding to

the highest marginal utility in the current stage will not have a value greater than one in all

the following iterations. Furthermore, to satisfy another condition of normalisation (namely,

minimum global utility being zero), a penalisation term is added to the objective function to

penalise any deviation.

2.4.1 Characteristic points definition

Defining the breakpoints is an important step in all the UTA-like methodologies as it directly

affects the number of decision variables. We define the breakpoints based on the idea of equal

frequency intervals. This means that we expect equal numbers of distinct performance values

in each sub-interval of the criterion, except for the two ends of the criterion scale. Let us

denote by hi the number of distinct performance levels of alternatives over the ith criterion,

and by ci the desired frequency in each sub-interval of the ith scale. It is easy to show that

the number of decision variables corresponding to the ith criterion is equal to [hi/ci] + 1, in

which [x] is the largest integer number less than or equal to x. Considering that the number

of distinct performance levels might be much higher for some criteria than others, defining the

same value for all the ci variables leads to associating many decision variables with the former,

and few with the latter. This leads to over-fitting on the former criteria and inaccurate results

on the latter, resulting in dramatically different degrees of freedom for the different estimated

value functions. To overcome this issue, we suggest that ci be a function of hi, and we propose

ci =
[√

hi
]
. Following this method, we expect that all the criteria will have almost the same

degree of freedom.
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2.4.2 Initial solution

Following UTASTAR notation, the marginal utilities for each criterion i ∈ {1, 2, · · · ,m} are

represented as in equation (2.1), except for a new type of decision variable that has been added,

vi,0, which allows any level of value within the range [0, 1] for the lowest possible performance

over the criterion scale. The marginal value at a breakpoint gli on criterion i is expressed as:

vi(gli) = vi,0 +
l∑

j=1

(vi(g
j
i)− vi(g

j−1
i )) =

l∑
j=0

vij (2.5)

and the marginal value for an alternative an whose performance on the ith scale is xni ∈ [gli, g
l+1
i ]

is obtained by linear interpolation between vi(gli) and vi(g
l+1
i ), as follows:

vi(xni ) =
l∑

j=0

vij +
xni − gli
gl+1
i − gli

· vi,l+1 (2.6)

The comprehensive value is obtained by the formula in (2.3). No normalisation constraint is

imposed in the initial solution, and sign constraint over decision variables are relaxed. However,

some constraints are imposed to obtain a solution as close as possible to the feasible solution.

The first issue to be considered here is having a non-negative estimated marginal value over

any characteristic point. Suppose that vector Vi= (vi,0, vi1, · · · , vi,αi−1) demonstrates the de-

cision variables corresponding to the marginal value of the ith criterion. The following set of
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constraints then guarantees that the estimated marginal value at any point on a criterion scale is

non-negative:

vi,0 ≥ 0

vi,0 + vi1 ≥ 0

vi,0 + vi1 + vi2 ≥ 0

· · ·

· · ·

· · ·

vi,0 + vi1 + vi2 + · · ·+ vi,αi−1 ≥ 0



for i = 1, 2, · · · ,m (2.7)

The following set of constraints also guarantees that the estimated marginal value at any

point on a criterion scale is less than 1:

vi,0 ≤ 1

vi,0 + vi1 ≤ 1

vi,0 + vi1 + vi2 ≤ 1

· · ·

· · ·

· · ·

vi,0 + vi1 + vi2 + · · ·+ vi,αi−1 ≤ 1



for i = 1, 2, · · · ,m (2.8)

Note that (2.7) and (2.8) can be written in a more compact way using the αi × αi lower

triangular matrix Ai with akp = 1 for elements where k ≥ p. Then (2.7) and (2.8) can be

written as:

AiVi ≥ 0,∀i (2.9)
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AiVi ≤ 1,∀i (2.10)

It is important to bear in mind that the normalisation condition is not guaranteed in the

initial solution because the maximum of the estimated comprehensive value is not necessarily

equal to 1.

Finally, the following set of constraint limits the slope of the value function at any interval.

∣∣∣∣ vij
gji − gj−1

i

∣∣∣∣ ≤ 1
g0i − gαi−1

i
,∀i = 1, 2, · · · ,m, ∀j = 1, 2, · · · , αi−1 (2.11)

The linear format of the above constraints is presented as follows.

vij ≤ gji−gj−1
i

g0i −g
αi−1
i

−vij ≤ gji−gj−1
i

g0i −g
αi−1
i

∀i = 1, 2, · · · ,m, ∀j = 1, 2, · · · , αi−1 (2.12)

The LP model of the initial solution is presented in (2.13).

min z =
∑N

n=1(σ
+(an) + σ−(an))

subject to

V′(an)− V′(an+1) ≥ δ iff an ≻ an+1,∀n = 1, 2, · · · ,N− 1

V′(an)− V′(an+1) = 0 iff an ∼ an+1,∀n = 1, 2, · · · ,N− 1

set of constraints in (2.7)

set of constraints in (2.8)

set of constraints in (2.12)

V′(an) = V(an)− σ+(an) + σ−(an)

vij URS, i = 1, 2, · · · ,m, j = 0, 1, · · · , αi − 1

σ+(an), σ−(an) ≥ 0, n = 1, 2, · · · ,N

(2.13)
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in which URS means UnRestricted in Sign variable.

In the outcome achieved by solving the model in (2.13), let the breakpoints with maximum

and minimum marginal value on the ith criterion scale be g∗i and gi∗, respectively.

g∗i = argmax
j

vi(g
j
i) (2.14)

gi∗ = argmin
j
vi(g

j
i) (2.15)

Furthermore, let us assume that f∗ denotes the sum of the overestimation and underestima-

tion errors in the optimal solution of the model in (2.13). By storing this information, the

iterative part of the algorithm can be started as explained in the following section.

2.4.3 Iterative part

The missing piece in the aforementioned model is the normalisation to ensure that the maxi-

mum achievable comprehensive value is equal to 1. Because the comprehensive value is the

sum ofmmarginal values and the maximum marginal value of each criterion might occur at any

breakpoint of the criterion scale,
∏

i αi possible combinations of decision variables exist to con-

stitute the maximum comprehensive value. The general idea is to detect the combinations of

decision variables that have the potential to cause the maximum comprehensive value to exceed

1 and restrict them by adding a new constraint. Another possibility is that the maximum afford-

able comprehensive value is less than 1. In this case, we impose a new constraint to enforce an

increase in the maximum comprehensive value by a small number, ε, in the next iteration and

subsequently remove this constraint. The contribution in the objective function is to introduce

two types of penalisation for deviating from the normalised solution. Suppose that we already
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have the solution from iteration t and we want to move to the next iteration, t + 1. The idea

constitutes the following three aspects:

1. If the maximum comprehensive value achieved in the iteration t, V∗
t is greater than 1, a

new constraint will be added to the model that considers the position of the maximum

value in the marginal value functions. The added constraint will be kept in all the

subsequent iterations. Let us denote by vti the extracted marginal value function in the tth

iteration and gt∗i the breakpoint on the ith criterion with the highest marginal value. The

constraint that has to be added and kept in all of the subsequent iterations is as follows.

m∑
i=1

vti(g
t∗
i ) ≤ 1 (2.16)

Going forward, we call these types of constraints ‘restrictive constraints’.

2. If V∗
t is less than 1, a new constraint will be added to the model in the next iteration, t+ 1,

considering the location of the breakpoints corresponding to the maximum value in each

criterion. The constraint that has to be added in iteration t+ 1 is as follows.

m∑
i=1

vti(g
t∗
i ) ≥ V∗

t + ε (2.17)

in which ε is a very small real number so that ε ∈ (0, 1 − V∗
t ). The added constraint will

be imposed only in the next iteration, and will be removed later. We refer to this type of

constraint as an ‘incremental constraint’.

3. Two types of penalties are defined and considered in the objective function, one for the

case that the maximum comprehensive value deviates from 1 and another for the case
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that the minimum comprehensive value deviates from 0, all based on the solution ob-

tained in the last iteration. For the first type, the penalty is proportional to the distance

between the maximum comprehensive value and 1, |
∑m

i=1 v
t
i(gt∗i ) − 1 |. Based on the

imposed constraints, explained above, we know that in the case that
∑m

i=1 v
t
i(gt∗i ) exceeds

1 in iteration t, a new constraint will be imposed in the iteration t + 1 that forces this

term to have a value less than 1. Therefore, this penalisation term can be rewritten as

1 −
∑m

i=1 v
t
i(gt∗i ). The second penalisation factor is proportional to the distance of the

lowest comprehensive value and 0, |
∑m

i=1 v
t
i(gti∗) − 0 |=

∑m
i=1 v

t
i(gti∗), in which gti∗

denotes the breakpoints on the ith criterion with the lowest marginal value. To prevent

penalties from dominating the two error terms in the objective function, the coefficients

of the penalty terms are defined as a certain percentage of the sum of the error values

in the optimal solution of the last iteration. Therefore, penalty terms in the objective

function of iteration (t + 1) are multiplied by the coefficients pmax · ft and pmin · ft in

which pmax and pmin are real positive numbers, and ft is the sum of the error terms in the

optimal solution of the last iteration. The underlying logic behind these two penalisation

terms is that the position of the maximum and minimum marginal values over criterion

breakpoints will change only if it leads to a significant decrease in the error term values.
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The LP model of iteration (t+ 1) is as follows in (2.18).

min z =
∑N

n=1(σ
+(an) + σ−(an)) + pmaxft(1 −

∑m
i=1 v

t
i(gt∗i ))

+ pminft
∑m

i=1 v
t
i(gti∗)

Subject to

V′(an)− V′(an+1) ≥ δ iff an ≻ an+1,∀n = 1, 2, · · · ,N− 1

V′(an)− V′(an+1) = 0 iff an ∼ an+1,∀n = 1, 2, · · · ,N− 1

AiVi ≥ 0,∀i = 1, 2, · · · ,m

AiVi ≤ 1,∀i = 1, 2, · · · ,m

for all the iterations k ≤ twith V∗
k greater than 1∑m

i=1 v
k
i (gk∗i ) ≤ 1

only if V∗
t less than 1∑m

i=1 v
t
i(gt∗i ) ≥ V∗

t + ε

V′(an) = V(an)− σ+(an) + σ−(an)

vij URS, i = 1, 2, · · · ,m, j = 0, 1, · · · , αi − 1

σ+(an), σ−(an) ≥ 0, n = 1, 2, · · · ,N

(2.18)

The algorithm can be summarised by the following steps:

Step 0: Define the appropriate breakpoints on each criterion scale and represent the marginal

value of each alternative in terms of the decision variables vij.

Step 1: Set iteration:=0, solve the LP model (2.13) and find g∗i , gi∗ and f0 (iteration=0).

Step 2: Set iteration:=iteration+1. Delete the incremental constraint, if any. Keeping all

of the restrictive constraints that were previously added to the model, add the new restrictive
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constraint (2.16) to the model if the maximum comprehensive value of the previous iteration

exceeds 1. If the maximum comprehensive value of the previous iteration is less than 1, add the

incremental constraint (2.17) to the next iteration.

Step 3: Check if the normalisation condition is satisfied (i.e. if the maximum marginal values

add up to 1 and the minimum comprehensive value is 0. If both conditions are satisfied, go to

step 4. If not, go back to step 2.

Step 4: Represent the marginal value function of each criterion by the vij variables achieved in

the last iteration. Calculate the value of each alternatives by (2.6). Rank the alternatives based

on the estimated values.

2.4.4 An illustrative example to compare with UTA-NM

In order to illustrate the method, a typical example based on car characteristics is employed.

In this example, we assume a set of marginal value functions over a set of three criteria as

DM tacit knowledge and we calculate the rank of alternatives based on them. Without prior

knowledge over the marginal values and considering only the ranking, we then analyse the

extent to which the captured set of marginal value functions are really aligned with the ones

previously assumed.

The three criteria are price, maximum speed and personal capacity and the considered alterna-

tives are 28 different cars. The assumed marginal value functions over each of the three criteria

and its maximal shares in the comprehensive values that the DM tacitly assigns to each of the

criteria are depicted in Fig. (2.4.2).

The model parameters are set such that both proposed method and UTA-NM have the same

number of decision variables for each specific criterion, and thus the same degree of freedom

for the associated value function. The extracted marginal values and the maximal shares over

the criteria for the proposed method and UTA-NM are provided in Fig. (2.4.3) and (2.4.4),

33



Define breakpoints , represent 
marginal utility of each 
alternative by decision 

variables

Set iteration=0
(corresponding LP is initial 

model)

Solve corresponding LP 
model. 

Set iteration:=iteration+1

Compare Max of global 
utility (U*) with 1

Delete incremental constraint , 
keep all restrictive constraints 

and add new one , update 
penalization terms in objective 

function

Start

U*>1

Delete incremental constraint , 
add the new one , update 

penalization terms in objective 
function

U*<1

Compare minimum value 
of global utility with 0

U*=1

Minimum >0

Represent the marginal utility 
functions by optimal solution 
of the last iteration , calculate 

alternatives utilities , rank 
alternatives based on estimated 

utilities.

Increase pmin value in 
the penalization term

Minimum=0

End

Figure 2.4.1: Proposed Method Flowchart
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Figure 2.4.2: Assumed value functions for the illustrative example of car characteristics

respectively. It is important to highlight that using the proposed method, the final solution

was obtained after 54 iterations in less than 1 second (using a 64-bit OS on a 2.53 GHz Intel

Core2Duo using MATLAB R2012b), while using UTA-NM exceeded 15 seconds.

34



5000 15000 25000

0.
00

0.
05

0.
10

0.
15

0.
20

Price

V
al

ue

W max=0.225

100 140 180 220

0.
00

0.
10

0.
20

Highest Speed

V
al

ue

W max=0.286

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Capacity

V
al

ue

W max=0.488

Figure 2.4.3: Extracted value functions for the proposed method in the illustrative example
of car characteristics
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Figure 2.4.4: Extracted value functions by UTA-MN method in the illustrative example

From these results, it can be deduced that by using the proposed method both the marginal

value function shapes and criteria weights accord with the preferential system of the DM. How-

ever, it can be seen that UTA-NM was not successful in estimating the assumed value functions,

also the maximal shares are far from the expected values.

To assess the strength of the methods in reproducing the ranking given by the DM, the

Kendall τ measure has been used. In the proposed method a value of 90.0% is obtained, while,

in UTA-NM the obtained value was 83.1%.

2.5 Brand colour and Brand Image

Our focus in this study is to explore the contribution of brand colour in brand image in an

understandable way. Several studies examined impacts of brand colour on various aspects of the

brand. In a scenario-based experiment, Babin et al. found that effects of colour on behavioural
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intentions are mediated by the cognitive reactions they create (Babin et al. 2003). As by

definition, the concept of brand image is based on the perception of consumers, we expect a

strong association between brand image and brand colour.

Although studies show that all three colour components influence brand personality (Labrecque

and Milne 2012), most colour research in marketing focuses only on colour hue, and usually

ignores the other two attributes: saturation and value (Labrecque et al. 2013). However, in this

study, we consider all three attributes together. Furthermore, as studies show that the influence

of colour differs across product categories (Lohse and Rosen 2001), we analyse only brands

from a particular sector, namely beauty products.

2.5.1 Experiment description and dataset

Our data comes from a survey conducted by Young and Rubicam’s BrandAsset Valuator con-

sulting group. The dataset contained many measurements of several aspects of brand and was

published recently (Lovett et al. 2014). In their quarterly survey (ten quarters from 2008 to

the second quarter of 2010) a representative sample of the U.S. population, 17, 000 individuals,

were asked about 250 brands. The survey measures a broad range of perceptions and attitudes

of brands. In their survey, 40 different attributes of brand image (arrogant, energetic, chic, etc.)

are included, and each respondent is asked to check whether (s)he can associate the brand with

each of these attributes. For each attribute, the dataset contains the percentage of respondents

who associated this attribute with the brand. In our experiment, we converted all the percent-

ages into a ranking. Hence we considered the relative position of brands with respect to each

brand image attribute. The brands at the top of the ranking with respect to each brand image at-

tribute are deemed to have a strong association with that particular attribute in customer minds.

Furthermore, we only considered single-coloured brands, as the interaction among colours is

not the topic of this study. We used 34 single-coloured beauty brands. Finally, we measured the
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HSV colour component for each brand logo and added these to the dataset. A small portion of

the dataset is presented in table 2.5.1 for illustration, where only 8 brands and 3 brand image

attributes together with the brand colour components are presented.

Table 2.5.1: Brand colour components and rankings with respect to brand image items

Brand name Colour components Rankings in image items
H S V Daring Fun Trendy

Always 214 82 66 4 34 22
Caress 45 50 100 18 21 18

Charmin 203 78 86 28 27 29
Clairol 208 98 53 3 8 4
Colgate 358 88 93 8 14 27

CoverGirl 324 10 20 2 1 2
Crest 199 99 76 23 3 21

Dial Soap 205 100 71 7 23 25
... ... ... ... ... ... ...

2.5.2 Experimental results

For each of the brand image items, the association with the brand colour is analysed using the

proposed methodology. The set of extracted value functions represents the colour patterns with

respect to that brand image item. The value functions are used to calculate the utility of each

brand from the perspective of that particular brand image item. The greater the utility of a

brand, the greater is the likelihood of a strong connection between the brand and the brand

image attribute. Finally, the brands were ranked on their utilities. The obtained ranking was

compared with the initial ranking from the data in order to measure the accountability of the

extracted value functions. The Kendall τ measure was used for this purpose.

The extracted value functions for the brand image attribute fun is presented in the Fig.

(2.5.1). By setting Pmin = 0.6 and Pmax = 0.01, the results are obtained in 1252 iterations.

The Kendall τ measure between the initial ranking and the ranking from the extracted value
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functions is equal to 0.63. This indicates a strong association between the two rankings. So

we can conclude that brand colour significantly explains the perception of the brand to be fun.

Under the null hypothesis, when there is no dependency between the two rankings, and when

the number of elements in the ranking list is sufficiently large, namely larger than 10, the τ mea-

sure follows a normal distribution with the mean equal to zero and variance equal to 2(2n+5)
9n(n−1) in

which n is the number of elements in the ranking list (Long and Cliff 1997). In our experiment

n is equal to 34 which is the number of brands in the list. The statistical test shows that τ is

significantly positive with p-value<0.001.
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Figure 2.5.1: Value functions for the item fun

The maximal contribution of each H, S, and V colour component into the comprehensive

utility of the brand with respect to the item fun is 0.10, 0.44, and 0.46, respectively. This

indicates that the colour hue plays the least role in the perception of a brand as fun. The value

functions demonstrate that brands with the colour hue green, less saturated, and moderately

bright tend to be perceived as fun.

