14,862 research outputs found

    Dependent choice, properness, and generic absoluteness

    Get PDF
    We show that Dependent Choice is a sufficient choice principle for developing the basic theory of proper forcing, and for deriving generic absoluteness for the Chang model in the presence of large cardinals, even with respect to -preserving symmetric submodels of forcing extensions. Hence, not only provides the right framework for developing classical analysis, but is also the right base theory over which to safeguard truth in analysis from the independence phenomenon in the presence of large cardinals. We also investigate some basic consequences of the Proper Forcing Axiom in, and formulate a natural question about the generic absoluteness of the Proper Forcing Axiom in and. Our results confirm as a natural foundation for a significant portion of classical mathematics and provide support to the idea of this theory being also a natural foundation for a large part of set theory

    Optimal Controller and Filter Realisations using Finite-precision, Floating- point Arithmetic.

    Get PDF
    The problem of reducing the fragility of digital controllers and filters implemented using finite-precision, floating-point arithmetic is considered. Floating-point arithmetic parameter uncertainty is multiplicative, unlike parameter uncertainty resulting from fixed-point arithmetic. Based on first- order eigenvalue sensitivity analysis, an upper bound on the eigenvalue perturbations is derived. Consequently, open-loop and closed-loop eigenvalue sensitivity measures are proposed. These measures are dependent upon the filter/ controller realization. Problems of obtaining the optimal realization with respect to both the open-loop and the closed-loop eigenvalue sensitivity measures are posed. The problem for the open-loop case is completely solved. Solutions for the closed-loop case are obtained using non-linear programming. The problems are illustrated with a numerical example

    On the mathematical and foundational significance of the uncountable

    Full text link
    We study the logical and computational properties of basic theorems of uncountable mathematics, including the Cousin and Lindel\"of lemma published in 1895 and 1903. Historically, these lemmas were among the first formulations of open-cover compactness and the Lindel\"of property, respectively. These notions are of great conceptual importance: the former is commonly viewed as a way of treating uncountable sets like e.g. [0,1][0,1] as 'almost finite', while the latter allows one to treat uncountable sets like e.g. R\mathbb{R} as 'almost countable'. This reduction of the uncountable to the finite/countable turns out to have a considerable logical and computational cost: we show that the aforementioned lemmas, and many related theorems, are extremely hard to prove, while the associated sub-covers are extremely hard to compute. Indeed, in terms of the standard scale (based on comprehension axioms), a proof of these lemmas requires at least the full extent of second-order arithmetic, a system originating from Hilbert-Bernays' Grundlagen der Mathematik. This observation has far-reaching implications for the Grundlagen's spiritual successor, the program of Reverse Mathematics, and the associated G\"odel hierachy. We also show that the Cousin lemma is essential for the development of the gauge integral, a generalisation of the Lebesgue and improper Riemann integrals that also uniquely provides a direct formalisation of Feynman's path integral.Comment: 35 pages with one figure. The content of this version extends the published version in that Sections 3.3.4 and 3.4 below are new. Small corrections/additions have also been made to reflect new development
    • ā€¦
    corecore