412 research outputs found

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    The Application of Model Predictive Control on Paralleled Converters for Zero Sequence Current Suppression and Active Thermal Management

    Get PDF
    In the field of power electronics, the control of rectifiers is a crucial area of study. Rectifiers are used to convert AC power into DC power, and are commonly used in a wide range of applications, including renewable energy systems, industrial automation, and consumer electronics. However, in medium and high-power systems when multiple rectifiers are connected in parallel to a DC bus, stability issues can arise, including voltage fluctuations, zero sequence circulating current, and thermal imbalance. Achieving stable DC bus voltage is essential for maintaining the proper functioning of electronic devices, while suppressing zero sequence current is necessary for protecting the power electronics equipment from damage and ensuring that a power system\u27s performance is not degraded. Active thermal management is important for ensuring the longevity and reliability of the power electronics equipment. To achieve these objectives, advanced control techniques must be developed and implemented. This research investigates the use model predictive control to achieve three objectives in two paralleled rectifier each control cycle: DC voltage stability, zero sequence suppression, and thermal balance. These objectives are critical for ensuring the reliable and efficient operation of power electronics systems. The findings of this research will contribute to the development of more reliable and efficient power electronics systems, with the Navy\u27s (power electronic building block) PEBB systems particularly in mind. However, this research can be extended to other medium and high-powered applications in modern technology too such as missile defense systems, data centers, and uninterruptible power supplies

    Study and evaluation of distributed power electronic converters in photovoltaic generation applications

    Get PDF
    This research project has proposed a new modulation technique called “Local Carrier Pulse Width Modulation” (LC-PWM) for MMCs with different cell voltages, taking into account the measured cell voltages to generate switching sequences with more accurate timing. It also adapts the modulator sampling period to improve the transitions from level to level, an important issue to reduce noise at the internal circulating currents. As a result, the new modulation LC-PWM technique reduces the output distortion in a wider range of voltage situations. Furthermore, it effectively eliminates unnecessary AC components of circulating currents, resulting in lower power losses and higher MMC efficiency.Departamento de Tecnología ElectrónicaDoctorado en Ingeniería Industria

    Active current sharing control schemes for parallel connected AC/DC/AC converters

    Get PDF
    PhD ThesisThe parallel operation of voltage fed converters can be used in many applications, such as aircraft, aerospace, and wind turbines, to increase the current handling capability, system efficiency, flexibility, and reliability through providing redundancy. Also, the maintenance of low power parallel connected units is lower than one high power unit. Significant performance improvement can be attained with parallel converters employing interleaving techniques where small passive components can be used due to harmonic cancellation. In spite of the advantages offered by parallel connected converters, the circulating current problem is still a major concern. The term circulating current describes the uneven current sharing between the units. This circulating current leads to: current distortion, unbalanced operation, which possibly damages the converters, and a reduction in overall system performance. Therefore, current sharing control methods become necessary to limit the circulating current in a parallel connected converter system. The work in this thesis proposes four active current sharing control schemes for two equally rated, directly paralleled, AC/DC/AC converters. The first scheme is referred to as a “time sharing approach,” and it divides the operation time between the converters. Accordingly, in the scheme inter-module reactors become unnecessary, as these are normally employed at the output of each converter. However, this approach can only be used with a limited number of parallel connected units. To avoid this limitation, three other current sharing control schemes are proposed. Moreover, these three schemes can be adopted with any pulse width modulation (PWM) strategy and can be easily extended to three or more parallel connected units since they employ a modular architecture. The proposed current sharing control methods are employed in two applications: a current controller for three-phase RL load and an open loop V/f speed control for a three-phase induction motor. The performance of the proposed methods is verified in both transient and steady state conditions using numerical simulation and experimental testingMinistry of Higher Education and Scientific Research of Iraq

