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Abstract

The problem of reducing the fragility of digital controllers and filters implemented using

finite-precision, floating-point arithmetic is considered. Floating-point arithmetic parameter

uncertainty is multiplicative, unlike parameter uncertainty resulting from fixed-point arith-

metic. Based on first-order eigenvalue sensitivity analysis, an upper bound on the eigenvalue

perturbations is derived. Consequently, open-loop and closed-loop eigenvalue sensitivity

measures are proposed. These measures are dependent upon the filter/controller realisa-

tion. Problems of obtaining the optimal realisation with respect to both the open-loop and

the closed-loop eigenvalue sensitivity measures are posed. The problem for the open-loop

case is completely solved. Solutions for the closed-loop case are obtained using nonlinear

programming. The problems are illustrated with a numerical example.
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1 Introduction

The finite word-length used for number representation in digital computers means that con-

trollers and filters implemented with digital hardware are subjected to errors. The errors in the

arithmetic result from two sources (Mullis and Roberts, 1976). The first is quantisation errors

resulting from the quantisation of the signals and roundoff of the results of multiplication and

addition. The second is coefficient errors resulting from the rounding of the coefficients of the

filter/controller. This paper is concerned with the second of these. There are other finite word-

length effects that need to be considered in implementing digital filters/controllers, notably the

effects of overflow and (for floating point arithmetic) underflow, and limit cycles resulting from

the quantisation. These are not considered in this paper.

In the past, digital controllers were often implemented using fixed point arithmetic, however,

the reducing cost and increasing speed of computer hardware means that there is an increasing

tendency for implementations to use floating-point arithmetic. It is well known (Wilkinson,

1963, e.g.) that quantisation and rounding effects with floating point arithmetic is of a different

nature to that of fixed point. Fixed-point quantisation error results in additive noise indepen-

dent of the signal, but with floating-point arithmetic, the quantisation error is correlated with

the signal that is being quantised. Similarly, coefficient rounding in fixed-point arithmetic re-

sults in additive perturbations on the coefficients, whereas with floating-point arithmetic, the

perturbations are multiplicative. Thus the analysis and optimisation of finite-precision filter and

controller implementations needs to take the arithmetic into account.

The quantisation error effect on digital filters resulting from the finite precision using floating-

point arithmetic has been fairly extensively studied over the last 4 decades (for example, Sand-

berg, 1967; Liu and Kaneko, 1969; Kan and Aggarwal, 1971; Kaneko and Liu, 1971; Liu, 1971;

Zeng and Neuvo, 1991; Smith et al., 1992; Rao, 1996; Bomar, Smith and Joseph, 1997; Tsai,

1997; Ko and Bitmead, 2004), see Kontro, Kalliojärvi and Neuvo (1992) for a review. The

effect of coefficient rounding in floating-point arithmetic seems first to have been considered

by Kaneko and Liu (1971) (see also Liu, 1971), who analysed the sensitivity of the filter poles

and the sensitivity of the frequency response to multiplicative perturbations on the coefficients

for several filter structures. Liu (1971) also performs an analysis of the sensitivity of the filter

frequency response, as do both Ku and Ng (1975) and Kalliojärvi and Astola (1994).

The finite-precision effects on closed-loop control systems have been extensively studied for fixed-

point implementations, see Istepanian and Whidborne (2001) for a review. There has been far

less work looking explicitly at the finite-precision effects for floating-point digital controller

implementations. The quantisation errors have been analysed by Rink and Chong (1979a,b),

and by Vanwingerden and De Koning (1984) for optimal controllers. Miller, Mousa and Michel
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(1988) have also analysed the quantisation errors, but notably also include the inter-sample

behaviour. A method to design optimal controllers that minimise the quantisation errors has

been developed by de Oliveira and Skelton (2001). The effect on the robust stability caused

by coefficient rounding has been analysed by Molchanov and Bauer (1995), but an additive

perturbation is assumed for the floating point implementation. Closed-loop stability subject to

perturbations on the floating-point coefficients has been analysed by Faris et al. (1998) using

modern robust techniques. The sensitivity of the time responses has been analysed by Farrell

and Michel (1989) for both fixed and floating-point arithmetic.