The same analysis has been conducted for all the other 39 brand image attributes. The

Kendall τ measure of each analysis and colour component weights are given in Table 2.5.2.

As it can be seen from Table 2.5.2, for 29 of the 40 brand image attributes the Kendall τ

measure is significant at the 0.001 level of significance. This reveals a significant contribution of
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brand colour in the perception of brand by customers. More interestingly, comparison among

the weights of colour components shows that colour hue is usually the least important compo-

nent. Colour hue has the least weight in 39 of the 40 brand image attributes, and only for the

image attribute kind does it have the second highest weight at the top of component V. Statisti-

cal tests show that colour hue (H) weight is significantly less than colour saturation (S) weight

(t(39) = −27.66 and p − value < 0.001), and colour value (V) weight (t(39) = −19.90

and p − value < 0.001), while there is no significant difference between colour saturation and

colour value weights (t(39) = −1.06 and p− value = 0.29). This indicates that the two colour

components S (how pure or whitened is the colour) and V (how dark or bright is the colour)

play much more of a role in determining the customer perception of brand image than colour

hue. Finally, it is important to highlight that customer perception of a brand as intelligent is not

influenced by the brand colour.

From each set of the extracted marginal value functions, it is possible to determine the H,S,

and V values which lead to the highest utility with respect to each particular brand image

attribute. For example, from the extracted value functions for the brand image fun in the

Fig. (2.5.1), it can be seen that (V,H, S) = (174.5, 0, 52) leads to the highest possible utility.

Therefore, a brand manager can choose the corresponding colour to be perceived as fun by

customers. We did the same analysis for all the attributes which are significant at 0.001 level,

and obtained their position in the HSV colour space. The resulted brand image-colour map is

presented in Fig. (2.5.2).

The map clearly describes the colour space by the brand image attributes. It also demon-

strates the interrelation of brand image items from the brand colour perspective.
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2.6 Conclusion and futurework

This paper presents a disaggregation methodology based on the UTA method that enables the

use of non-monotonic additive models in ranking and other multi-criteria decision problems.

The main difference between the proposed methodology and existing non-monotonic methods

is that our method is capable of obtaining marginal value functions and the relative importance

of attributes (maximal shares in the comprehensive values) following an LP approach. Marginal

value functions obtained by the proposed method are free in shape. Over-fitting is prevented by

appropriate breakpoints definition and value functions slope restriction.

The proposed method does not require further information regarding the shape of the value

functions, nor the most desirable value of each attribute. The only information it requires from

the DM is a weak ordering over a set of alternatives. The results from the illustrative example

and the experiment shed light on the usefulness and effectiveness of the proposed method.

The proposed method is applied to a real data set of brand image to delineate the role of

brand colour in brand perception. The results support a significant contribution of all three

colour components in almost all brand image attributes. We also find that colour value and

saturation dominate the colour hue role in brand perception by customers.

As future work, we are interested in analysing several product categories to study how the

association between brand colour and brand image changes across industries. It would also

be interesting to compare the colour pattern for each brand image attribute across product

categories. It would be particularly interesting to look for a universal rule of brand perception

by brand colour regardless of the product category.
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Table 2.5.2: Extracted weights of the colour components and Kendall τ of the reproduced
ranking (single star means significant at 0.01 and double star means significant at 0.001)

Brain image attributes Weights Kendall τ
H S V

Arrogant 0.192 0.425 0.373 0.383∗∗

Authentic 0.161 0.416 0.414 0.318∗

Best brand 0.120 0.455 0.424 0.540∗∗

Care-free 0.184 0.407 0.408 0.451∗∗

Cares for customers 0.155 0.400 0.438 0.487∗∗

Charming 0.111 0.441 0.438 0.344∗

Daring 0.290 0.357 0.353 0.380∗∗

Down to Earth 0.156 0.397 0.441 0.455∗∗

Energetic 0.188 0.373 0.434 0.333∗

Friendly 0.147 0.410 0.443 0.430∗∗

Fun 0.097 0.441 0.462 0.629∗∗

Gaining In Popularity 0.149 0.395 0.455 0.365∗

Glamorous 0.120 0.442 0.430 0.526∗∗

Good value 0.081 0.469 0.443 0.480∗∗

Healthy 0.106 0.401 0.492 0.316∗

Helpful 0.163 0.419 0.414 0.469∗∗

Healthy 0.106 0.401 0.492 0.316∗

High Performance 0.195 0.401 0.401 0.390∗∗

Independent 0.207 0.366 0.425 0.419∗∗

Intelligent 0.156 0.400 0.436 0.258
Kind 0.323 0.440 0.228 0.590∗∗

Obliging 0.181 0.386 0.426 0.415∗∗

Original 0.155 0.383 0.458 0.383∗∗

Prestigious 0.246 0.429 0.323 0.458∗∗

Progressive 0.148 0.378 0.467 0.533∗∗

Restrained 0.187 0.418 0.394 0.451∗∗

Rugged 0.172 0.468 0.353 0.619∗∗

Sensuous 0.120 0.430 0.443 0.601∗∗

Simple 0.232 0.427 0.331 0.554∗∗

Social 0.108 0.446 0.446 0.358∗

Socially Responsible 0.111 0.431 0.451 0.487∗∗

Straightforward 0.168 0.407 0.427 0.554∗∗

Stylish 0.176 0.385 0.433 0.501∗∗

Traditional 0.158 0.407 0.425 0.458∗∗

Trendy 0.097 0.430 0.463 0.326∗

Trustworthy 0.105 0.435 0.453 0.601∗∗

Unapproachable 0.208 0.389 0.399 0.376∗

Up To Date 0.137 0.425 0.429 0.465∗∗

Upper class 0.174 0.409 0.417 0.298∗

Visionary 0.121 0.435 0.435 0.326∗

Worth more 0.111 0.442 0.442 0.412∗∗
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Figure 2.5.2: Colour map of the brand image attributes
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3
ALinear Programming Approach for Learning

Non-Monotonic Additive Value Functions inMultiple

Criteria Decision Aiding1

A new framework for preference disaggregation in multiple criteria decision aiding is intro-

duced. The proposed approach aims to infer non-monotonic additive preference models from
1This chapter is published in European Journal of Operational Research by Ghaderi, M., Ruiz, F., Agell, N.,

(Volume 259, issue 3, pages 1073-1084, 2017), Journal Metrics: ABS 4, SJR Q1, Impact Factor: 2.679 (Ghaderi
et al. 2017)
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a set of indirect pairwise comparisons. The preference model is presented as a set of marginal

value functions and the discriminatory power of the inferred preference model is maximized

against its complexity. To infer a value function that is compatible with the supplied preference

information, the proposed methodology leads to a linear programming optimization problem

that is easy to solve. The applicability and effectiveness of the new methodology is demon-

strated in a thorough experimental analysis covering a broad range of decision problems.

3.1 Introduction

Preference disaggregation techniques are a subfield of multiple criteria decision aiding (MCDA)

and cover techniques that are used to infer the judgment policy of a decision maker (DM) by

analyzing a given preferential structure (Jacquet-Lagrèze and Siskos 2001). The aim of these

techniques is to elicit the DM’s preferential system and judgment policy, and to identify the

criteria aggregation model that underlies the final decision (de Almeida et al. 2016; Doumpos

and Zopounidis 2004a). Disaggregation methods are of interest because they require a low

level of cognitive effort and interaction time from the DM. In contrast to many other MCDA

methods, disaggregation methods do not expect input from the DM in form of the parameters

of a preference model. The DM is not required to specify any of the parameters in the model de-

velopment process, nor explain the rationale behind his/her decisions (Dias et al. 2002). Most

of the existing preference disaggregation methods assume a monotonic relationship between

input attributes and preferences. The few methods currently addressing non-monotonicity de-

mand excessive computational effort or require extra information from the DM. Developing

an efficient methodology for learning non-monotonic preference models is therefore of great

importance.

The assumption of monotonicity is widely used because it seems reasonable for many criteria
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(such as price of a product, level of risk, security, safety and ease of use of a service, required

time and effort for accomplishing a task). However, this is not the case for many other attributes

(such as desired temperature, weight and volume of a product, or attributes related to the

composition or organoleptic properties). In a medical context, for instance, attributes such

as sugar and cholesterol levels in blood are clear examples of non-monotonic attributes. In

finance, there are many indicators used to depict the financial performance of a firm that experts

believe must be controlled within a specific range. For instance, a large value for the cash to total

assets ratio implies that the firm is losing many profitable investment opportunities, whereas a

low value indicates a low capacity of the firm to cope with operating expenditures (Despotis

and Zopounidis 1995). Thus, dealing with non-monotonic preferences is important both from

theoretical and practical perspectives. The monotonicity constraint limits applicability of the

MCDA methods in many fields, and it is important to overcome this limitation.

UTA (UTilités Additives) is one of the most representative preference disaggregation meth-

ods. It was first introduced in (Jacquet-Lagrèze and Siskos 1982) and follows a linear program-

ming (LP) approach. The aim of UTA is to infer a non-linear (piecewise linear) monotonic

additive value function which can reproduce the ranking of a set of alternatives supplied by

the DM. Several extensions of the UTA method have since been introduced in the MCDA lit-

erature that incorporate variations in the original algorithm, consider different forms of input

preference information and optimality criteria, and consider the robustness of inferences. For

instance: Pairwise comparisons UTA (Doumpos and Zopounidis 2004b); UTASTAR (Siskos

and Yannacopoulos 1985); UTADIS (UTilités Additives DIScriminantes) I, II, III (Devaud

et al. 1980; Doumpos and Zopounidis 1998; Jacquet-Lagrèze 1995; Zopounidis and Doumpos

1999b); stochastic UTA (Siskos 1983), Fuzzy UTASTAR (Patiniotakis et al. 2011); ACUTA

(Bous et al. 2010); UTAGMS (Greco et al. 2008); GRIP (Generalized Regression with Intensi-

ties of Preference) method as an extension of the UTAGMS (Figueira et al. 2009); selection of
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representative value functions in ranking and choice problems as an extension of the UTAGMS

and GRIP (Kadziński et al. 2012b); and in sorting problems as an extension of UTADISGMS

(Greco et al. 2011a); RUTA (Kadziński et al. 2013); MCHP as a general framework in case

of a hierarchical structure in the family of evaluation criteria (Corrente et al. 2015; Corrente

and Greco 2012); and others (Beccacece et al. 2015; Corrente et al. 2016b; Kadziński et al.

2014, 2012a; Özpeynirci et al. 2017). Interested readers are referred to (Siskos et al. 2016) for a

thorough review of UTA methods.

The highlighted preference disaggregation methods have many applications in numerous

fields, for example: global e-governance evaluation (Siskos et al. 2014); predicting business

failure (Zopounidis and Doumpos 1999a); assessing the environmental impact of cities (Kadz-

iński et al. 2016); assessing investing risk (Doumpos et al. 2001) and country risk (Doumpos

and Zopounidis 1997); finance (Zopounidis et al. 2015); healthcare (Doumpos et al. 2015);

evaluating R&D projects (Jacquet-Lagrèze 1995); energy planning (Diakoulaki et al. 1999); job

evaluation problems (Spyridakos et al. 2001); branding (Ghaderi et al. 2015) and many other

applications.

In most of the applications mentioned above, the input attributes are normally expected to

be monotonic with respect to the preferences. Several studies have been conducted in the liter-

ature to deal with cases where the assumption of monotonicity is no longer valid. One way to

address non-monotonicity in a preference model is to divide the range of criteria into intervals

so that the preferences are monotonic in each interval and then treat each interval separately.

Following this idea, in the method introduced by Despotis and Zopounidis, a quadratic shape

for the marginal value functions is admitted (Despotis and Zopounidis 1995). The method

requires as input the performance value at which the monotonicity direction changes. Another

non-monotonic methodology, UTA-NM, relaxes the monotonicity condition in the UTASTAR

algorithm, allowing, in theory, any shape for marginal value functions (Kliegr 2009). The
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complexity of the inferred marginal value functions, defined by the number of changes in mono-

tonicity direction, is minimized. The method entails severe performance issues: tens of binary

variables are involved even for very small instances, thus making the method computationally

infeasible for real-world problems. In another study, Eckhardt and Kliegr proposed local prefer-

ence transformation, a heuristic attribute preprocessing algorithm that transforms arbitrary input

attributes into a space that is approximately monotonic with respect to user preferences, thus

making it suitable for UTA (Eckhardt and Kliegr 2012). Finally, the methodology introduced

in (Doumpos 2012) considers a broader class of non-monotonic value functions. However, this

methodology leads to a non-linear integer programming problem that is difficult to solve with

realistically sized data sets. Thus, an evolutionary approach based on the differential evolution

algorithm is employed.

This paper introduces a new methodology for inferring non-monotonic additive preference

models from a set of indirect pairwise comparisons. The main idea is to relax monotonicity

constraints for possibly non-monotonic criteria, and then optimizing the complexity of the pref-

erence model against its discriminatory power. The complexity of value function is controlled

by minimizing variation in the slope of the marginal value functions. A mapping is used to

represent the inferred value function in a standard form, while the preference orders among

alternatives are preserved. The methodology leads to a linear fractional programming (LFP)

problem which can easily be transformed into an LP problem, and so can efficiently deal with

datasets of realistic size. In this paper, the input preferences are assumed to be in the form of

pairwise comparisons: however; the methodology can be adopted to deal with other types of

preference disaggregation problems with other preferential structures (such as ranking, prefer-

ence intensities, evaluations on a subset of criteria, sorting, and rank-related requirements).

The paper is organized as follows. In Section 3.2 an overview of the preference disaggre-

gation approach following the UTA framework is presented. Several extensions of UTA to
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non-monotonic setting are discussed in this section. In section 3.3, the new methodology is

introduced, followed by an illustrative example and a comparison with two well-known non-

monotonic UTA-like methods: Despotis UTA and UTA-NM. To assess the performance of the

new methodology, a thorough experimental analysis over a broad range of decision problems

is conducted in the next section. Section 3.5 introduces an extension of the proposed method-

ology that enables the analyst to manipulate properties of the inferred preference model when

necessary. Finally, we conclude the paper and suggestions for future research are highlighted.

3.2 Reminder on PreferenceDisaggregation

Throughout the paper, the following notation is used:

• A = {a1, a2, · · · , aN} is a finite set of alternatives described over a set of criteria, and AR ⊂

A is the set of reference alternatives on which the DM provides some preference information.

• G = {g1, g2, · · · , gM} is the family of evaluation criteria, gm : A → Xm, in which Xm is the

evaluation scale of the mth criterion, and gm(an) = xmn is the performance of alternative an over

the criterion gm. Without loss of generality, in this section we assume that the greater gm(an), the

better is the alternative an on criterion gm.

•GK ⊆ G is the set of all possibly non-monotonic criteria.

• gm0 , gm1 , · · · , gmαm are αm + 1 breakpoints to divide the evaluation scale of mth criterion into

αm subintervals [gm0 , gm1 ], [gm1 , gm2 ], · · · , [gmαm−1, gmαm ]. Moreover, gm0 and gmαm are the minimum and

maximum performance levels for themth scale, respectively.

The DM is expected to provide a set of holistic pairwise judgments in the form of partial

preorder % on AR. For the two alternatives a, b ∈ AR, a % b means that a is at least as good

as b. The indifference, ∼, is the symmetric part of %, and the strict preference relation, ≻, is

the asymmetric part. A set of marginal value functions vm : Xm →
[
0, 1

]
is estimated for the
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set of evaluation criteria so that the preference information provided by the DM is reproduced.

Each marginal value function associates a numerical score to each alternative which is its value

from the perspective of corresponding criterion. The numerical scores are aggregated additively

to obtain the comprehensive value. The marginal value at a breakpoint gml , 1 ≤ l ≤ αm for

criterionm is expressed as follows:

vm(gml ) =
l∑

j=1

(vm(gmj )− vm(gmj−1)) =
l∑

j=1

vmj (3.1)

where vm(gml ) is the value associated with the lth breakpoint on the mth criterion, and vmj =

vm(gmj )− vm(gmj−1).

The marginal value corresponding to the performance xmn ∈ [gml−1, gml ] is obtained by linear

interpolation between vm(gml−1) and vm(gml ), as follows:

vm(xmn ) =
l−1∑
j=1

vmj +
xmn − gml−1

gml − gml−1
·vml . (3.2)

The preference information provided by the DM is translated into the following set of con-

straints:

V(a)− V(b) ≥ ε, if a ≻ b, for a, b ∈ AR,

V(a)− V(b) ≥ 0, if a % b, for a, b ∈ AR,

V(a)− V(b) = 0, if a ∼ b, for a, b ∈ AR,

 EAR

DM (3.3)

in which V(a) =
∑M

m=1 v
m(a) is the comprehensive value of a ∈ AR, and ε is a positive

parameter to discriminate comprehensive values of pairs belonging to strict preference relations.
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The set of all value functions compatible with the preferences given by the DM, denoted by U ,

is defined by the following set of constraints:

EAR

DM,

vm(gm0 ) = 0, m = 1, · · · ,M,∑M
m=1 v

m(gmαm) = 1,

vmj ≥ 0, j = 1, · · · , αm, m = 1, · · · ,M


E(U) (3.4)

in which the last three constraints define conditions on normalization and monotonicty of

value functions. In order to obtain the most discriminant value function representing the DM

preferences, the following LP problem has to be solved:

Maximize ε, s.t. E(U). (3.5)

Let us denote by ε∗ the optimal solution of the above LP problem. There exists at least one

value function compatible with the preferences provided by the DM if E(U) is feasible and

ε∗ > 0. Otherwise, some comparisons of reference alternatives will not be reproduced. The

reason for such incompatibility could be the assumptions made about the preference model of

the DM, i.e. monotonic and additive value function, or inconsistency among the judgments

made by the DM. The DM will be asked to revise some comparisons in order to obtain a

compatible value function, or to pursue the analysis and accept some level of incompatibility. A

detailed discussion on dealing with incompatibility can be found in (Greco et al. 2008).

3.2.1 Non-Monotonic UTA-Like Methods

A brief overview of the studies extending the UTA method to a non-monotonic setting is

presented in this section. The first extension of the UTA method to a non-monotonic setting

50



was proposed by (Despotis and Zopounidis 1995). This method follows an LP approach to

infer a non-monotonic additive value function from a given ranking over a set of alternatives.

In the model, a specific form of non-monotonicity is assumed. The marginal value functions

are assumed to be quadratic in shape, and the DM is required to specify, for each criterion, the

performance value at which the monotonicity direction changes.