    Contributions to Modulation and Control Algorithms for Multilevel Converters

    Get PDF
    Las actuales tendencias de la red eléctrica han lanzado a la industria a la búsqueda de sistemas de generación, distribución y consumo de energía eléctrica más eficientes. Generación distribuida, reducción de componentes pasivos, líneas DC de alta tensión son, entre otras, las posibles líneas de investigación que están actualmente siendo consideradas como el futuro de la red eléctrica. Sin embargo, nada de esto sería posible si no fuera por los avances alcanzados en el campo de la electrónica de potencia. El trabajo aquí presentado comienza con una breve introducción a la electrónica de potencia, concretamente a los convertidores de potencia conectados a red, sus estrategias de control más comunes y enfoques ante redes desbalanceadas. A continuación, las contribuciones del autor sobre el control y modulación de una topología particular de convertidores, conocidos como convertidores multinivel, se presentan como el principal contenido de este trabajo. Este tipo de convertidores mejoran la eficiencia y ciertas prestaciones, en comparación con convertidores más tradicionales, a costa de una mayor complejidad en el control al incrementar la cantidad de los componentes hardware. A pesar de que existen numerosas topologías de convertidores multinivel y algunas de ellas son brevemente expuestas en este trabajo, la mayoría de las aportaciones están enfocadas para convertidores del tipo diode-clamped converter. Adicionalmente, se incluye una aportación para convertidores del tipo multinivel modular, y otra para convertidores en cascada. Se espera que el contenido de la introducción de este trabajo, junto a las contribuciones particulares para convertidores multinivel sirva de inspiración para futuros investigadores del campo

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    Modular Battery Systems for Electric Vehicles based on Multilevel Inverter Topologies - Opportunities and Challenges

    Get PDF
    Modular battery systems based on multilevel inverter (MLI) topologies can possibly overcome some shortcomings of two-level inverters when used for vehicle propulsion. The results presented in this thesis aim to point out the advantages and disadvantages, as well as the technical challenges, of modular vehicle battery systems based on MLIs in comparison to a conventional, two-level IGBT inverter drivetrain. The considered key aspects for this comparative investigation are the drive cycle efficiency, the inverter cost, the fault tolerance capability of the drivetrain and the conducted electromagnetic emissions. Extensive experiments have been performed to support the results and conclusions.In this work, it is shown that the simulated drive cycle efficiency of different low-voltage-MOSFET-based, cascaded seven-level inverter types is improved in comparison to a similarly rated, two-level IGBT inverter drivetrain. For example, the simulated WLTP drive cycle efficiency of a cascaded double-H-bridge (CDHB) inverter drivetrain in comparison to a two-level IGBT inverter, when used in a small passenger car, is increased from 94.24% to 95.04%, considering the inverter and the ohmic battery losses. In contrast, the obtained efficiency of a similar rated seven-level cascaded H-bridge (CHB) drivetrain is almost equal to that of the two-level inverter drivetrain, but with the help of a hybrid modulation technique, utilizing fundamental selective harmonic elimination at lower speeds, it could be improved to 94.85%. In addition, the CDHB and CHB inverters’ cost, in comparison to the two-level inverter, is reduced from 342€ to 202€ and 121€, respectively. Furthermore, based on a simple three-level inverter with a dual battery pack, it is shown that MLIs inherently allow for a fault tolerant operation. It is explained how the drivetrain of a neutral point clamped (NPC) inverter can be operated under a fault condition, so that the vehicle can drive with a limited maximum power to the next service station, referred to as limp home mode. Especially, the detection and localization of open circuit faults has been investigated and verified through simulations and experiments.Moreover, it is explained how to measure the conducted emissions of an NPC inverter with a dual battery pack according to the governing standard, CISPR 25, because the additional neutral point connection forms a peculiar three-wire DC source. To separate the measured noise spectra into CM, line-DM and phase-DMquantities, two hardware separators based on HF transformers are developed and utilized. It is shown that the CM noise is dominant. Furthermore, the CM noise is reduced by 3dB to 6dB when operating the inverter with three-level instead of two-level modulation
    corecore