It is known that some controller/filter realisations are very sensitive to small errors in the

parameters, and these small errors can even lead to instability. These parameter errors may

result from the finite-precision of the computing device. Such controller realisations can be

described as fragile (Keel and Bhattacharryya, 1997). However, a dynamical system has an

infinite number of equivalent realisations. If a digital linear system is implemented in the state

space form, C(zI −A)−1B + D, then CT (zI −T−1AT )−1T−1B + D is an equivalent realisation

for any non-singular matrix T . It so happens that the effect of the finite precision is partially

dependent upon the realisation. Thus, in order to ensure a non-fragile implementation, it is of

interest to know the realisation, or matrix T , which minimises the effect on the system of the

finite precision.

One approach to obtaining non-fragile realisations is to minimise the sensitivity of the system

eigenvalues. This approach has been extensively investigated for fixed-point realisations. It was

first considered for the open-loop (filter) case by Mantey (1968), and subsequently by Gevers

and Li (1993) who solved the problem for state-space realisations based on a norm for the

open-loop eigenvalue sensitivities. The case of the closed-loop system eigenvalue sensitivity for

state-space controller realisations was first considered by Li (1998) and has subsequently been

thoroughly investigated (Istepanian et al., 1998; Chen et al., 1999; Wu, Istepanian and Chen,

1999; Istepanian et al., 2000; Wu et al., 2000; Whidborne, Istepanian and Wu, 2001).

In this paper, a simple eigenvalue sensitivity measure is considered for both filter and controller

realisations. The filter problem is completely solved whilst solutions to the controller problem

may be obtained using non-linear programming. The main results of this paper were originally

presented by Whidborne and Gu (2002). Other eigenvalue sensitivity minimisation indices for

floating-point implementations have recently been proposed by Wu et al. (2003, 2004). An

alternative eigenvalue sensitivity index has been proposed for floating point arithmetic by Ko

and Yu (2004), and conditions for the existence of a minimizing realisation established. However

additive perturbations on the coefficients are assumed, and this index is actually an upper bound

on an index proposed by Whidborne, Istepanian and Wu (2001).

In the next section, floating-point arithmetic is discussed and the rounding operation is shown
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to result in multiplicative perturbations on the filter/controller coefficients. Based on this per-

turbation model, an upper bound on the eigenvalue perturbations is obtained in Section 3. In

Section 4, a measure of the relative stability based on this upper bound is proposed for digital

filter implementations, and the problem of minimising this measure for state-space realisations

is solved. In Section 5, a similar measure for closed-loop controller implementations is pro-

posed. Nonlinear programming is proposed to obtain solutions to the closed-loop problem. The

problems are illustrated by a numerical example in the penultimate section, and non-linear

programming is shown to be effective for the closed-loop problem.

Notations

⌊x⌋ denotes the floor function, that is, the largest integer less than or equal to x

A ◦ B = [aijbij ] denotes the Hadamard product of A and B

AT denotes the transpose of a matrix A

AH denotes the complex conjugate transpose of a matrix A

vec(A) denotes the column stacking operator of a matrix A

‖A ‖F =
√
∑

i,j a2
ij denotes the Frobenius norm of a matrix A

A1/2 denotes, for a matrix A ≥ 0, the unique symmetric matrix satisfying A1/2 ≥ 0 and

A1/2A1/2 = A

C denotes the set of all complex numbers

R denotes the set of all real numbers

Z denotes the set of all integers

O(x) denotes “is of order x”

2 Floating-point representation

s a1 · · · aℓe b1 · · · bℓm

sign
︸ ︷︷ ︸

exponent e
︸ ︷︷ ︸

mantissa m

Figure 1: Floating-point number representation

Numbers in a digital computer are represented by a finite number of bits – the word-length,

ℓ ∈ Z+. In a floating-point arithmetic, the word consists of three parts:

1. one bit, s ∈ {0, 1}, for the sign of the number,
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2. ℓm ∈ Z+ bits for the mantissa, m ∈ R, and

3. ℓe ∈ Z+ bits for the exponent, e ∈ Z.