In a more general approach in (Doumpos 2012), a broader class of non-monotonic additive

value functions is considered. The value functions are allowed to be quasiconvex, quasiconcave,

or s-type, and inferred directly from a set of decision examples without requiring any additional

information from the DM. The major technical difference between this method and UTASTAR

is in the formulation of the value functions. The marginal value at a breakpoint gml is defined as

follows.

vm(gml ) =
l∑

j=1

ymj v
m
j + dm (3.6)

The decision variable ymj ∈ {−1, 1} defines the monotonicity of the value function over

the subinterval [gmj−1, gmj ] in the mth criterion. The parameter dm is used to ensure that the

marginal values are non-negative. To avoid arbitrary marginal value functions, the variables ymj

are introduced to admit only quasiconvex, quasiconcave or s-type forms. Finally, in a similar

way to the original UTA method, comprehensive values are normalized in the interval [0, 1].

This formulation leads to a mixed integer non-linear programming (MINLP) problem, which is

classified as an NP-hard (non-deterministic polynomial-time hard) problem, and therefore, its

solution is computationally intensive. In the original paper, an evolutionary approach, based on

the differential evolution algorithm, is employed to solve the problem.

The method termed UTA-NM (Kliegr 2009), also removes the monotonicity condition

imposed by the UTASTAR algorithm and, in contrast to UTASTAR, accepts negative values
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for the variables vmj . To ensure normalisation, however, many binary variables are added to

the model and this adds considerably to its complexity. To prevent overfitting and highly

complex marginal value functions, every change in the monotonicity is penalised. However,

the penalisation term introduced entails an excessive computational cost since even trivial tasks

take tens of seconds to complete.

Finally, a heuristic preprocessing algorithm, local preference transformation, transforms arbi-

trary input attributes to approximately monotonic attributes, thus making it suitable for UTA

(Eckhardt and Kliegr 2012). The definition of the transformation function depends on the type

of the input attribute, which can be either nominal or cardinal (ordinal attributes are not ad-

dressed in the original paper). In both nominal and cardinal cases, some ratings are assigned to

the alternatives based on their weak order. For nominal attributes, the rating of a performance

level is calculated as the average rating of all the alternatives with that performance level. For

cardinal attributes, a univariate linear regression is used to find the relationship between the

cardinal input performances as independent, and ratings as dependent variables. The first short-

coming of this algorithm is that monotonic attributes are not guaranteed after local preference

transformation (Eckhardt and Kliegr 2012). Another issue is that the determination coefficient

of the univariate linear regression model is too small in presence of highly non-monotonic

preferences. As a result, the relationship is not reliable. The third drawback is the need to

assign arbitrary rating (but compatible with the ranking given by the DM) for the alternatives.

Different ratings usually lead to different marginal value functions.

3.3 ProposedMethodology

As in the approaches of (Doumpos 2012) and (Kliegr 2009), the non-monotonicity of value

functions in our proposed method is permitted by accepting negative values for the decision
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variables vmj . However, the complexity of the value functions is controlled by minimizing

variation in slope. Controlling variation in slope has been used before in (Doumpos and

Zopounidis 2002) for the determination of the minimum number of criteria subintervals, and

in (Greco et al. 2011b) to obtain parsimonious preference models.

Due to the possible non-monotonicity in the marginal value functions, the least and the most

preferred performance levels are not known a priori. The resulting value functions, therefore,

are not initially normalized. To represent the value function in a standard form, a transfor-

mation is employed. The ordinal relations among the alternatives are preserved under the

transformation. In the next subsection, before providing the model formulation, we introduce

the transformation for normalizing the estimated value function.

3.3.1 Transformation

Suppose that V = {v1, v2, · · · , vM} is the set of marginal value functions in which vm : Xm →

R is the marginal value function over the mth criterion, and the value function is not necessarily

in a UTA-like standard format. UTA-like methods commonly infer an unweighted form of the

additive value functions (Siskos et al. 2005):

V(·) =
∑M

m=1 v
m(·),∑M

m=1 vm(g
m∗) = 1,

vm(gm∗ ) = 0 ∀m = 1, · · · ,M

(3.7)

in which gm∗ and gm∗ denote performance levels corresponding to the greatest and the least

marginal values, respectively. In non-monotonic setting, these two values do not necessarily

coincide with the extremes of the evaluation scale, i.e. gmαm and gm0 . We are looking for a

transformation T that maps the functional space V to the functional space VT , in which for

V ∈ V and VT ∈ VT , VT = T(V), and VT is the space including comprehensive value
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functions in the UTA standard format represented in (3.7). The mapping is also required

to preserve the ordinal relations among the alternatives, i.e. to satisfy the following three

conditions:

∑
m v

m(a) >
∑

m v
m(b) ⇐⇒

∑
m T(v

m)(a) >
∑

m T(v
m)(b),∑

m v
m(a) ≥

∑
m v

m(b) ⇐⇒
∑

m T(v
m)(a) ≥

∑
m T(v

m)(b),∑
m v

m(a) =
∑

m v
m(b) ⇐⇒

∑
m T(v

m)(a) =
∑

m T(v
m)(b).

(3.8)

The mapping T : V → VT, defined as follows, satisfies all the requirements specified in (3.7)

and (3.8).

vmT = T(vm) =
vm − vm(gm∗ )∑

m (vm(gm∗)− vm(gm∗ ))
· (3.9)

In the above mapping, the minimum value of vmT = T(vm) is 0 at gm∗ , by its definition. In

addition,
∑

m v
m
T(gm∗) =

∑
m

vm(gm∗)−vm(gm∗)∑
m(vm(gm∗)−vm(gm∗))

= 1. Moreover, the ordinal relations among

the alternatives are preserved under this transformation, i.e.
∑M

m=1 v
m(a) >

∑M
m=1 v

m(b) ⇐⇒∑M
m=1 v

m
T(a) >

∑M
m=1 v

m
T(b). The proof is straightforward and provided below.∑M

m=1 v
m(a) >

∑M
m=1 v

m(b) ⇐⇒

⇐⇒
∑M

m=1 (v
m(a)− vm(gm∗ )) >

∑M
m=1 (v

m(b)− vm(gm∗ )) ⇐⇒

⇐⇒
∑M

m=1
vm(a)− vm(gm∗ )∑M

m=1 (vm(gm∗)− vm(gm∗ ))︸ ︷︷ ︸
vmT (a)

>
∑M

m=1
vm(b)− vm(gm∗ )∑M

m=1 (vm(gm∗)− vm(gm∗ ))︸ ︷︷ ︸
vmT (b)

·

The proof for the cases of ′′ ≥′′ and ′′ =′′ in (3.8) is similar to the above.

3.3.2 Model Formulation

The value functions are assumed to be piecewise linear, and so featuring a constant slope for

each subinterval. The slope of the mth marginal value function for the jth subinterval is equal to

vmj /(gmj − gmj−1). Therefore, the change in the slope at the interior breakpoint gmj is vmj+1/(gmj+1 −
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gmj ) − vmj /(gmj − gmj−1). The slope variation is minimized across all the
∑M

m=1(αm − 1) interior

breakpoints. Let us denote by γmj the non-negative variable which specifies the difference in

slope for the two subintervals [gmj−1, gmj ] and [gmj , gmj+1]. The following set of constraints restricts

variation in slopes:

vmj+1

gmj+1−gmj
− vmj

gmj −gmj−1
≤ γmj ,

vmj
gmj −gmj−1

− vmj+1

gmj+1−gmj
≤ γmj ,

j = 1, · · · , αm − 1, m = 1, · · · ,M.

 EAR

slope (3.10)

The above constraint ensures that the absolute difference in slopes of the marginal value

function over the two subintervals [gmj−1, gmj ] and [gmj , gmj+1] should be less than or equal to the

variable γmj that is going to be optimized. Moreover, in order to bound the solution space, the

following set of constraints is employed to restrict the marginal values at any breakpoint to the

interval between 0 and 1:

vm(gm0 ) ≥ 0,

vm(gm0 ) + vm1 ≥ 0,
...

vm(gm0 ) + vm1 + · · ·+ vmαm ≥ 0,


EAR

low

vm(gm0 ) ≤ 1,

vm(gm0 ) + vm1 ≤ 1,
...

vm(gm0 ) + vm1 + · · ·+ vmαm ≤ 1,


EAR

up



EAR

bound (3.11)

in which the sets of constraints in EAR

low and EAR

up guarantee that the marginal value at any point

is non-negative and less than 1, respectively. The choice of 0 and 1 as lower and upper bounds

are rather arbitrary and any other two values could be chosen to avoid an unbounded solution
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space. The set of all possibly non-monotonic value functions representing the preference model

of the DM, denoted by UNM, is defined by the following set of constraints:

EAR

DM, EAR

slope, EAR

bound,

vm(gm0 ), vmj ≥ 0, j = 1, · · · , αm, ∀m : gm ∈ G/GK,

γmj ≥ 0, j = 1, · · · , αm − 1, m = 1, · · · ,M,

ε ≥ 0.


E(UNM) (3.12)

Unknowns in the above set of constraints are vm(gm0 ), vmj , γmj , and ε. The second line of

constraints ensures monotonicity of those criteria that are known to be monotonic a priori. The

other decision variables, vm(gm0 ) and vmj for the non-monotonic criteria, are unrestricted in sign

to allow non-monotonicity.

To find an instance of a possibly non-monotonic value function compatible with the supplied

pairwise comparisons, we are considering two objectives simultaneously. First, the parameter

ε that is going to be maximized to obtain a value function with the most discriminatory power.

Second, the term
∑

m,j γ
m
j which is going to be minimized in order to obtain the most par-

simonious value function. The two objectives are conflicting because the more complex the

value function, the better it can discriminate the alternatives belonging to the strict preference

relation. To account for the both objectives, several approaches can be followed. However,

one desired property of the optimal solution, subject to (3.12), is that it remains optimal in

the transformed solution space under the transformation (3.9). One natural expectation is that

V∗ ≻obj V ⇐⇒ V∗
T ≻obj VT, where V∗ ≻obj V reads as ′′the value function V∗ is better

than V according to the objective function′′ , V∗
T = T(V∗), and VT = T(V). One possible

approach to account for objectives, is to introduce weights for the two objectives and minimize

1
η

∑
m,j γ

m
j − ε, in which η determines the relative importance of each objective. Another pos-

sibility is to follow a lexicographic approach by first maximizing ε, then keeping ε at its optimal
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level by adding a new constraint and minimizing
∑

m,j γ
m
j . In our formulation, we construct the

objective function in a fractional form - that is, we minimize the ratio
∑

m,j γ
m
j /ε. Therefore, to

obtain one possibly non-monotonic instance of value functions compatible with the supplied

preference information, the following LFP problem should be solved:

Minimize

∑
m,j γ

m
j

ε
, s.t. E(UNM). (3.13)

The above LFP problem can be easily transformed into an LP problem using the Charnes-

Cooper transformation (Charnes and Cooper 1962).

Following this formulation, it can be shown that for any instance of the solution space, the

value of the objective function remains unchanged under the transformation (3.9), hence the

optimal solution in the original optimization problem (3.13) remains optimal amongst the

solution instances after the transformation. To prove this, for any two alternatives ai, aj ∈ AR,

for which ai ≻ aj, the relation between differences in comprehensive values before and after

transformation is as follows:

VT(ai)− VT(aj) =
∑
m

(vm(ai)− vm(gm∗ ))− (vm(aj)− vm(gm∗ ))∑
m(vm(gm∗)− vm(gm∗ ))

(3.14)

=
∑
m

vm(ai)− vm(aj)∑
m(vm(gm∗)− vm(gm∗ ))

(3.15)

=
V(ai)− V(aj)∑

m(vm(gm∗)− vm(gm∗ ))
· (3.16)

This means that the difference in comprehensive values of alternatives is rescaled with re-

spect to the constant value in the denominator. Therefore, the same pair of alternatives entails
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minimal difference in comprehensive values before and after transformation. This implies that

ε∗T = ε∗/
∑

m(v
m(gm∗)− vm(gm∗ )) in which ε∗ is the value of ε in the optimal solution of (3.13),

and ε∗T is the minimal difference in comprehensive values of alternatives according to the value

function in the standard form. Similarly, it can be shown that the variation in slope at any inte-

rior breakpoint is not influenced by the shift in marginal value functions, i.e. subtracting vm(gm∗ ),

but only by the rescaling, and hence (γmj )T = γmj /
∑

m(v
m(gm∗) − vm(gm∗ )), in which (γmj )T

is the variation in the slope of the mth standardized marginal value function at jth breakpoint.

Therefore,
∑

m,j(γ
m
j )T/εT =

∑
m,j γ

m
j /ε. This implies that the value function corresponding to

the minimum value of the objective function in (3.13) holds the smallest ratio of ′′total varia-

tion in slope divided by minimal differences in comprehensive values′′ , amongst all the value

functions in the standard form.

3.3.3 Illustrative Example

The applicability of the proposed methodology is illustrated using a synthetic example in this

section. In this example, N = 10 alternatives are evaluated based on M = 2 criteria and

p = 9 pairs of alternatives are selected randomly for comparison by the hypothetical DM. The

performances of the alternatives are presented in table 3.3.1.

The supplied pairwise comparisons are presented in Figure 3.3.1, in which an arrow from ai

to aj implies ai ≻ aj. According to the supplied preferences, the alternative a1 is not in the

reference set AR.

Discretization of criteria scales is performed by following general value functions in which

every distinct performance value is considered as a breakpoint. Therefore, the breakpoints for

the first criterion, g1, are g10 = −9.4, g11 = −9.2, g12 = −5.2, g13 = −4.4, g14 = −3.2, g15 = −0.4,

g16 = 3.8, g17 = 4.6 and g18 = 6.5. The marginal values at each of these breakpoints are v1(−9.4),

v1(−9.4)+ v11, v1(−9.4)+ v11 + v12, ..., v1(−9.4)+ v11 + v12 + · · ·+ v18. These marginal values are
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Table 3.3.1: Randomly generated performances of 10 alternatives evaluated by 2 criteria

alternatives g1 g2

a1 0.5 4.5
a2 -4.4 -1.3
a3 -0.4 -0.7
a4 -3.2 -4.7
a5 4.6 -4.2
a6 -5.2 9.1
a7 -9.2 4.9
a8 6.5 -0.5
a9 3.8 6.2
a10 -9.4 -8.7

Figure 3.3.1: Pairwise comparisons of the hypothetical alternatives

the unknowns that are going to be estimated. Breakpoints and marginal values for the second

criterion are defined in a similar way. To obtain the comprehensive value of an alternative, the

marginal values need to be summed. For example, the comprehensive value of the alternative a4

is defined as V(a4) = v1(−3.2) + v2(−4.7) = v1(−9.4) + v11 + v12 + v13 + v14 + v2(−8.7) + v21.

In the next step, the constraints representing the supplied preferences (EAR

DM), are created. For

59



example, according to the supplied preferences a2 ≻ a4. The constraint according to this

pairwise comparison is as follows:

a2 ≻ a4 → V(a2)− V(a4) ≥ ε →

(v1(−9.4) + v11 + v12 + v13 + v2(−8.7) + v21 + v22 + v23)

−(v1(−9.4) + v11 + v12 + v13 + v14 + v2(−8.7) + v21) ≥ ε →

−v14 + v22 + v23 ≥ ε.

(3.17)

The remaining constraints in EAR

DM are created in a similar way.

The next step is to create the constraints for controlling variation in slope of the marginal

value functions. For example, the constraint associated with the first interior breakpoint of the

first criterion, g11 = −9.2, is as following:

v12
−5.2−(−9.2) −

v11
−9.2−(−9.4) ≤ γ1

1,

v11
−9.2−(−9.4) −

v12
−5.2−(−9.2) ≤ γ1

1,
(3.18)

and, as another example, the constraint associated with the third interior breakpoint of the

second criterion, g23 = −1.3, is as following:

v24
−0.7−(−1.3) −

v23
−1.3−(−4.2) ≤ γ2

3,

v23
−1.3−(−4.2) −

v24
−0.7−(−1.3) ≤ γ2

3·
(3.19)

The remaining constraints for all the interior breakpoints are defined similarly.
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Finally, to bound the solution space, the constraints in EAR

bound must be added. For the sake of

illustration, EAR

low for the first criterion, g1, is provided here:

v1(−9.4) ≥ 0,

v1(−9.2) + v11 ≥ 0,

v1(−9.4) + v11 + v12 ≥ 0,
...

v1(−9.4) + v11 + v12 + · · ·+ v18 ≥ 0.

(3.20)

To obtain one instance of the value functions representing DM preferences, the following

LFP problem should be solved:

Minimize γ1
1+···+γ1

7+γ2
1+···+γ2

7
ε

s.t.

EAR

DM , EAR

slope , EAR

bound ,

v1(−9.4), v11, v12, · · · , v18 ≥ 0,

v2(−8.7), v21, v22, · · · , v28 ≥ 0,

γ1
1, · · · , γ1

7, γ
2
1, · · · , γ2

7 ≥ 0,

ε ≥ 0.

(3.21)

By solving the above optimization problem, estimation of the decision variables correspond-

ing to the two marginal value functions are presented in table 3.3.2.

The value obtained for ε∗ is 0.058. Moreover, according to the results, γ1
4 = 0.253, γ2

3 =

0.480 and the estimated value for all the remaining γmj variables is equal to 0. The estimated

comprehensive values for the alternatives are presented in the second column of table 3.3.3.

According to the inferred value function, a10 ≻ a2 ∼ a7 ≻ a4 ≻ a3 ≻ a5 ≻ a8 ≻ a1 ≻

a6 ≻ a9, which is compatible with the supplied preference information.

61



Table 3.3.2: Estimated values for the decision variables related to the marginal value func-
tions

g1 g2

v1(−9.4) 0.505 v2(−8.7) 0.950
v11 -0.005 v21 0.034
v12 -0.095 v22 0.004
v13 -0.019 v23 0.025
v14 -0.029 v24 -0.011
v15 -0.022 v25 -0.004
v16 -0.033 v26 -0.100
v17 -0.006 v27 -0.024
v18 -0.015 v28 -0.053

Table 3.3.3: Estimated comprehensive values for the alternatives

alternatives
comprehensive values
according to initial

value function

comprehensive values
according to transformed

value function
a1 1.234 0.318
a2 1.399 0.714
a3 1.337 0.565
a4 1.341 0.576
a5 1.284 0.437
a6 1.226 0.299
a7 1.399 0.714
a8 1.279 0.425
a9 1.176 0.180
a10 1.455 0.848

The current value function is not in a standard form because v1(g1∗) + v2(g2∗) = v1(−9.4) +

v2(−1.3) = 0.505 + 1.013 = 1.518 ̸= 1. Moreover, v1(g1∗) = v1(6.5) = 0.280 ̸= 0, and

v2(g2∗) = v2(9.1) = 0.821 ̸= 0. To this end, the marginal value at every breakpoint for the

first criterion will be subtracted by v1(g1∗) = 0.280 and divided by v1(g1∗)− v1(g1∗) + v2(g2∗)−

v2(g2∗) = 0.416. Similarly, the second marginal value function will be subtracted by 0.821 and

divided by 0.416. The inferred marginal value functions before and after the transformation are

presented in Figure 3.3.2.
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Figure 3.3.2: Inferred marginal value functions before transformation (top row) and after
transformation (bottom row)

Comprehensive values of the alternatives according to the transformed value function are

presented in the third column of table 3.3.3. These values yield to the same ranking for the

alternatives that was obtained before. Therefore, the orders among the alternatives are pre-

served under the transformation. Moreover, the minimal differences in the post-transformation

comprehensive values of the alternatives belonging to the strict preference relation is ε∗T =

ε/0.416 = 0.138.

3.3.4 A Comparison with Despotis UTA and UTA-NM

The comparison presented in this Section is performed using data provided by (Despotis and

Zopounidis 1995), presented in Table 3.3.4. It consists of fifteen firms evaluated on three finan-
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Table 3.3.4: Multicriteria evaluation of firms by the DM

Firm
Cash

to total assets
(g1)

Long term debt and
stockholder’s equity

to fixed assets
(g2)

Total liabilities
to total assets

(g3)
rank

a 3.80 2.40 60.70 1
b 5.84 1.96 63.70 2
c 0.04 1.14 64.26 6
d 4.89 2.92 55.04 1
e 0.57 1.72 64.70 3
f 16.70 2.32 53.29 4
g 3.16 4.10 23.90 9
h 25.42 3.35 59.03 7
i 17.99 1.34 73.84 10
j 3.98 3.26 84.95 8
k 0.76 2.74 84.44 11
l 24.16 2.83 70.51 9
m 2.53 2.54 81.05 5
n 35.06 9.56 61.08 12
o 0.72 0.97 99.67 13

cial ratios. The DM ranks the firms by considering their financial performances. The results

obtained by the proposed methodology, Despotis UTA (Despotis and Zopounidis 1995) and

UTA-NM (Kliegr 2009) are presented and compared.

The value functions inferred by Despotis UTA, UTA-NM, and the proposed methodology

are presented in Figures 3.3.3, 3.3.4, and 3.3.5, respectively.

According to the results by Despotis UTA, the first and the third criterion are in quadratic

shape, and the second criteria is not relevant with a nearly zero value for the entire scale.

Similar to Despotis UTA, the marginal value function for the first criterion, g1, estimated by

UTA-NM is in quadratic shape. However, in the marginal value function by UTA-NM, there is

a sudden fall from the performance value of 16.70 to 17.99, while the marginal value function

by Despotis UTA is smoother and easier to interpret. There is a similar problem with the
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Figure 3.3.3: Estimated marginal value functions in (Despotis and Zopounidis 1995)

Figure 3.3.4: Estimated marginal value functions by UTA-NM

second marginal value function estimated by UTA-NM. Finally, unlike Despotis UTA, the third

marginal value function estimated by UTA-NM is monotonic.

Figure 3.3.5: Estimated marginal value functions by the proposed methodology

Similar to Despotis UTA, the marginal value functions estimated by the proposed method
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for the first and the third criterion are quadratic and smooth, and the second criterion is rela-

tively irrelevant.

Also, the ranking of alternatives according to the value function derived by each of the three

methodologies is plotted in Figure 3.3.6.

Figure 3.3.6: Comprehensive values versus ranking of alternatives obtained by each of the
three methdologies

The marginal value functions estimated by the proposed methodology, as well as those

estimated by Despotis UTA, are in complete agreement with the input ranking (Kendall’s

τ = 100%). However, unlike Despotis UTA, our method does not need any a priori knowledge

about the location of the point at which monotonicity direction changes.

Kendall’s τ measure for the UTA-NM result is 98.1% (alternative f is misranked) which is

close to the accuracy level of the other two methods. However, UTA-NM needs to solve a

complex mixed integer programming problem that incurs excessive computational cost.

The three methods obtain almost similar marginal value functions for the first criterion. The

second criterion is estimated to be relatively irrelevant by Despotis UTA and the proposed

methodology, but monotonic with an importance greater than 0.3 by UTA-NM. For the third

criterion, Despotis UTA and the proposed methodology yield to similar results, but UTA-NM

infers a monotonic value function.
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3.3.5 More on Slope-Variation Restriction

The variable γmj is used to control the variation in slope at the interior breakpoint gmj . The

optimal values of the variables γmj , however, are not easy to interpret. For this reason, in this

section we go into more detail to explain how this parameter is related to the change in slope

angle, which is more tangible. Suppose that θ1 is the left slope angle and θ2 is the right slope

angle at a breakpoint gmj , as shown in Figure 3.3.7. The constraints in EAR

slope imply that for a given

θ1 and γmj , the slope angle θ2 falls within the following range:

arctan(−γmj + tan θ1) ≤ θ2 ≤ arctan(γmj + tan θ1) (3.22)

in which tan θ1 =
vmj

gmj −gmj−1
and tan θ2 =

vmj+1

gmj+1−gmj
·Therefore, variation in slope angle, i.e. |θ1 − θ2|,

at the breakpoint gmj is determined by the value of θ1 (or θ2) and γmj . In other words, for a given

γmj , the slope angle varies depending on the steepness of the left slope, and for a given slope, the

slope angle varies depending on the size of γmj . In Figure 3.3.8, the upper and lower bounds of

admissible θ2 values at a breakpoint are computed for γmj = 1 and −90◦ ≤ θ1 ≤ 90◦. In this

figure, the solid segment is the bisector θ2 = θ1.

Figure 3.3.7: Change of slope angle at a breakpoint
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Figure 3.3.8: Range of admissible θ2 for different θ1 values and γ = 1

From Figure 3.3.8, it can be seen that for a fixed value of γmj , slope angle variation is larger

when θ1 is close to 0, while the variation becomes smaller when the slope is steeper. This

implies that radical changes in slope angles are prevented. On the other hand, the amount of

variation in slope angle for a given θ1 depends on the value of γmj . In Figure 3.3.9, the ranges of

acceptable θ2 given θ1 for different values of γmj are presented.

Figure 3.3.9: The role of γ in tolerance: greater γ values provide wider tolerance ranges

From the two Figures 3.3.8 and 3.3.9, it can be seen that the maximum variation in slope

angle occurs when θ1 is sufficiently close to 0. By focusing only on this range of θ1, that

is the range with maximum variation in the slope, the parameter γmj can be interpreted as a
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determinant of the upper bound of slope angle variation. In other words, for a given γmj we

can say how much, at most, the slope angle can change. To substantiate values of γmj , maximal

variation in slope angle is plotted against different values of γmj in Figure 3.3.10. This figure

helps to attach physical meanings to the values of γmj . For example, it shows that in γmj > 2

the upper bound of slope angle variation is near 90◦, hence 2 is considered as a ”large” value for

γmj because at this level, radical changes in slope can occur. Moreover, it can be seen that the

relationship between γmj and max |θ1 − θ2| is linear for γmj ≤ 1, and for each 0.1 units of γmj , an

amount slightly less than 6◦ will be added to the upper bound of slope angle variation.

Figure 3.3.10: Upper bound of |θ1 − θ2| for different γmj values

3.4 Experimental Analysis

To further examine performance of the proposed methodology, it is tested over a broad range of

decision problems.

3.4.1 Settings

We characterize each decision problem with a set of parameters: number of criteria (M); num-

ber of alternatives (N) that some of them will be evaluated by a simulated DM; number of
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pairwise comparisons (p) made by the DM; and finally, the complexity level in judgment policy

of the simulated DM (D). A larger value ofD signifies a more complex value system used by the

simulated DM. Later in this section we will explain how this complexity is modeled. The values

considered for the parameters defining each decision problem are presented in Table 3.4.1.

Table 3.4.1: Different decision problem settings considered in the experiment

N M p D
{6,8,10,
12,14} {2,3,4,5} {4,6,8,10,12,

complete ranking} {1,2,3,4}

The experiment has been conducted as follows:

Step 1: The performances of alternatives for criteria are generated randomly from a uniform

distribution in the range [−10, 10].

Step 2: Then p pairs of alternatives are randomly selected to be compared by the simulated

DM. To guarantee that there exists at least one compatible value function for each decision

setting, we generated polynomial marginal value functions with D degrees in the following

form:

v(x) = p0

D∏
d=1

(
x
10

+ pd), (3.23)

in which p0, p1, · · · , pD ∈ [−1, 1] are random coefficients generated from a uniform distribu-

tion. Moreover, in order to better define complexity of the marginal value function by D, the

coefficients are selected such that p0 ̸= 0 and p1 ̸= p2 ̸= · · · ̸= pD. The value function

is obtained by adding the marginal value functions, and the selected pairs of alternatives are

evaluated according to the generated value function.

Step 3: For the generated decision problem, the optimization problem (3.13) is solved to

infer a set of marginal value functions compatible with the provided pairwise comparisons. The
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transformation (3.9) is then used to normalize the value function. In all decision problems in

the experiment, discretization of criteria is performed by defining a breakpoint for each distinct

performance value.

To increase reliability and provide statistically invariant results, each decision setting is re-

peated 100 times, i.e. for each configuration 100 different decision problems are generated.

Overall, 48000 decision problems are solved. To measure quality of the results obtained by

solving each decision problem, three different measures are used:

• γ, maximum value of (γmj )T across all the interior breakpoints and all the criteria, i.e.

maxm,j(γmj )T,averaged over the 100 repetitions of the same configuration,

• MC, maximum number of changes in monotonicity direction across all the criteria (i.e.

the extreme value across the marginal value functions), averaged over the 100 repetitions of the

same configuration,

• ε∗T minimal difference in standardized comprehensive values of alternatives, as an indicator

of discriminatory power of the inferred preference model, averaged over the 100 repetitions of

the same configuration.

3.4.2 Results

Summaries of the results are presented in Table 3.4.2. In this table, mean values of γ and MC

show that the complexity of value functions are well-controlled. Maximum value of 0.17 for the

variable γ implies that the upper bound of change in slope angle is less than 10◦, according to

Figure 3.3.10. Moreover, maximum value of 2.46 for the variable MC implies a nearly three

times change in monotonicity, which can happen in the scenarios where 4 degree polynomials

are used to simulate DM preferences. Moreover, the results show that ε∗T has a large mean value

with a narrow confidence interval at 99% level of confidence. A large mean value of ε∗T implies
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that the inferred preference models have high discriminatory power, and the narrow confidence

interval indicates that ε∗T is not greatly affected by the simulation design parameters.

Table 3.4.2: Summaries of experimental results

Mean Minimum Maximum 99% Confidence Interval
γ 0.0250 0.0 0.17 0.021 0.029
MC 0.270 0.0 2.46 0.225 0.316
ε∗T 0.104 0.01 0.25 0.098 0.111

The impact of simulation design parameters, i.e. number of alternatives, criteria, pairwise

comparisons, and degree of the polynomials simulating DM preferences, on the three variables

γ,MC, and ε∗T is presented in Figure 3.4.1.

The figure shows that ε∗T decreases when the number of pairwise comparisons increases;

however, it is not influenced by the remaining design parameters. In fact, when more pairwise

comparisons are provided by the DM, it becomes more difficult to separate the alternatives.

Complexity of inferred value functions, on the other hand, increases when a greater number

of alternatives or pairwise comparisons are presented in the decision problem. In this case, in

order to better separate the alternatives and maintain discriminatory power, the value function

needs to hold a more complex form. However, a larger number of criteria provides greater

degrees of freedom for the value function in order to separate the alternatives while maintaining

the level of ε∗T. Therefore the complexity level of the value function decreases while its dis-

criminatory power is maintained. We need to emphasize that in our experiment the criteria are

assumed to be independent. The results might be different in the presence of correlated criteria

and noisy data. This requires a separate investigation using a comprehensive set of real data.

Further analysis demonstrated an interaction effect between p and M. The analysis shows

that for higher values of M, the association between the complexity in the inferred value func-
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Figure 3.4.1: The impact of numbers of alternatives (N), criteria (M), pairwise comparisons
(p), and degree of polynomials employed to simulate DM preferences (D) on γ, MC, and ε∗T

tions,MC, and the amount of supplied preferences, p, diminishes. In other words, the effect of

p onMC is weaker for higher values ofM. This is indicated in Figure 3.4.2.

Most importantly, Figure 3.4.1 shows that complexity of value functions increases by the de-

gree of polynomials. The figure demonstrates that when linear preference models are employed

to simulate DM preferences (D = 1), in all the corresponding 12000 decision problems the

inferred value functions are monotonic (MC = 0) and linear (γ = 0). By increasing D, the

complexity in judgment policy of the DM will be reflected in the inferred value functions.

In Figure 3.4.3, the two variables measuring complexity, γ and MC, are standardized with

respect to their mean and standard deviation, and are plotted against degrees of polynomials.
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Figure 3.4.2: The effect of p on MC diminishes by increasing M

The plot shows that both measures similarly reflect the complexity inherent in a preferential

system of the DM.

Figure 3.4.3: Average value of standardized γ and MC versus different degrees of polyno-
mials employed to simulate DM preferences
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3.5 An Extension of the ProposedMethodology

The two notions of slope variation and the discriminatory power of value function are conflict-

ing. The more complex the value function, the higher the degrees of freedom it has to better

separate the pairs of alternatives belonging to the strict preference relation. The experimental

results show that the proposed methodology makes a good balance between these two notions

by minimizing the ratio of variation in slope to the discriminatory power of the value func-

tion. In some cases, however, the analyst might prefer to further decrease the complexity of

the estimated value function at the cost of its discriminatory power. In other words, in some

cases the minimal difference in comprehensive values, i.e. ε∗T, might be sufficiently large that it

could seem logical to the analyst to obtain a simpler value function with less variation in slope,

at the cost of decreasing the discriminatory power of the inferred compatible value function.

To make this possible, the objective function in (3.13) can be adjusted as will be explained

here. The objective function at (3.13) minimizes the ratio
∑

m,j γ
m
j /ε. Minimizing this function

is equivalent to minimizing the logarithmic difference between the two terms, i.e. minimiz-

ing log(
∑

m,j γ
m
j ) − log(ε). Therefore the objective function at (3.13) can be considered as a

weighted average of the logarithmic transformation of slope variation and separating threshold

terms, where the two objectives have equal weights. In order to further decrease the variation in

slope, at the cost of decreasing separating threshold, the objective function at (3.13) should be

replaced by the following objective function in which the importances of the two objectives are

adjusted:

w · log(
∑
m,j

γmj )− (1 − w) · log(ε), (3.24)

in which 0 < w < 1 denotes the importance of the first objective. The new optimization
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problem is convex, but no longer linear. For w = 0.5, the problem will be equivalent to the

LFP problem presented at (3.13). The results from experimental analysis in section 3.4 show

that this value of w makes a good trade-off between the two objectives, decreasing complexity

and increasing discriminatory power of the value function. However, if the analyst decides to

sacrifice some discriminatory power to obtain a simpler value function, then the weights should

be adjusted by setting w > 0.5. The following example illustrates the use of this argument.

3.5.1 Illustrative Example

In this section, we demonstrate how the extended version of the proposed methodology can be

used. To this aim, we use the example presented in section 3.3.3. In that example, the inferred

value function has a high discriminatory power (ε∗T = 0.14), and one of the two inferred

marginal value functions is non-monotonic. The extended methodology can be utilized to

further decrease complexity of marginal value functions at the cost of discriminatory power.

The value of ε∗T is big enough for this purpose.

The value functions obtained by LFP model and for two different values of w by extended

model are presented in Figure 3.5.1.

Also the ranking of alternatives resulted from the LFP model (3.13) and the two w values of

the extended methodology is presented in Figure 3.5.2.

The marginal value function in Figure 3.5.1 and the numerical results in table 3.5.1 demon-

strate that how by increasing w the inferred value function becomes more parsimonious, but

with less discriminatory power.
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Figure 3.5.1: The inferred value functions using the LFP model (top), and extended
method with w = 0.8 (middle) and w = 0.9 (bottom)

Figure 3.5.2: Ranking of alternatives obtained by the LFP model (left), the extended model
with w = 0.8 (middle), and w = 0.9 (right)
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Table 3.5.1: Results obtained by the LFP model (left column), the extended model with
w = 0.8 (middle column), and w = 0.9 (right column)

LFP w = 0.8 w = 0.9
ε∗T 0.14 0.05 0.01

maxj γmj {0.04, 0.06} {0.01, 0.02} {0.01, 0.01}∑
m,j γ

m
j 0.10 0.07 0.04

MC {0, 1} {0, 0} {0, 0}

3.6 Conclusions

The paper introduces a new framework for inferring non-monotonic additive value functions

from a set of indirect pairwise comparisons. The complexity of the estimated value function is

controlled by minimizing variation in the slope of the marginal value functions. The discrimina-

tory power of the value function, on the other hand, is maximized to better separate the pairs

of alternatives with strict preference relation, according to the preferences supplied by the DM.

If some criteria are known to be monotonic a priori, the proposed methodology incorporates

this information in the process of inferring the preference model. An extension of the method-

ology is introduced that enables the analyst to manipulate, in cases that might be reasonable,

properties of the inferred preference model.

To demonstrate how the proposed methodology works, an illustrative example using syn-

thetic data is used. The proposed methodology is also compared with Despotis UTA and UTA-

NM, two well known non-monotonic UTA-like methods, using the data presented in (Despotis

and Zopounidis 1995). Unlike Despotis UTA, in the proposed methodology the performance

value at which the monotonicity direction changes does not needed to be specified. Unlike

UTA-NM, which incurs excessive computational cost due to the mixed integer programming

approach, our method needs to solve an LP problem, and is therefore applicable to realistically

sized datasets.
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To assess performance of the proposed methodology in different settings, a thorough exper-

imental analysis is conducted. Considering different aspects characterizing a decision problem,

48, 000 decision problems are simulated and the quality of the inferred compatible preference

model by the proposed methodology for each decision problem is evaluated using three mea-

sures. The results show that the upper bound for the 99% confidence interval of the measure

MC is less than 0.5. This implies that in most of the cases, either all the marginal value func-

tions are linear, or the most complex inferred marginal value function holds a quadratic form,

while polynomials of up to 4 degrees were used to simulate DM preferences. In addition, in all

the cases that a linear value function is employed to simulate DM preferences, the inferred com-

patible value function is also linear. The results also show that the complexity in the inferred

value function is well controlled, and the inferred value functions have high discriminatory

power. The narrow confidence interval for the measure of discriminatory power indicates that

this property is not very sensitive to the characteristics of the decision problem. More detailed

analysis shows that the amount of supplied preference information is the only parameter affect-

ing the discriminatory power of the inferred value function. We emphasize again that these

findings are results of this experiment, where the generated data are not noisy and the criteria

are assumed to be independent, and might not apply to a general situation. This requires a

separate investigation using real datasets.