Therefore, ℓ = ℓm + ℓe + 1. The number is typically stored as shown in figure 1, and with this

representation, the value x is interpreted as

x = (−1)s × m × 2e (1)

where the mantissa is usually normalised so that m ∈ [.5, 1). Now, since ℓe and ℓm are finite, (ℓ is

typically 16, 32 or 64 bits), the set of numbers that is represented by a particular floating-point

scheme is not dense on the real line. Thus the set of possible floating-point numbers, F , is given

by

F :=

{

(−1)s

(

0.5 +

ℓm∑

i=1

bi2
−(i+1)

)

× 2e : s ∈ {0, 1} , bi ∈ {0, 1} , e ∈ Z, e
¯
≤ e ≤ ē

}

∪{0} (2)

where e
¯
∈ Z and ē ∈ Z represent the lower and upper limits of the exponent respectively, and

ē−e
¯

= 2ℓe −1. Note that unlike fixed-point representation, underflow can occur in floating-point

arithmetic.

In the remainder of this paper, it is assumed that no underflow or overflow occurs, that is ℓe is

unlimited, so e ∈ Z. Define the floating-point rounding operator, q : R → F , as

q(x) :=







sgn(x)2(e−ℓm−1)
⌊
2(ℓm−e+1) |x| + 0.5

⌋
, for x 6= 0

0, for x = 0
(3)

where e = ⌊log2 |x|⌋ + 1.

The rounding error, ε, is defined as

ε := |x − q(x)| . (4)

It can be shown easily that the rounding error is bounded by

ε < |x| 2−(ℓm+1). (5)

Thus, when a number is implemented in finite-precision floating-point arithmetic, it may be

perturbed to

q(x) = x(1 + δ), |δ| < δmax. (6)

where δmax = 2−(ℓm+1). Thus, as is well-known (Wilkinson, 1963), the perturbation is multi-

plicative, unlike the perturbation resulting using finite-precision fixed-point arithmetic, which is

additive.
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3 Eigenvalue sensitivity

In general, the perturbations on the controller parameters resulting from finite-precision imple-

mentation will be very small. Thus, perturbations on the closed-loop system eigenvalues can

be approximated by considering the first-order term of a Taylor expansion, i.e. the eigenvalue

sensitivities to changes in the controller parameters. A number of different eigenvalue sensitivity

indices have bee proposed for fixed-point digital controller and filter implementations (Mantey,

1968; Gevers and Li, 1993; Li, 1998; Istepanian et al., 1998; Whidborne, Istepanian and Wu,

2001; Wu et al., 2001).

Assume that a controller/filter realisation x = vec(X) is implemented with floating-point arith-

metic with finite precision, that is the actual realisation will be q(x). Then, from (6), each

element of x will be perturbed to xi(1 + δi), |δi| < δmax = 2−(ℓm+1), and the realisation vector

will be perturbed to x + x ◦ δ where δ = [δi].

Proposition 1. Let f(x) ∈ C be a differentiable function of x ∈ R
nx. Assume that x is perturbed

to x̃ where x̃i = xi(1 + δi). Then, to a first-order Taylor series approximation

|f(x̃) − f(x)| ≤ δmax‖ g ‖2‖x ‖2 +
∣
∣O(δ2

max)
∣
∣ (7)

where |δi| < δmax for all i and g(x) is the gradient vector, i.e.,

g(x) :=
∂f(x)

∂x
=

[
∂f

∂xi

]

x

(8)

evaluated at x.

Proof. Taking a first-order Taylor series approximation:

f(x̃) = f(x) +

nx∑

i=1

(
∂f

∂xi

)

x

(x̃i − xi) + O(δ2
max) (9)

Now, from (6), x̃i = xi(1 + δi), so

f(x̃) − f(x) =

nx∑

i=1

gi(x)xiδi + O(δ2
max). (10)

Hence

|f(x̃) − f(x)| ≤

nx∑

i=1

|gi(x)| |xi| |δi| +
∣
∣O(δ2

max)
∣
∣ (11)

< δmax

nx∑

i=1

|gi(x)| |xi| +
∣
∣O(δ2

max)
∣
∣ (12)

which, by the Cauchy-Schwartz inequality, gives

|f(x̃) − f(x)| < δmax‖ g(x) ‖2‖x ‖2 +
∣
∣O(δ2

max)
∣
∣ . (13)
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If f(·) is the system pole/eigenvalue, x is the infinite-precision parameter vector and x̃ is the

finite-precision parameter vector, then Proposition 1 can be used to measure the relative system

stability when subject to finite-precision implementation using floating-point arithmetic. Based

on Proposition 1, tractable eigenvalue sensitivity indices can be formulated which are appropriate

for finite-precision floating-point digital controller and filter implementations.