Future work includes applying the proposed method to a real decision aiding problem in the

presence of non-monotonic preferences, for example, dealing with aesthetic dimensions such as

appearance, color and packaging shapes of a product in a marketing context. Another interest-

ing and important avenue for future research is to test the results of the experimental analysis

on larger and real data with more alternatives, as well as, inconsistent data and cases where the

criteria are not independent. Extending the proposed methodology to the case of hierarchical

structure of the family of evaluation criteria (Corrente et al. 2015; Corrente and Greco 2012),
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as well as handling interacting criteria (Greco et al. 2014) are important directions for future

research. Another important topic for future research is to test the performance of the method-

ology in the presence of ordinal criteria. Since the proposed methodology speaks about the

slope of marginal value functions, difference between performances needs to be interpretable.

It is interesting to see if quantifying ordinal scales differently will affect the performance of the

methodology, and if yes, which aspects of the proposed method are more sensitive to this issue.

Finally, it is also interesting to reformulate the methodology to address sorting problems.
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4
Expressiveness and robustnessmeasures for the evaluation

of an additive value function inmultiple criteria preference

disaggregationmethods: an experimental analysis1

An additive value function is one of the prevailing preference models in Multiple Criteria Deci-

sion Aiding (MCDA). Its indirect elicitation through pairwise questions is often applied due to

1This chapter is published in Computers & Operations Research, authored by Kadziński M., Ghaderi M.,
Wąsikowski J., & Agell N., ABS 3, SJR Q1, Impact Factor 1.988 (Kadziński et al. 2017)
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lowering the cognitive effort on the part of a Decision Maker (DM). A practical usefulness of

this approach is influenced by both expressiveness of the assumed model and robustness of the

recommendation computed with its use. We experimentally evaluate the above characteristics

in view of using an additive value function in the preference disaggregation context. The simula-

tion results are quantified with the following four measures: (1) the share of decision scenarios

for which a set of compatible value functions is non-empty, (2) the minimal difference between

comprehensive values of reference alternatives compared pairwise by the DM, (3) the number

of pairs of alternatives for which the necessary preference relation confirmed by all compatible

functions holds, and (4) the number of non-trivial certain inferences which cannot be derived

directly from the preference information. We discuss how these measures are influenced by

the settings with different numbers of alternatives, criteria, pairwise comparisons, and perfor-

mance distributions. We also study how the results change when applying various procedures

for selection of the characteristic points which define the shape of per-criterion marginal value

functions. In this regard, we compare four existing discretization algorithms with a new super-

vised technique proposed in this paper. Overall, we indicate that expressiveness and robustness

are contradictory objectives, and a compromise between them needs to be reached to increase

the usefulness of an additive value model in the preference disaggregation methods.

4.1 Introduction

The assessment of alternatives in real-world decision making requires consideration of a variety

of criteria. This problem can be effectively tackled with Multiple Criteria Decision Aiding

(MCDA) (Greco et al. 2016), which constitutes a framework to support Decision Maker (DM

in structuring a decision problem and suggesting a recommendation about the decisions at

stake (Zopounidis 2000). Such a recommendation derives from the comprehensive evaluation
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of the considered alternatives by performing some kind of aggregation of their performances on

multiple criteria. Within MCDA , various preference models can be used for this purpose, see,

e.g., (de Almeida 2007; Kadziński et al. 2015; Sarabando and Dias 2010; Słowiński et al. 2002;

Soylu 2011; Vetschera and de Almeida 2012; Zheng et al. 2014), but the most prevailing one is

Multi-Attribute Value Theory (MAVT) (Keeney and Raiffa 1993).

Additive value functions represent preferences of the DM by computing an overall score for

each alternative (Vetschera et al. 2014). Such comprehensive value indicates the alternative’s

quality from all relevant points of view considered jointly. MAVT is often found appropriate

for practical decision support due to the high interpretability of numerical scores that can be

decomposed into per-criterion marginal values and easily explained due to low amount of inter-

criteria parameters (Greco et al. 2012; Sarabando and Dias 2010).

Elicitation of an additive value function can be conducted in a direct or indirect way. Di-

rect elicitation requires specification of the preference model parameters and, thus, may involve

some greater cognitive effort from the DM (Kadziński and Tervonen 2013). For lowering the

elicitation effort, questions concerning exemplary decisions are often employed. As noted in

(Jacquet-Lagrèze and Siskos 2001), with an indirect elicitation of preferences, the preference

model is constructed so that to find a rational basis underlying the provided holistic judgments.

In the context of multiple criteria ranking, preference disaggregation based on pairwise pref-

erence questions has been considered in the UTA-like methods (Corrente et al. 2013, 2016a;

Figueira et al. 2009; Greco et al. 2008; Jacquet-Lagrèze and Siskos 1982, 2001; Siskos and

Grigoroudis 2010; Siskos et al. 2005).

Indirect elicitation of preferences raises two practical concerns, which are not present when

using the direct questioning. The first one is related to the potential incompatibility of pair-

wise comparisons provided by the DM with an assumed preference model (Mousseau et al.

2003). In case of incompatibility, the inferred model is not able to restore all supplied holistic
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judgments. The other concern derives from the incompleteness of pairwise comparisons of

reference alternatives and indetermination in the definition of a single compatible value func-

tion. That is, when the preference information provided by the DM can be fully reconstructed

with an additive value function, there is typically more than a single compatible function (Bous

et al. 2010; Corrente et al. 2013, 2014; Figueira et al. 2009; Greco et al. 2008; Kadziński and

Michalski 2016). When applied on the set of alternatives, these functions may lead to different

rankings. This, in turn, raises concerns about the stability of the suggested recommendation.

In this perspective, the usefulness of MAVT-based preference disaggregation methods in

practical decision aiding is much influenced by two characteristics: expressiveness of the un-

derlying preference model and robustness of the recommendation computed with its use. Ex-

pressiveness is related to the ability of a model to reconstruct preference information provided

by the DM. The more expressive the model is, the greater the variety and quantity of decision

policies it can be used to represent. Robustness refers to the analysis of uncertainties and

imperfections observed in the actual decision support processes. As noted in (Kadziński and

Tervonen 2013), investigation of robustness of the provided conclusions consists in verifying

whether they are valid for all acceptable or for the most plausible instances of an assumed

preference model. Obviously, the greater the robustness of the recommendation that can be

derived with a particular preference model after taking into account uncertainties in the indirect

inference of its parameters, the better.

This paper aims to experimentally evaluate the expressiveness of an additive value function

and robustness of the recommendation computed with its use in a preference disaggregation

setting. First, we discuss some measures that can be used to quantify the results of such an in-

vestigation. When it comes to the expressiveness, we refer to the percentage of randomly

generated decision scenarios where consistency between the provided pairwise comparisons

and an assumed preference model is observed. In case the random preference statements are
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guaranteed to be non-conflicting, we also measure the minimal difference between compre-

hensive values of reference alternatives compared pairwise by the DM. As far as robustness is

concerned, it is quantified with the number of pairs for which the necessary preference relation

%N confirmed by all compatible additive value functions holds (Greco et al. 2008). In this

regard, we additionally distinguish the non-trivial inferences by counting the pairs related by

%N that is not part of the transitive closure and is not discoverable with a condition for the

necessary preference inference based on a single preference statement (Spliet and Tervonen

2014).

Secondly, we verify how these four measures are affected by different values of the parame-

ters characterizing a decision situation. These include the numbers of criteria, alternatives, and

pairwise comparisons, as well as the distribution of alternatives’ performances. A special at-

tention is paid to investigating the impact of a parameterization of per-criterion marginal value

functions. Indeed, they can be either piece-wise linear with different pre-defined numbers of

characteristic points (i.e., the points where a slope angle of the function can change) (Siskos

et al. 2005), or general with all unique performances corresponding to the characteristic

points (Greco et al. 2008).

Thirdly, we present different methods for selecting the characteristic points. Apart from

considering a state-of-the-art procedure with equal interval widths between all adjacent pairs of

characteristic points (Siskos et al. 2005), we adapt for this purpose some other discretization

techniques such as equal frequency binning, k-means clustering (MacQueen 1967), or kernel-

based discretization (Biba et al. 2007). We also propose a new supervised algorithm which can

be used for the context-specific discretization in case pairwise comparisons are provided at the

method’s input. The latter technique uses the characteristic points to separate as many pairs

of performances corresponding to the reference alternatives compared pairwise by the DM as
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possible. These five procedures are also compared in terms of their impact on the expressiveness

and robustness measures.

Although there exist some previous studies investigating expressiveness (Pirlot et al. 2010)

or robustness (Spliet and Tervonen 2014), our research is unique in a sense of providing a

view on the trade-off between these two measures. Moreover, it is also richer in terms of

systematically investigating the impact of a broad set of parameters describing both a decision

situation and a value function itself.

The organization of the paper is the following. In the next section, we remind the existing

MAVT-based disaggregation methods. In Section 4.3, we present five procedures that can be

applied for selection of the characteristic points, and illustrate how they work. Section 4.4

is devoted to the measures that can be used for assessing expressiveness of an additive value

function and robustness of the recommendation computed with its use. In Section 4.5, we

report the outcomes of our experimental study. The last section concludes the paper, indicating

avenues for future research.

4.2 Reminder on PreferenceDisaggregation Value-basedMethods

We use the following notation (Corrente et al. 2013):

• A = {a1, . . . , ai, . . . , an} - a finite set of n alternatives;

• AR = {a∗, b∗, . . .} ⊆ A - a finite set of reference alternatives for which the DM accepts

to provide incomplete pairwise comparisons;

• G = {g1, . . . , gj, . . . , gm} - a finite set ofm evaluation criteria, gj : A → R;

• Xj = {gj(ai), ai ∈ A} - the set of deterministic evaluations (performances) on gj; we

assume, without loss of generality, that the greater gj(ai), the better;
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• x1
j , . . . , x

nj(A)
j - the ordered values of Xj, xkj < xk+1

j , k = 1, . . . , nj(A)− 1, where nj(A) =

|Xj| and nj(A) ≤ n.

Preferencemodel. To model preferences of the DM, we use an additive value function:

U(a) =
m∑
j=1

uj(a) ∈ [0, 1], (4.1)

where the marginal functions uj are defined through a set of γ j characteristic points gsj , s =

1, . . . , γ j. The marginal values assigned to the characteristic points need to satisfy the mono-

tonicity constraints.

Preference information. We expect the DM to provide a set BR of holistic pairwise judgments

on AR in form of a weak preference relation (a∗ % b∗). Strict preference ≻ is the asymmetric

part of %, and indifference ∼ is its symmetric part. Moreover, for each criterion gj, one needs

to select between considering a piece-wise linear value function with γ j characteristic points or

a general value function with the characteristic points defined by all performances in Xj. In the

previous case, g1j = x1
j and g

γ j
j = xnj(A)j . Moreover, γ j = 2 indicates a linear function. When

using the general functions, γ j = nj(A) and gsj = xsj , s = 1, . . . , γ j.

Preference disaggregation. The pairwise comparisons provided by the DM are represented

with set U of compatible value functions being able to reconstruct them. This set is defined
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with the following constraints:

U(a∗) ≥ U(b∗) + ε, if a∗ ≻ b∗ for a∗, b∗ ∈ AR,

U(a∗) = U(b∗), if a∗ ∼ b∗ for a∗, b∗ ∈ AR,

U(a∗) ≥ U(b∗), if a∗ % b∗ for a∗, b∗ ∈ AR,

uj(g1j ) = 0,
∑m

j=1 uj(g
γ j
j ) = 1,

for all j = 1, ...,m and s = 2, ..., γ j :

uj(xsj) ≥ uj(x
(s−1)
j ),



E(U) (4.2)

where ε is a variable whose value will be subsequently optimized to check if U is non-empty.

For piece-wise linear value functions, the marginal values corresponding to xkj ∈ [gs−1
j , gsj),

k = 1, . . . , nj(A), are defined with linear interpolation:

uj(xkj ) = uj(gs−1
j ) + (uj(gsj)− uj(gs−1

j ))(xkj − gs−1
j )/(gsj − gs−1

j ). (4.3)

Consistency check. To verify whether U is non-empty, the following Linear Programming

(LP) model needs to be solved:

Maximize ε, s.t. E(U). (4.4)

Let us denote with ε∗ the optimal solution of problem (4.4). If E(U) is feasible and ε∗ > 0,

there exists at least one compatible value function able to reproduce the pairwise comparisons

provided by the DM, i.e., U ̸= ∅. Otherwise, if E(U) is infeasible or ε∗ ≤ 0, then U is

empty, which indicates inconsistency between the holistic judgments and an assumed form of

the additive model.
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Certainty check. Each compatible value function determines a complete ranking of alterna-

tives. When using all functions in U on A, the order of some alternatives can be ambiguous.

The certain part of the recommendation confirmed by all compatible value functions is defined

with a necessary weak preference relation%N (Greco et al. 2008):

a %N b ⇔ a % b for all U ∈ U . (4.5)

To verify whether this relation holds for a pair (a, b) ∈ A× A, the following LP program needs

to be solved:

Maximize ε, s.t. EN(a, b), (4.6)

where EN(a, b) = {E(U)} ∪ {U(b) ≥ U(a) + ε}. Let us denote with ε∗N(a, b) the optimal

solution of problem (4.6). Assuming the set of compatible value functions is non-empty, a %N

b if ε∗N(a, b) ≤ 0.

4.3 SelectingCharacteristic Points forMarginal Value Functions

When using piece-wise linear value functions, the extreme characteristic points correspond to

the worst and the best performances. However, if γs > 2, the selection of γs − 2 intermediate

points is arbitrary. In this section, we discuss five procedures that can be applied for this

purpose, and illustrate how they work.
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4.3.1 Procedures for Selection of the Characteristic Points

Equal width binning (EWB). The equal width binning technique is an unsupervised algo-

rithm that divides the range [x1
j , x

nj(A)
j ] into γ j − 1 equal sub-intervals with the endpoints:

gsj = x1
j + (xnj(A)j − x1

j )(s− 1)/(γ j − 1), s = 1, . . . , γ j. (4.7)

This procedure has been traditionally used in the UTA-like methods (Siskos et al. 2005).

Equal frequency binning (EFB). When accounting for the distribution of performances, we

construct γ j − 1 sub-intervals so that the number of performances assigned to each of them

is the same, i.e., nj(A)/γ j. If such a perfect distribution is not attainable, i.e., nj(A)/γ j is

not an integer, we balance the distribution so that the numbers of performances assigned to

different bins differ by at most one. In such a case, the sub-intervals corresponding to relatively

worse evaluations accommodate more performances. For example, with γ j = 4 and 10 unique

performances, the three sub-intervals would contain, respectively, 4, 3, and 3 observations. The

characteristic point separating two adjacent sub-intervals is selected so that its distances from

the best performance in the left bin and the worst performance in the right bin are equal.

Discretization using k-means clustering (KMC). The set of nj(A) unique performances can

be divided into γ j − 1 sub-intervals using k-means clustering algorithm with k = γ j − 1 (Mac-

Queen 1967). The underlying motivation is to represent similar performances (contained in

the same group) using a single piece of a marginal function, and to use the characteristic points

for separating these groups. Thus, analogously as in EFB, we set the characteristic point sepa-

rating two adjacent groups as a mid-point between the extreme performances observed in these

groups. Since a slope angle of the marginal value function is allowed to change in the char-
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acteristic point, using KMC it should be possible to better emphasize the difference between

marginal values assigned to the performances in various groups.

The algorithm of separating the performances into k groups is initialized with k = γ j −

1 randomly generated values in [x1
j , x

nj(A)
j ], playing the role of so called centroids. Then, it

iteratively performs the following steps: (1) for each performance, calculate its distance from

the current centroids, (2) reassign each performance to a group with the centroid that is nearest

to it, and (3) compute new centroids by averaging all performances assigned to a particular

group. The algorithm is stopped when no single performance is reallocated in the following two

iterations.

Discretization using kernel density estimation (KDE). The aim of a kernel density estima-

tion is to construct a set of sub-intervals that best fit the data using the non-parametric density

estimators (Biba et al. 2007). In each iteration, the algorithm selects the best cut-point for split-

ting one of the current intervals. At the beginning, just a single interval corresponding to the

entire performance range is considered. The N = nj(A) − 1 candidates are the middle points

between adjacent performances. The evaluation T of each candidate derives from applying two

density functions p and f:

Score(T) =
k∑

i=1

(p(xi)− f(xi)) +
N∑

i=k+1

(p(xi)− f(xi)), (4.8)

where the left (right) part of the external sum refers to the performances that fall into the left

(right) interval. Moreover, f is a simple binning density function:

f(xi) = mins/(wN), (4.9)

wheremins is the number of instances in a single bin (left or right), and w is a bin-width. Finally,
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p is a kernel density function that differentiates the instances in the same bin based on their

distances to xi:

p(xi) =
1
hN

N∑
j=1

K
(
xi − xj

h

)
, (4.10)

where h is a bandwidth, K is a kernel function, and xj represents another point in the same bin

as xi. Following (Biba et al. 2007), we assumed w = h and defined K as a Gaussian kernel

function:

K(u) =
1√
2π

e−
1
2 u

2
. (4.11)

Finally, an interval with the largest score T is selected for splitting. The algorithm is repeated

until γ j − 2 splits are conducted.

Spliting supervised by pairwise preference relations (SSP). Let us present a new supervised

algorithm for selecting the characteristic points. It aims to select the characteristic points so

that to separate the maximal number of performances corresponding to the pairs of reference

alternatives for which the DM indicated a strict preference relation. The underlying motivation

is to involve more decision variables (corresponding to the marginal values assigned to the char-

acteristic points) in the linear constraints translating these pairwise comparisons. We predict

this to be beneficial for discriminating the comprehensive values of reference alternatives.

Let Pj = {p1
j , . . . , plj, . . . , pLj } denote a set of all candidates for the characteristic points

defined as the mid-points between each pair of adjacent performances. Then, vl ∈ {0, 1}, l =

1, . . . , L, is a binary variable which is instantiated with one if plj is selected as a characteristic

point. Let BR
≻ represent all pairs of indices (q, r) corresponding to the reference alternatives

aq, ar ∈ AR, such that a∗q ≻ a∗r . Then, the number of selected characteristic points between

gj(aq) and gj(ar) is:

fq,r =
∑

l : min{gj(aq),gj(ar)} ≤ plj ≤ max{gj(aq),gj(ar)}
vl. (4.12)
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Thus, to maximize the overall number of performances corresponding to the pairs of reference

alternatives related by ≻ which are separated by the characteristic points, we have to solve the

following Mixed-Integer Linear Programming (MILP) problem:

Maximize F =
∑

(q,r)∈BR≻

fq,r, s.t.
L∑
l=1

vl = γ j − 2. (4.13)

4.3.2 Illustrative Study

In this section, we illustrate the use of procedures presented in Section 4.3.1 for selection of the

characteristic points in the context of an exemplary decision problem. It involves 14 alterna-

tives, A = {a1, . . . , a14}, evaluated in terms of 4 criteria, G = {g1, . . . , g4}. All performances

were randomly generated from the uniform distribution (see Table 4.3.1) so that the domi-

nance relation was empty. For each criterion, the number of characteristic points was set to

5; thus, each marginal value function is composed of 4 linear pieces. We also generated the

following 8 pairwise comparisons provided by a hypothetical DM:

a5≻a11, a6≻a3, a6≻a4, a9≻a13, a10≻a4, a10≻a11, a13≻a8, a14≻a12. (4.14)

In Figure 4.3.1, we present the marginal value functions for all criteria with the characteristic

points selected by five different methods. The presented functions are the most discriminant

ones, obtained by solving problem (4.4). To support understanding of the logic underlying

each algorithm, we marked the performances of alternatives with the vertical lines, and repre-

sented the performances of reference alternatives compared pairwise by the DM as the extreme

points of the horizontal lines in the upward part of the figures.

As desired, EWB selected the characteristic points so that to construct four linear pieces with
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Figure 4.3.1: Marginal value functions for g1, g2, g3, and g4; different colors (see online ver-
sion) and markers represent five methods for selection of the characteristic points: blue (cir-
cle) – EWB; green (triangle down) – EFB, red (square) – KMC; azure (pentagon) – KDE;
purple (cross) – SSP. Gray vertical lines represent performances of alternatives; extreme
points of the black horizontal lines represent the performances of reference alternatives com-
pared pairwise by the DM.
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Table 4.3.1: Randomly generated performances for 14 alternatives evaluated in terms of 4
criteria.

g1 g2 g3 g4
a1 5.01 93.69 99.97 79.44
a2 19.81 39.18 6.12 92.36
a3 57.58 87.60 46.35 8.32
a4 6.28 63.01 46.49 73.46
a5 63.73 82.30 24.25 41.80
a6 31.59 43.11 55.37 46.75
a7 59.65 85.19 80.75 6.26
a8 81.69 48.72 10.51 88.19
a9 32.45 33.19 93.57 2.86
a10 53.83 4.49 80.25 8.76
a11 67.79 54.23 51.74 37.86
a12 93.37 18.12 38.63 81.34
a13 37.68 95.09 73.30 29.36
a14 21.23 68.56 64.84 41.62

equal widths. For example, since x1
2 = 4.49 and x14

2 = 95.09, the width of each sub-interval is

equal to 22.65. Obviously, the results provided by EWB depend neither on the distribution of

performances nor on the provided preference information. On the contrary, the former aspect

is accounted by EFB. The characteristic points selected by this approach divide the performance

range into sub-intervals accommodating approximately the same number of performances. In-

deed, for each marginal value function, 4 or 3 unique performances correspond to its first two

and last two linear pieces, respectively.

Furthermore, the k-means clustering constructs sub-intervals accommodating similar per-

formances irrespective of their number. Thus, some of the linear pieces generated with this

method accommodate a significant share of performances (see, e.g., the first piece for u1), while

for some other pieces the number of respective performances is significantly lower (see, e.g.,

the third piece for u1). In all cases, the characteristic points have been selected as the mid-

points between extreme performances mapped to the neighboring linear pieces. For example,

since the greatest performance mapped to the first piece for u1 is 37.68 and the least perfor-
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mance mapped to the second piece is 53.83, the selected characteristic point corresponds to

(37.68 + 53.83)/2 = 45.755.

When it comes to KDE, it tries to find the best cut-points by accounting for the density

induced in the sub-intervals by the current cut and kernel density of constructed intervals. As

a result, the method selects characteristic points corresponding to the performances with high

density, thus, often separating pairs of performances which are very close to each other. Finally,

SSP constructs the characteristic points so that to separate as many pairs of performances of

reference alternatives compared pairwise by the DM as possible. For example, for u1 and u2 the

numbers of such pairs separated by the three intermediate characteristic points are equal to 12

and 20, respectively.

4.4 Assessing Expressiveness and Robustness in Preference Disaggre-

gation Value-basedMethods

4.4.1 Measures for Assessing Expressiveness of an Additive Value Function and

Robustness of the Recommendation Computed with its Use

The aim of our study was to investigate expressiveness of an additive value function and ro-

bustness of the recommendation computed with its use in a preference disaggregation setting.

On one hand, expressiveness is related to the ability of a preference model to reconstruct indi-

rect preference information provided by the DM. On the other hand, robustness refers to the

impact of indetermination in the definition of a single compatible value function on the recom-

mendation delivered by the method. To quantify the expressiveness, we used the following two

measures:

• The percentage %(U ̸= ∅) of randomly generated decision scenarios for which the
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pairwise comparisons provided by the DM are fully consistent with an assumed prefer-

ence model, i.e., when there exists at least one compatible value function. The greater

%(U ̸= ∅), the greater flexibility of an additive value function in representing holistic

judgments derived from different decision policies or DMs’ value systems.

• The minimal difference ε∗ between comprehensive values of reference alternatives re-

lated by a strict preference relation by the DM in case all supplied pairwise comparisons

can be reproduced. This measure reflects the ability of an additive value function for

discriminating reference alternatives related by ≻. For a single decision situation, its

value is derived from the optimal solution of problem (4.4). Note that different values

of ε∗ are comparable. Being defined on the conjoint interval scale of the marginal value

function (Krantz et al. 1971; Wakker 1989), they have the meaning of intensity.

As far as robustness is concerned, it is quantified with the following two measures:

• The number | %N | of pairs for which the necessary preference relations (Greco et al.

2008) holds refers to the definition of robust conclusions which need to be confirmed by

all value functions compatible with the provided pairwise comparisons (Kadziński and

Tervonen 2013). Obviously, the greater | %N |, the richer is the most certain part of the

recommendation delivered with the preference disaggregation method.

• The number | %N
I | of pairs for which the inferred necessary preference relation does

not directly follow the provided preference information (called also “the number of

non-trivial necessary inferences”). Spliet and Tervonen (Spliet and Tervonen 2014)

formulated a theorem on “a single statement inference” which indicates the conditions

under which the necessary preference relation for a given pair of alternatives would hold

referring only to the performances of alternatives. We wish | %N
I | to indicate the number
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of pairs for which %N is instantiated with a contribution of the employed preference

model rather than based on the performances only. Thus, | %N
I | neither includes

inferences derived from the aforementioned theorem nor these which can be obtained

from the transitivity of the preference relation (indeed, if a % b and b % c, then a %N c).

4.4.2 Simulation design

The experimental study has been conducted in the following way:

Step 1: Generate a simulated decision problem with a pre-defined number of criteria m and

alternatives n. The performances are generated randomly from the (0, 100) range. To ensure

that the dominance relation is empty, we redraw the performance matrices for which this con-

dition is not satisfied. In this way, we do not violate the dominance principle with any pairwise

comparison generated in Step 2.

Step 2: Simulate the DM’s ranking or r pairwise comparisons stating the truth of a strict pref-

erence relation≻. For the verification of consistency of pairwise comparisons with an assumed

model, such holistic preference information is drawn from a randomly generated permutation

of alternatives. For investigating the remaining measures, to guarantee that there exists at least

one compatible value function for all considered scenarios, we (1) generate linear marginal

value functions with uniformly distributed weights, (2) determine a ranking derived from their

use, and (3) draw a pre-defined number of pairwise comparisons from this ranking.

Overall, we considered 5500 different problem settings (see Table 4.4.1). They are distin-

guished by the numbers of alternatives (n; ranging from 6 to 14), criteria (m; ranging from 2

to 5), pairwise comparisons (r; ranging from 2 to 8, or a complete ranking of all alternatives)

and characteristic points for each criterion (γ j; ranging from 2 (linear function) to 6, or general

function (G)), distribution of the performances (uniform or skew normal2), and a method
2To generate the random performances from the skew normal distribution, we used the “rsn” function from
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Table 4.4.1: Different problem settings considered in the experimental analysis.

numbers of performance discretization
char. points criteria alternatives pairwise comparisons distribution method

{2,G, {2, 3, 4, {6, 8, 10, {2, 4, 6, 8 {uniform, {EWB, EFB,
3, 4, 5, 6} 5, 6} 12, 14} complete ranking} skew normal} KMC, KDE, SSP}

employed for selection of the characteristic points (EWB, EFB, KMC, KDE, or SSP). Note that

the discretization methods are used only if γ j ∈ {3, 4, 5, 6} (see Table 4.4.1).

Step 3: For the analysis of consistency between the DM’s pairwise comparisons and an as-

sumed preference model, solve problem (4.4), and note whether a set of compatible value

functions is non-empty. For computing the minimal difference between comprehensive values

of reference alternatives compared pairwise by the DM, solve (4.4) and note the optimal solu-

tion ε∗. Then, for each pair of alternatives, verify it is related by the necessary preference %N

by solving problem (4.6). Finally, distinguish the non-trivial necessary inferences by analyz-

ing the transitivity of the preference information and the consistency with the single inference

theorem.

For each problem setting, the above scenario has been repeated 100 times. This number of

repetitions was verified to provide statistically invariant results.

Technical details. The experiments were implemented in R, and for solving LP problems,

we used Rglpk library (Theussl and Hornik 2015). The computations were performed on

the c4.8xlarge machine with 36 cores of Intel® Xeon® Processor (E5-2666 v3) purchased from

Amazon EC2 service. A total execution time was about 4 days (∼ 140 days on a single core).

the SN package http://azzalini.stat.unipd.it/SN with the following parameters: location ξ = 5, scale
ω = 2, and shape α = 5. The implementation of this package is based on (Azzalini 1985).
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4.5 Results

In this section, we report the outcomes of our experimental study concerning expressiveness of

an additive value function and robustness of the recommendation computed with its use. We

refer to the four measures defined in Section 4.4. Their values are averaged over different ex-

perimental runs so that to show how expressiveness and robustness depend on the parameters

characterizing a decision problem (such as the number of alternatives, criteria, and pairwise

comparisons, or performance distribution) or a preference model (such as the number of char-

acteristic points or the method for their selection).

In Section 4.5.1, we compare linear, general, and piece-wise linear marginal value functions

with different numbers of characteristic points. For clarity of presentation, in this part we

select the characteristic points only with EWB. This procedure has been traditionally used

in the UTA-like methods. In Section 4.5.2, we deepen this comparison by discussing the

results of a statistical analysis concerning four different settings distinguished by the low and

high numbers of criteria and characteristic points as well as the low and high numbers of

alternatives and pairwise comparisons. In Section 4.5.3, we focus on the analysis of piece-wise

linear functions, while highlighting the impact of five different methods for selection of the

characteristic points. In Section 4.5.4, we discuss the trade-off between expressiveness and

robustness, where in Section 4.5.5, we check how the results are influenced by either poor or

rich preference information.
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4.5.1 The Impact of the Problem Settings on the Expressiveness and Robustness

Measures when the Characteristic Points are Selected with the Equal

Frequency Binning Method

Expressiveness

In this section, we focus on two measures for assessing how expressiveness of an additive value

function is affected by different characteristics of a decision situation. In Figure 4.5.1, we refer

to the percentage %(U ̸= ∅) of randomly generated decision situations for which the pairwise

comparisons provided by the DM are fully consistent with an assumed preference model, while

Figure 4.5.2 accounts for the minimal difference ε∗ between comprehensive values of reference

alternatives related by a strict preference by the DM.

First, when increasing the number of alternatives or the number of pairwise comparisons,

the expressiveness of an additive value function decreases. In the former case, this is due to

involving greater number of alternatives in the provided pairwise comparisons, whereas when

more pairwise comparisons are supplied quite naturally the chances that they are all reproduced

or strongly discriminated become smaller.

On one hand, the impact of the number of alternatives on %(U ̸= ∅) and ε∗ is rather

marginal. For example, for all shapes of marginal value functions, the differences between av-

erage %(U ̸= ∅) or ε∗ values observed for 6 and 14 alternatives are less than 10% and 0.05,

respectively. On the other hand, the influence of additional pairwise comparisons is significant.

For example, the linear value functions exhibit about 60% difference in %(U ̸= ∅) for the

problems with 2 and 8 pairwise comparisons, while the difference between ε∗ values obtained

for 2 and 4 comparisons is more than 0.2. When referring to ε∗, the more general the con-

sidered marginal value functions, the more sharp the observed decrease in the expressiveness.
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As a result, the functions involving greater number of characteristic points are relatively more

discriminant when preference disaggregation involves few pairwise comparisons.
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Figure 4.5.1: The percentage %(U ̸= ∅) of randomly generated decision situations for
which the pairwise comparisons provided by the DM are fully consistent with an assumed
preference model, for different numbers of alternatives, criteria, pairwise comparisons, and
types of performance distribution. The series represent different shapes of marginal value
function with the characteristic points selected with EWB: blue (X marker) – linear functions
(2 characteristic points), green (triangle) – 3 ch.p., red (square) – 4 ch.p., azure (pentagon)
– 5 ch.p., purple (hexagon) – 6 ch.p., yellow (circle) – general.

On the contrary, when increasing the number of criteria, the flexibility of an additive model

in finding at least one compatible value function or discriminating the pairs of reference alterna-

tives increases. In general, for all considered shapes of marginal value functions, the underlying
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trend is represented with a concave function. That is, the differences in expressiveness observed

between the adjacent numbers of criteria become less and less when more criteria are involved

in the specification of a decision problem. Precisely, the greatest increase in the expressiveness

can be observed when passing from 2 to 3 criteria, while the difference observed between 5 and

6 criteria is the least.

Furthermore, the results obtained for %(U ̸= ∅) for both considered performance distri-

butions are very similar. When it comes to ε∗, with the performances distributed uniformly

its average value is greater by ∼ 0.02 than in case of using the skew normal distribution for

generating the performances. This suggests that the type of performance distribution does not

influence or has very marginal influence on the expressiveness of an additive value function.

Finally, for all considered decision scenarios, the expressiveness of an additive value function

increases with the number of characteristic points. On one hand, the practical usefulness of

linear value functions is very limited when the DM compares several pairs of alternatives which

are evaluated in terms of few criteria. On the other hand, general value functions prove to be

very flexible in representing preference information of the DM. Consequently, if preferences of

the DM do not violate the dominance and are not contradictory, it is very likely that they could

be reproduced when all unique performances correspond to the characteristic points. Indeed,

for our experiment, the number of consistencies was 100% or very close to it for all considered

scenarios. However, when the number of alternatives or pairwise comparisons is small or the

number of criteria is great, the marginal functions with 4 − 6 characteristic points provide a

satisfactory level of expressiveness.

The differences observed between the adjacent numbers of characteristics points decrease

substantially. That is, when passing from linear function to 2-piece-wise linear, the gain in

expressiveness is meaningful (e.g., ∼ 23% more consistencies for decision problems with 10

alternatives). On the contrary, moving from 5 to 6 characteristic points does not add much
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Figure 4.5.2: The minimal difference ε∗ between comprehensive values of reference alterna-
tives related by a strict preference by the DM, for different numbers of alternatives, criteria,
pairwise comparisons, and types of performance distribution. The series represent different
shapes of marginal value functions with the characteristic points selected with EWB: blue (X
marker) – linear functions (2 characteristic points), green (triangle) – 3 ch.p., red (square) –
4 ch.p., azure (pentagon) – 5 ch.p., purple (hexagon) – 6 ch.p., yellow (circle) – general.
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to the flexibility of the model. Although this general trend is likely to be true also for greater

problem sizes, the scales of observed improvements (e.g., ∼ 5% when passing from 5 to 6

points) are influenced by the considered numbers of alternatives and pairwise comparisons.

Robustness

In this section, we discuss how the two measures used for assessing robustness of the recom-

mendation computed with an additive value function are influenced by different characteristics

of a decision problem/model. In Figure 4.5.3, we present the average number | %N | of pairs

for which the necessary preference relation holds for scenarios involving different numbers of

alternatives, criteria, pairwise comparisons, and types of performance distribution.

When increasing the numbers of alternatives and pairwise comparisons, the numbers of pairs

related by the necessary preference exhibit a clearly increasing trend which is represented by

a convex or concave function, respectively. Obviously, the greater the number of alternatives,

the more pairs for which the necessary relation can be instantiated, while with more pairwise

comparisons, the set of compatible value functions becomes more constrained, which makes

the necessary inference easier.

When increasing the number of criteria, the number of necessary inferences decreases sub-

stantially. Thus, involving less criteria for evaluating the alternatives is advantageous for the

robustness of the computed recommendation. On the contrary, | %N | seems to be indepen-

dent from the performance distribution. Indeed, the numbers of pairs for which the necessary

relation holds are almost the same with the performances generated from the uniform or skew

normal distribution.

The most interesting conclusions can be derived from the comparison of robustness mea-

sures for different shapes of marginal functions. Clearly, the less the number of characteristic

points, the more robust the recommendation. In this regard, the results obtained with the linear
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value functions are meaningfully more robust than the outcomes computed with the piece-wise

linear ones. Indeed, this model has confirmed its ability to generalize the provided pairwise

comparisons for pairs of non-reference alternatives. The quantified advantage of using linear

value function over piece-wise linear ones ranges from 2 to 17 (4 to 16) pairs related by the

necessary preference for different numbers of alternatives (criteria). Thus, the more alternatives

or pairwise comparisons and the less criteria, the more beneficial it is to use a linear model.

When moving to the piece-wise linear functions, one can observe a sudden decrease in the

robustness of the recommendation. As a general rule, when adding more characteristic points,

the differences between the values of robustness measures decline substantially. Thus, the

use of 3 or 4 characteristic points is still beneficial when compared to the general functions.

However, the series obtained for 5 or 6 points overlap to a large extent with these for the general

functions for different numbers of alternatives, pairwise comparisons, and criteria (in case these

are greater than two). In fact, for these three shapes, the average numbers of pairs related by

the necessary preference for 6 alternatives, 6 criteria, or 2 pairwise comparisons are exactly the

same.

The difference in the robustness when using various shapes of marginal value function can

be easily justified when referring to Figure 4.5.4. It reveals the numbers | %N
I | of necessary

inferences which do not directly follow from the provided pairwise comparisons and/or perfor-

mances of alternatives. Obviously, the absolute numbers for | %N
I | are less than for | %N |.

Thus, although the general trends remain the same as in Figure 4.5.3, they are less sharp when

increasing the number of alternatives or pairwise comparisons.

Interestingly, none of the test instances contained any non-trivial necessary inference when

using the general functions. This is consistent with the results presented in (Spliet and Ter-

vonen 2014). Consequently, the general additive value models are unlikely to be useful for

decision support in contexts where the DM provides holistic pairwise statements, and then
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Figure 4.5.3: The average number | %N | of pairs related by the necessary preference for
different numbers of alternatives, criteria, pairwise comparisons, and types of performance
distribution. The series represent different shapes of marginal value function with the char-
acteristic points selected with EWB: blue (X marker) – linear functions (2 characteristic
points), green (triangle) – 3 ch.p., red (square) – 4 ch.p., azure (pentagon) – 5 ch.p., pur-
ple (hexagon) – 6 ch.p., yellow (circle) – general.
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the outcomes of robustness analysis are presented to him/her to stimulate the reaction in the

following iteration. Since all necessary inferences observed in our experiment for the general

functions may be derived only from the analysis of alternatives’ performances, the same conclu-

sions hold also for the value models involving less characteristic points. Consequently, the joint

analysis of | %N | and | %N
I | proves what is the contribution of the employed preference model

in the inference of robust conclusions.

Our results indicate that the analysis with piece-wise linear functions with a limited number

of characteristic points may be useful for practical decision aiding, allowing to derive the non-

trivial conclusions that would be confirmed by all compatible value functions. In particular, for

problems involving the maximal number of alternatives or minimal number of criteria, we were

able to find on average 27 and 30 necessary preference relations that were neither obtained from

the transitive closure nor from the single inference theorem. Moreover, the trends observed for

these functions are clearly non-linear. The results indicate that when at least five criteria are

used to describe alternatives, then the linear functions are the only sensible option.

The values of | %N
I | observed for linear functions are meaningfully greater than for the

marginal functions with 3 characteristic points. Still, these functions may derive numerous non-

obvious certain conclusions when several alternatives or pairwise comparisons and few criteria

are involved. Finally, the robustness of additive models with > 4 characteristic points is again

very low, and their practical usefulness in the preference disaggregation setting is questionable.

4.5.2 Statistical Analysis of the Simulation Results

In this subsection, we analyze the results of our experimental study in a hierarchical regression

model. This supports comprehension of the impact that different parameters of a decision

problem/model have on the expressiveness and robustness measures. Figures presented in the

e-Appendix exhibit the trends for four measures discussed in the previous section additionally
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Figure 4.5.4: The average number | %N
I | of necessary inferences which do not directly

follow the provided preference information, for different numbers of alternatives, criteria,
pairwise comparisons, and types of performance distribution. The series represent different
shapes of marginal value functions with the characteristic points selected with EWB: blue (X
marker) – linear functions (2 characteristic points), green (triangle) – 3 ch.p., red (square) –
4 ch.p., azure (pentagon) – 5 ch.p., purple (hexagon) – 6 ch.p., yellow (circle) – general.
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enriching the mean values with the confidence intervals. These confirm that a variance in the

expressiveness and robustness measures changes across different levels of the model parameters.

For example, the variance in the number of pairs related by the necessary preference increases

with the number of alternatives and decreases with the number of criteria.

The heterogeneity of variances raises some concerns about reliability of the regression anal-

ysis results. Indeed, the test of significance is severely sensitive to this property. However, the

method of least squares is producing unbiased estimates even in the presence of heterogeneous

variances (Hayes and Cai 2007). Therefore, interpretations about the relative importance of

different parameters in view of their impact on the values of expressiveness and robustness

measures are possible. Nonetheless, the predictive ability of the regression model is limited

when the estimates by the least square method are derived in the presence of heteroscedasticity.

Hence, to get more accurate results from the regression analysis, we have divided the consid-

ered problem settings into four groups with more homogeneous variances, and we analyzed the

models derived for each of these groups individually.

The separation into the four groups has been conducted as follows. Figures 4.5.1-4.5.4

indicate that the numbers of criteria and characteristic points have a similar impact on the

four measures of expressiveness and robustness, even though the magnitudes of their influence

might vary from one parameter to another. The same observation can be made for the numbers

of alternatives and pairwise comparisons. Thus, we have grouped these parameters under the

two dimensions, called “model flexibility” (for the numbers of criteria and characteristic points)

and “problem constructivity” (for the numbers of alternatives and pairwise comparisons). For

each dimension, we have defined two levels, deemed as low and high, which overall gives four

different settings. For the “model flexibility”, the low level corresponds to 2 or 3 criteria and

characteristic points, whereas for the high level the respective numbers are 5 and 6. For the

“problem constructivity”, the low level corresponds to 6 or 8 alternatives and 2 or 4 pairwise
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comparisons, whereas the high level involves 12 or 14 alternatives and 6 or 8 pairwise compar-

isons.

The results of a hierarchical regression analysis are provided in Tables 4.5.1 and 4.5.2 for the

low and high levels of “model flexibility”, respectively. Note that both tables refer to the low

and high levels of “problem constructivity”. For each considered setting, the parameter with the

greatest impact on a given measure has been marked in bold.

Let us emphasize that when interpreting the coefficients derived from the regression anal-

ysis, it is important to consider the range of variables (measures). For instance, %(U ̸= ∅)

varies between 0 and 100, while ε∗ takes values in the range [0, 1]. Thus, for example, when

considering the setting with low “problem constructivity” and high “model flexibility”, the im-

pact of the number of pairwise comparisons r on ε∗ is meaningful, while being negligible for

%(U ̸= ∅) even though the coefficient associated with r is larger in magnitude for %(U ̸= ∅)

when compared to ε∗ (−0.28 vs. −0.15).

Table 4.5.1: Results of a hierarchical regression analysis for the low level of “model flexibil-
ity” (m - number of criteria, γ j - number of characteristic points, n - number of alternatives,
r - number of pairwise comparisons; an empty cell means indicates “no impact”).

constant m γ j n r adjusted
R-square mean standard

deviation

pr
ob

le
m

co
ns

tr
uc

tiv
ity

low

%(U ̸= ∅) 25.46 13.66 22.07 -12.37 89% 77.67 19.18
ε∗ 0.04 0.09 0.13 -0.09 95% 0.31 0.13

| %N | 13.19 -4.29 -5.48 3 2.03 89% 15.83 5.36
| %N

I | 15.32 -4.3 -5.46 2.05 83% 5.26 4.46

high

%(U ̸= ∅) -44.7 20.96 32.08 -7.69 96% 34.09 21.32
ε∗ -0.04 0.05 0.05 -0.02 94% 0.10 0.04

| %N | 54.64 -19.61 -24.67 7.06 2.91 96% 56.08 18.08
| %N

I | 64.22 -19.61 -24.67 6.18 96% 33.87 17.54

The following conclusions can be derived from the analysis of results presented in Tables 4.5.1

and 4.5.2:

• with the increase in “model flexibility” and the decrease in “problem constructivity”,
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Table 4.5.2: Results of a hierarchical regression analysis for the high level of “model flexibil-
ity” (m - number of criteria, γ j - number of characteristic points, n - number of alternatives,
r - number of pairwise comparisons; an empty cell means indicates “no impact”).

constant m γ j n r adjusted
R-square mean standard

deviation

pr
ob

le
m

co
ns

tr
uc

tiv
ity

low

%(U ̸= ∅) 98.18 0.29 0.13 -0.28 78% 99.63 0.37
ε∗ 0.89 0.02 0.02 -0.15 100% 0.65 0.16

| %N | -0.32 0.96 1.41 100% 10.60 1.73
| %N

I | 0.18 -0.02 -0.02 0.01 0.01 64% 0.03 0.02

high

%(U ̸= ∅) 92.91 0.81 1.27 -0.96 91% 97.65 1.29
ε∗ 0.33 0.02 0.02 -0.03 88% 0.31 0.04

| %N | -0.82 0.87 1.7 100% 22.39 1.94
| %N

I | 0.99 -0.13 -0.11 0.02 0.04 91% 0.19 0.10

the mean values of the expressiveness and robustness measures, respectively, increase or

decrease (note that this is consistent with what has been discussed in Section 4.5.1);

• when changing the level of “model flexibility” from low to high, the impact of the ac-

counted parameters on the four studied measures becomes meaningfully smaller, except

for the impact of the number of pairwise comparisons on ε∗ and | %N | (which is still

rather negligible in magnitude);

• the measures of robustness (| %N | and | %N
I |) generally become more sensitive to the

parameter values with the increase in the level of “problem constructivity”;

• for the low level of “model flexibility”, the number of characteristic points is the most

influential parameter, followed by the number of criteria; this emphasizes the importance

of appropriate selection of the characteristic points when few criteria are considered; for

the high level of “model flexibility”, these two parameters do not have any impact on the

number of pairs | %N | related by the necessary preference;

• the number of alternatives has a negligible impact on the measures of expressiveness

(%(U ̸= ∅) and ε∗);

112



• the number of pairwise comparisons has a negligible impact on | %N
I | when considering

the low level of “model flexibility”; nonetheless, when the preference model is more

flexible its relative impact on ε∗ and | %N | is the greatest among all parameters.

4.5.3 The Impact of Methods for Selecting the Characteristic Points on the

Expressiveness and Robustness Measures

In this section, we verify the impact of methods for selecting the characteristic points on the ex-

pressiveness and robustness measures. We skip the discussion on how these two characteristics

change with the increase in the numbers of alternatives, criteria, pairwise comparisons, charac-

teristic points, or different performance distribution. These trends are, in general, the same as

for EWB (see Section 4.5.1). Instead, we focus on the comparison of results obtained with five

procedures: EWB, EFB, KMC, KDE, and SSP. Hence, we neglect the outcomes obtained with

the linear or general value functions, because the discretization methods cannot be applied in

these two contexts.

Expressiveness

In this section, we focus on two measures for assessing how expressiveness of an additive value

function is influenced by different procedures for selecting the characteristic points. In Figure

4.5.5, we present the averaged trends for five different parameters of a decision problem or a

preference model.

Although the difference between five different methods are small, some regularities can be

observed for all considered dimensions. The best results have been obtained with EFB. This

suggests that balancing the number of performances which are mapped to each linear piece

of a marginal value function is beneficial for increasing the expressiveness of a model. The

advantage of EFB over the remaining methods is particularly visible for greater problem sizes
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or numbers of characteristic points. In particular, EFB allowed to reproduce from 5% to 10%

more complete rankings of alternatives than other discretization methods.

Intermediate performance can be attributed to SSP and KDE. With smaller problem sizes

or lower numbers of characteristic points and pairwise comparisons, their expressiveness is

similar to EFB. The advantages of using SSP are clearly visible for different numbers of pairwise

comparisons. The supervised preference-based character of this algorithm allows to obtain

better results than the unsupervised procedures.

However, with the increase in the numbers of alternatives, criteria, or characteristic points,

the advantage of SSP and KDE over the two worst methods, i.e., EWB and KMC, is decreas-

ing. In any case, using either an equal width or a clustering algorithm for the construction of

linear pieces is not beneficial for the model’s expressiveness. The ranking of all procedures is

best visible for different distribution types. The slight differences concern the comparison of

SSP and KDE. The previous is better for the uniform distribution, whereas the latter is more

advantageous with the skew normal distribution.

The expressiveness for the case when there exists at least one value function compatible

with the provided holistic statements is measured with ε∗ (see Figure 4.5.6). One can note

some differences in the performance of different procedures when compared with %(U ̸=

∅). The most evident one is that SSP can be indicated as an overall best performer. For all

decision scenarios, this procedure was able to discriminate comprehensive values of reference

alternatives compared pairwise by the DM by at least 0.02 more. The greater the problem size

or the more flexible the model, and the less the number of pairwise comparisons, the greater

the advantage of SSP over the remaining methods. The exceptions can be indicated when a

complete ranking of the alternatives is considered and there are only three characteristic points.

In the former case, the flexibility of all methods is very limited by such a rich input preference
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Figure 4.5.5: The percentage %(U ̸= ∅) of randomly generated decision situations for
which the pairwise comparisons provided by the DM are fully consistent with an assumed
preference model, for different numbers of alternatives, criteria, pairwise comparisons, char-
acteristic points, and types of performance distribution. The series represent different types
of methods for selecting the characteristic points: blue (X marker) – EFB; green (triangle) –
EWB; red (square) – SSP; azure (pentagon) – KDE; purple (hexagon) – KMC. For clarity,
the minimum value on y-axis has been set to 25%.
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information, and, thus, they attain similar results. In the latter case, the impact of different

methods is marginal, because they decide upon a selection of just a single intermediate point.

The best procedure in terms of %(U ̸= ∅), i.e., EFB, is ranked second with respect to an

average ε∗ value. However, its advantage over EWB or KDE is rather marginal. The clearly

worst performer in terms of this measure (by about 0.01) is KMC.

Some interesting conclusions can be derived from the analysis of different performance dis-

tributions. First, for the uniform distribution EWB performs better than for the skew normal

one. This can be easily justified, since EWB constructs the sub-intervals with equal widths,

which is suitable for dealing with the uniformly distributed performances, but not for other dis-

tributions. In the same spirit, KMC performs relatively worse for the skew normal distribution.

One of the assumptions of the k-means algorithm is that all clusters should not have varying

variance. This assumption is violated in case of the skew normal distribution.

Robustness

As explained in Section 4.5.1, only the analysis of non-trivial necessary inferences allows judg-

ing the impact of the parameterization of an employed preference model on its robustness.

Thus, in this section, when comparing different methods for selection of the characteristic

points, we focus on the number | %N
I | of pairs related by the necessary preference which

cannot be derived directly from the provided preference information and performances (see

Figure 4.5.7).

Although the differences observed for the various methods are relatively small, they still re-

veal that the method for selection of the characteristic points does influence the robustness of

conclusions that can be computed with the use of an additive value function. For example, with

all other parameters equal, when considering the decision scenarios with 14 alternatives or 2

criteria, the choice of one discretization method over another may bring on average two addi-
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Figure 4.5.6: The minimal difference ε∗ between comprehensive values of reference alter-
natives related by a strict preference by the DM, for different numbers of alternatives, crite-
ria, pairwise comparisons, characteristic points, and types of performance distribution. The
series represent different types of methods for selecting the characteristic points: blue (X
marker) – EFB; green (triangle) – EWB; red (square) – SSP; azure (pentagon) – KDE; pur-
ple (hexagon) – KMC.
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tional necessary inferences, and for all conducted tests the best method brings one additional

necessary relation more than the worst one. In general, greater differences between the five

considered methods can be observed for the scenarios with a great number of alternatives and

low numbers of criteria and characteristic points.

The best robustness of conclusions is offered by KMC. This is due to a relatively low flexi-

bility of the underlying model which maps similar performances on the same linear piece of a

marginal value function. As a result, the space of compatible value functions is smaller, which

makes the necessary inference easier. There are, however, two exceptions in this regard. The ro-

bustness of a model based on KDE is increasing relatively faster with the growth of the number

of alternatives than for the other algorithms. Consequently, KDE is the best performer when

a large number of alternatives is involved. Moreover, KDE proves its superiority in terms of

robustness when the performances are uniformly distributed. On the contrary, it is much worse

for the problems with a skew normal distribution of performances, allowing to instantiate the

necessary relation for∼ 1 pair less than in case of a uniform one. This confirms sensitiveness of

KDE with respect to the performance distribution.

The SSP procedure is an intermediate performer. Its gap to the best procedures is less

for problems with a relatively greater size, many characteristic points, and numerous pairwise

comparisons. These characteristics indicate scenarios when there is greater potential for SSP

to construct the sub-intervals and select the characteristic points which better discriminate the

provided preference information. Finally, irrespective of the considered dimension, the worst

performance in terms of the robustness can be attributed to EFB. This indicates that the space

of compatible value models for this method is the greatest in all scenarios, which makes the

necessary inference more challenging.
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Figure 4.5.7: The average number of inferred necessary preference relations | %N
I | which

do not directly follow the provided preference information, for different numbers of alterna-
tives, criteria, pairwise comparisons, characteristic points, and types of performance distribu-
tion. The series represent different types of methods for selecting the characteristic points:
blue (X marker) – EFB; green (triangle) – EWB; red (square) – SSP; azure (pentagon) –
KDE; purple (hexagon) – KMC.
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4.5.4 Trade-off Between Expressiveness and Robustness

To better capture the trade-off between expressiveness and robustness for five methods for

selection of the characteristic points, in Figure 4.5.8 we illustrate the trends for all four measures

in terms of different γ j values. Let us emphasize that although the differences observed between

the performances of various methods are rather small, they are statistically significant (with

only few obvious exceptions, when the performances of two methods are equal or very similar).

To confirm this conclusion, in 4.7 we present p-values derived from the Wilcoxon signed-rank

test for the comparison of all pairs of procedures.

The joint analysis of expressiveness and robustness confirms that these two characteristics

are contradicting. On one hand, KMC is the best performer in terms of | %N | and | %N
I |

and the worst performer in terms of %(U ̸= ∅) and ε∗. On the other hand, EFB proves

its superiority when it comes to reproducing the holistic preference information, but fails to

provide sufficiently many robust conclusions.

These different qualities are best combined by KDE and SSP. The former provides the second

highest number of robust conclusions, while not falling much in expressiveness when more

than three characteristic points need to be selected. The latter is the second best performer for

%(U ̸= ∅) and significantly outperforms the remaining procedures with respect to ε∗, while

not losing much in robustness for the scenarios with at least four characteristic points.

4.5.5 Performance of Procedures for Selection of the Characteristic Points in

View of an Incremental Specification of Pairwise Comparisons

In this section, we consider the impact of different discretization methods on the expressiveness

and robustness measures in view of the interactive preference construction paradigm (Corrente

et al. 2013; Tsoukiàs 2007). In this setting, the DM is expected to provide her/his preference
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Figure 4.5.8: The average values of %(U ̸= ∅), ε∗, | %N |, and | %N
I | for different dis-

cretization methods. Series represent different numbers of characteristic points: blue – 3
characteristic points (ch.p.); green – 4 ch.p.; red – 5 ch.p.; azure – 6 ch.p.
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Table 4.5.3: Test of homogeneity of variances for the decision scenarios with poor prefer-
ence information.

Variable Levene statistic
%(U ̸= ∅) 14.58∗∗

ε∗ 1.46
log | %N | 0.47
log | %N

I | 2.09
**p < 0.001

information incrementally. At an early stage of interaction, relatively few pieces of preference

information are available. As the interaction process evolves, the DM learns more about her/his

preferences, which leads her/him to providing more pairwise comparisons. In this regard, it is

interesting to analyze the performance of different discretization procedures for two scenarios

distinguished by either very poor or relatively rich preference information. In our analysis,

these correspond to the test instances involving 2 or 8 pairwise comparisons, respectively.

Decision scenarios with poor preference information

Before conducting the analysis of variance for different measures in decision scenarios with

poor preference information, we test the homogeneity of variances. The results presented in

Table 4.5.3 indicate that all measures but %(U ̸= ∅) have homogeneous variances across the

five groups corresponding to different discretization methods.

When it comes to three measures with homogeneous variances, the analysis suggests that

the impact of discretization method is significant for ε∗ (F(4, 995) = 15.95, p < 0.001) and

| %N
I | (F(4, 972) = 13.1, p < 0.001), while the results for | %N | do not vary across

different procedures (F(4, 995) = 0.47, p = 0.76)3. To investigate the impact of different

discretization methods on %(U ̸= ∅), these procedures are compared pairwise using Welch’s

3For the test of significance, we used a logarithmic transformation of the robustness measures, since F-test is
extremely sensitive to even small deviation from normality (Box 1953; Markowski and Markowski 1990).
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t-test. The results indicate that SSP performs slightly, though not significantly, better than EFB,

while significantly outperforming the remaining procedures.

EFB 99.69 0.66 0.554 87.17 0.218 2.361

EWB 99.29 0.651 0.844 81.76 0.215 3.011

SSP 99.75 0.717 0.492 85.42 0.222 3.015

KMC 99.2 0.626 0.939 81.09 0.206 3.259

KDE 99.45 0.643 0.884 84.59 0.209 3.215
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Figure 4.5.9: Mean plots of %(U ̸= ∅), ε∗ and | %N
I | for different discretization methods in

poor preference information setting.

Figure 4.5.9 provides the mean plots for the three measures whose performances vary when

using different discretization methods, i.e., %(U ̸= ∅), ε∗, and | %N
I |. They indicate that

SSP performs the best in terms of both expressiveness measures (%(U ̸= ∅) and ε∗), while

attaining the worst results for robustness. On the contrary, KMC attains the best outcomes in

terms of robustness, while being outperformed by the remaining procedures when it comes to

expressiveness. KDE and EWB maintain a reasonable compromise between these two charac-

teristics in decision scenarios with poor preference information. Overall, the trade-off between

expressiveness and robustness is observable for all methods.

Decision scenarios with rich preference information

The tests of homogeneity of variances in decision scenarios with rich preference information

indicate that for all measures there is no evidence supporting heterogeneity across the five

groups corresponding to different discretization methods (see Table 4.5.4). The analysis

of variances suggests that | %N | does not depend on the choice of discretization method
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Table 4.5.4: Test of homogeneity of variances for the decision scenarios with rich prefer-
ence information.

Variable Levene statistic
%(U ̸= ∅) 1.66
ε∗ 1.41
log | %N | 0.51
log | %N

I | 1.57

(F(4, 995) = 0.43, p = 0.79), while the impact of discretization method is significant for

%(U ̸= ∅) (F(4, 995) = 2.63, p = 0.001), ε∗ (F(4, 995) = 2.48, p < 0.05), and | %N
I |

(F(4, 976) = 3.93, p < 0.01).

The mean plots for the latter three measures are provided in Figure 4.5.10. While EFB is

the only method which competes with SSP in terms of expressiveness, SSP outperforms EFB

with respect to robustness. Further, KMC and KDE perform well in view of robustness, but

attain poor results for expressiveness. Overall, the results indicate that SSP performs very well

in the decision scenarios when rich preference information is available. In fact, it is the sole

method which attains a reasonable compromise between expressiveness and robustness. Its

relatively good performance for the test cases with numerous pairwise comparisons can be

justified by its supervised character, i.e., accounting for the holistic judgments when selecting

the characteristic points.

4.6 Conclusions

In this paper, we experimentally evaluated the expressiveness of an additive value function

and the robustness of conclusions computed with its use in the preference disaggregation set-

ting. We indicated how these characteristics are affected by different numbers of alternatives,

criteria, pairwise comparisons, and performance distribution. A special attention was paid to

investigating the impact of both the number of characteristic points which define the shape
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Figure 4.5.10: Mean plots of %(U ̸= ∅), ε∗ and | %N
I | for different discretization methods

in rich preference information setting.

of per-criterion marginal value functions and applying different procedures for their selection.

Our research outcomes were quantified with four measures: the share of decision scenarios for

which the set of compatible value function is non-empty, the minimal difference between com-

prehensive values of reference alternatives compared by the DM, the number of pairs related

by the necessary preference, and the number of non-trivial certain inferences which cannot be

derived directly from the preference information.

The extensive experimental study indicated that the expressiveness of an additive value in-

creased with the number of criteria and characteristic points, and decreased when more al-

ternatives were considered or additional pairwise comparisons were provided. The impact of

changes in these dimensions on the robustness was just the opposite. Furthermore, in most

considered scenarios, the influence of performance distribution on the analyzed measures was

negligible. Although the computational experiments were restricted in size to instances repre-

sentative of real-life decision support problems, we expect our conclusions to be valid also for

greater problems.

In most cases, the trend of the change in expressiveness or robustness was non-linear with

respect to the change in the parameterization of a decision problem or a preference model. That
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is, meaningfully greater changes were observed in the lower scale ranges of different dimensions

(e.g., when passing from 2 to 3 criteria, from 2 to 3 characteristic points, or from 2 to 4 pairwise

comparisons), whereas the differences observed in the upper scale ranges were rather marginal

(e.g., when passing from 5 to 6 criteria, from 5 to 6 characteristic points, or from 6 to 8 pairwise

comparisons).

We also compared five different methods for selection of the characteristic points. The results

indicated that with all other parameter values equal, one may gain at least 5% in expressiveness

and/or derive many additional non-trivial certain conclusions just by suitably selecting the

discretization methods. The best compromise in expressiveness and robustness was reached by

the newly proposed supervised algorithm which constructs the characteristic points so that to

separate as many pairs of performances of reference alternatives compared pairwise by the DM.

Its advantage was particularly evident when numerous pairwise comparisons were available.

Some of our findings agree with the conclusions from the previous studies. On one hand,

we proved that linear value functions are not expressive enough for practical decision aiding.

Indeed, Korhonen et al. (Korhonen et al. 2012) indicated earlier that human judgments are

very often not fully consistent with a linear model. On the other hand, we confirmed that

the general functions are not robust enough to be useful by themselves for decision support in

preference disaggregation contexts (Spliet and Tervonen 2014). Still, we were able to prove that

with piece-wise linear value functions we may often reproduce the holistic judgments of the

DM, and derive the non-trivial robust conclusions.

To our best knowledge, our study is the first that captures expressiveness and robustness

together. In this way, we confirmed that these two objectives are contradictory, and a compro-

mise between these characteristics needs to be reached when selecting a specific parameteriza-

tion of an additive model for real-world problems.

Our results indicate avenues for some practice-oriented methodological development. On
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one hand, one should propose procedures for construction of a parsimonious preference

model (Słowiński et al. 2013), i.e., the simplest model that is able to reconstruct the DM’s

pairwise comparisons, being adequate to the complexity of the indirect preference information.

This idea derives from the rule that the simplest explanation is most likely the correct one.

In this regard, one may, e.g., minimize the number of characteristic points or a deviation of

marginal function from linearity. On the other hand, when using preference disaggregation

methods in an interactive way, we may start by using the linear model, and then move to piece-

wise linear or general functions once the simpler model is not expressive enough. In the context

of interactive evolutionary multi-objective optimization, an analogous idea has been recently

suggested in (Branke et al. 2016).

The experimental analysis of the use of an additive value function in preference disaggre-

gation methods can be also extended in future studies. In particular, we may consider other

measures capturing expressiveness and robustness. For example, the former may be quanti-

fied with the magnitude of inconsistency when all pairwise comparisons cannot be reproduced,

whereas the latter may account for the entropy-like measures to reflect the variety of rankings

that can be obtained with a set of compatible value functions (Ciomek et al. 2016), differenti-

ation of alternatives’ comprehensive values, or the stability of an inferred function as defined

in (Bous et al. 2010). The measures considered in the experimental study can also refer to

other characteristics such as, e.g., the similarity between the rankings generated with differ-

ent discretization techniques or the “linearity” of the inferred marginal functions (Bous et al.

2010). Finally, the study can be extended to additive models that take into account positive and

negative interactions among criteria (Angilella et al. 2014) or admit non-monotonic shape of

marginal functions (Doumpos 2012; Ghaderi et al. 2015, 2017, 2014).
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4.7 Appendix: Results of the Statistical Comparison of the Impact

of Methods for Selection of the Characteristic Points on the

Expressiveness and RobustnessMeasures

Table 4.7.1: p-values derived from the Wilcoxon signed-rank test for the comparison of all
pairs of procedures for selection of the characteristic points. The results concern different
numbers of characteristic points γ j ∈ {3, 4, 5, 6}. p-values greater than 0.01 are in bold.
If p-value is less than a pre-defined significance level (e.g., α = 0.01), the null hypothesis
is rejected and we can deduce that the difference between a pair of compared methods is
statistically significant.

%(U ̸= ∅) ε∗

char. points 3 4 5 6 3 4 5 6
(EFB & EWB) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(EFB & SSP) 0.977 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(EFB & KDE) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(EFB & KMC) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(EWB & SSP) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(EWB & KDE) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(EWB & KMC) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(SSP & KDE) 0.000 0.021 0.008 0.000 0.000 0.000 0.000 0.000
(SSP & KMC) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(KDE & KMC) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
| %N | | %N

I |
char. points 3 4 5 6 3 4 5 6

(EFB & EWB) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(EFB & SSP) 0.036 0.000 0.000 0.000 0.385 0.000 0.000 0.000

(EFB & KDE) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(EFB & KMC) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(EWB & SSP) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(EWB & KDE) 0.000 0.000 0.156 0.000 0.000 0.000 0.687 0.000
(EWB & KMC) 0.000 0.000 0.000 0.080 0.000 0.000 0.000 0.000

(SSP & KDE) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(SSP & KMC) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(KDE & KMC) 0.000 0.000 0.000 0.029 0.000 0.000 0.000 0.000
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5
Conclusion and Future Research

This chapter provides an integrated discussion of the previous chapters. It highlights the the-

oretical contributions of the thesis to two main research paradigms: Decision Science, and

Consumer Behaviour. Then managerial implications of this research will be addressed. Finally,

limitations and future avenues for the research will be highlighted.
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5.1 Implications for Theory

The three main chapters of the thesis collectively contribute to two main paradigms: decision

science, and consumer research. The key concept relating the two paradigms, which are con-

nected to some extent, yet also independent, is the notion of preference. The thesis provides an

integrated framework for decision analysis from a multiple criteria perspective based on indirect

preferences, together with a careful examination of the impact of different characteristics of a

decision problem. The example of analytical investigation of the impact of brand colour on

brand image demonstrates how a complex problem can be formulated and addressed from such

perspective. In the following subsections, the theoretical contributions of the thesis in the two

active research paradigms will be discussed.

5.1.1 Contribution to Decision Science

The novel preference disaggregation approach, introduced in the thesis, contributes to multiple

criteria decision analysis literature by addressing the case of non-monotonicity in preferences.

Compared to the existing methodologies, this framework is able to capture non-monotonic

preferences without making any assumption on the shape of the preference model and without

asking for extra information from the DM. In addition, this thesis contributes to decision

science studies by performing a series of experimental analysis based on simulating a broad

range of decision settings. Experimental analysis approach based on simulation has been used

to enhance our understanding of how characteristics of a decision problem can influence the

quality of the inference outcomes (chapter 4), as well as to test the performance of the newly

introduced disaggregation framework (chapter 3). The framework of the simulation study

can be utilized by scholars who are interested in experimental analysis of various types of

decision problems. Moreover, the findings from chapter 4 can be used for better elicitation of
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preferences in a decision aiding practice at several stages of interaction and in different settings

of a decision problem.

5.1.2 Contribution to Consumer Behaviour literature

Modeling of consumer preferences among multiattribute alternatives has been one of the major

activities in consumer research (Green and Srinivasan 1978). The classical approach for this

purpose is based on two important works at 1970s, the behavior theory approach by Fishbein

(Fishbein 1976) and the conjoint measurement of judgmental data by Green (Green and Rao

1971). Since then, conjoint analysis has received considerable academic and industry attention

as a basis for the analysis of consumers’ tradeoffs among multiattribute products (Green and

Srinivasan 1990; Gustafsson et al. 2013; Rao et al. 2014). The framework introduced in this

thesis addresses consumers’ tradeoffs, relative importance of different attributes in the purchase

decision, as well as the mechanism each attribute contribute in shaping preferences of the

consumer. With respect to latter, the introduced framework has several advantages over the

classical conjoint analysis approach due to its powerful capacity in capturing various preference

models. Moreover, its flexibility in admitting various types of preference information as input

to enrich the inference process facilitates modeling complex preferences with the least cognitive

burden on consumer more than anytime ever. The framework introduced in this thesis can

be viewed as an alternative or supplementary framework for conjoint analysis, especially in the

cases where no prior knowledge on the shape of preferences is available.

5.2 Implications for Practitioners

This thesis has several implications for the practitioners. The framework introduced in this

thesis can help practitioners in decision making process at complex environments where several
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conflicting points of view should simultaneously be considered, especially when some of these

evaluation criteria contain an ideal point.

In particular, modeling the questions on the design of a brand elements as a multiple criteria

analysis problem, as shown in chapter 2, helps brand managers to leverage brand elements such

as brand colour to promote a desired image of brand. The findings draw on the analysis of

indirect perceptual information from customers and gives a clear picture of the current position

of a brand in the customers’ minds, and helps on the steps need to ba taken to in re-designing of

a brand to achieve a desired position.

Disaggregation of preferences of complex form based on preference information of the sim-

plest form (pairwise comparison) helps marketing managers to gain a better understanding of

the needs of consumers in the marketplace which, in turn, results in delivering better products

and services. Moreover, the analytical framework introduced in this thesis helps on predicting

how a consumer will react to changes in some of the product attributes. This provides insights

on the sensitivity of the target market to some changes in the features of a product or service.

Such results can provide a basis for the decisions on product improvement, also allocation of

resources in order to gain the highest value by investing on the attributes that the market care

the most about. Also, by capturing non-linearity in preferences, the framework helps to identify

the levels on attributes up to which the investment is beneficial and beyond that the gain in

value is becoming rather marginal.

5.3 Discussion, Limitations and Future Research

The study of the brand colour and its impact on brand image based on an analytical framework,

in chapter 2, supports the finding from mostly qualitative studies in this field. Given the hypo-

thetically non-monotonic impact of colour on brand image, an iterative computational proce-
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dure based on linear programming is developed for this purpose. The results show a significant

contribution of all the three components of a brand colour, hue, saturation, and brightness, in

almost all dimensions of the brand image. Interesting finding is that brightness of a colour and

its saturation dominate the impact of colour hue (the pigment that creates the colour). The

main objective of this study was to introduce an analytical framework for processing holistic in-

formation of customers’ perceptions of a brand, drawing on theories from cognitive psychology

that explain the mechanisms under which the color operates to shape or change the perceptions.

The findings, however, are the subject of several limitations mainly because some other relevant

factors, such as ethnicity and cultural background of the respondent, which could potentially be

relevant are not controlled. In addition, the framework is able to address the brands with a sin-

gle representative colour only, whereas most of the brands use a combination of several colours

next to each other. Investigating the interaction among the colors requires a more sophisticated

analytical framework which is an interesting and important subject for the future research.

Inspired by chapter 2, in chapter 3 a more comprehensive framework for inferring non-

monotonic additive preference models from indirect preference information is introduced. The

disaggregation framework aims at inferring possibly non-monotonic additive value models by

balancing the expressiveness versus complexity of the inferred model. An extension of the

methodology, in addition, is introduced which enables the analyst to further simplify the in-

ferred preference model at the cost of its expressiveness, by changing an exogenous parameter.

The performance of the framework is tested based on a comprehensive experimental analysis.

The disaggregation framework, however, is limited to handling cardinal criteria only, since it

controls the complexity in the preference model by restricting the change in the slope of the

inferred marginal value functions. Ordinal criteria, however, are present in many decision sit-

uations. The proposed framework, although for practical purpose is applicable to qualitative

criteria, but from a theoretical point of view restricting the slope of value function for such cri-
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teria does not make much sense. Extending the methodology towards a general framework for

capturing non-monotonic preference models in presence of both quantitative and qualitative

criteria is an important subject for the future research. Moreover, handling non-univocal solu-

tions in ordinal regression is of great importance and the proposed framework has potentials to

develop in this direction. A framework for analyzing robustness of the recommendations de-

rived from a non-monotonic value function can be developed drawing on the Robust Ordinal

Regression (ROR) framework (Greco et al. 2008) that seeks for necessary and possible rela-

tions amongst the set of alternatives based on all the compatible value functions. However, it

must be noted that the set of compatible non-monotonic value functions should be considered

separately at different levels of complexity.

The experimental evaluation of the expressiveness of an additive value function and the ro-

bustness of the derived recommendations, in chapter 4, indicates how these two qualities are

affected by different characteristics of a decision problem. A special attention was paid to

investigating the impact of both the number of characteristic points which define the shape

of per-criterion marginal value functions and applying different procedures for their selection.

With this regards, a new supervised technique for the smart selection of characteristic points

based on the configuration of alternatives performances and supplied preferences was intro-

duced. To our best knowledge, this study is the first that captures expressiveness and robustness

together. It is also one of the very first studies using an extensive experimental analysis based on

simulation in multiple criteria decision aiding literature.
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