4 Optimal digital filter realisations

Consider the problem of implementing a digital filter, F (z) = Cf (zI − Af )−1Bf + Df , where

Af ∈ R
n×n and has no repeated eigenvalues, Bf ∈ R

n×q, Cf ∈ R
l×n and Df ∈ R

l×q. In

this paper, (Af , Bf , Cf , Df ) is also called a realisation of F (z). The realisations of F (z) are

not unique, if (A0
f , B0

f , C0
f , D0

f ) is a realisation of F (z), then so is (T−1A0
fT, T−1B0

f , C0
fT, D0

f )

for any non-singular similarity transformation T ∈ R
n×n. The system poles are simply the

eigenvalues of Af . The problem under consideration is to find the similarity transformation

such that the realisation has a minimal eigenvalue sensitivity when implemented using finite

word-length floating-point arithmetic.

Based on Proposition 1, the following tractable eigenvalue sensitivity index, Φ, is proposed

Φ = ‖Af ‖
2
F

n∑

k=1

wkΦk (14)

where wk is a non-negative real scalar weighting and

Φk =

∥
∥
∥
∥

∂λk

∂Af

∥
∥
∥
∥

2

F

(15)

where {λi : i = 1, . . . , n} represents the set of unique eigenvalues of Af . The weights, wk,

k = 1, . . . , n, are generally chosen so that the eigenvalues closer to the unit circle have the larger

values. The measure Φ is dependent upon the filter realisation, that is, given Af = T−1A0
fT ,

Φ(T ) :=
∥
∥T−1A0

fT
∥
∥

2

F

n∑

k=1

wkΦk(T ) (16)

where, (Gevers and Li, 1993; Li, 1998),

Φk(T ) = tr
(
RH

k T−T T−1Rk

)
tr
(
LH

k TT T Lk

)
(17)

and where Rk and Lk are the right and left eigenvectors respectively for the kth eigenvalue of

A0
f .

Problem 1. Given an initial realisation (A0
f , B0

f , C0
f , D0

f ), calculate

Φmin = min
T∈R

n×n

det(T ) 6=0

Φ(T ) (18)
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and calculate a subsequent similarity transformation Tmin such that Φmin = Φ(Tmin).

Theorem 1. The solution to Problem 1 is given by

Φmin =
n∑

k=1

|λk|
2

n∑

k=1

wk (19)

and

Tmin =
(
RWRH

)1/2
V (20)

where R = [Ri] is the matrix of right eigenvectors of A0
f , W = diag(w1, . . . , wn) is a diagonal

matrix of the weights and V is an arbitrary orthogonal matrix.

Proof. From Lemma 6.2 and Theorem 6.1 of Gevers and Li (1993, pp137-138), it follows that

Φk ≥ 1 with equality for all k if Af is normal. From Horn and Johnson (1985, p101),

‖Af ‖
2
F ≥

n∑

k=1

|λk|
2 (21)

with equality if Af is normal. Clearly, if Af is normal, Φ is minimal and (19) holds. Theorem

6.2 of Gevers and Li (1993, p141) gives (20).

Remark 1. The requirement for minimal eigenvalue sensitivity for FWL fixed-point arithmetic

is also that the transition matrix Af is in the normal form (Gevers and Li, 1993, p139).

5 Optimal digital controller realisations

P (z)

C(z,X)

-
6

-

� ?�

-+

+

+ +

r y

w

plant

controller

Figure 2: Feedback control system

Consider the linear discrete-time feedback control system shown in figure 2. Let the plant be

P (z), and let the controller be C(z, X) where X is the parametrisation of the controller.
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Let (Ap, Bp, Cp, 0) be a state space description of the strictly proper plant P (z) = Cp(zI −

Ap)
−1Bp, Ap ∈ R

m×m, Bp ∈ R
m×l and Cp ∈ R

q×m. Let (Ac, Bc, Cc, Dc) be a state space

description of C(z) = Cc(zI − Ac)
−1Bc + Dc, where Ac ∈ R

n×n, Bc ∈ R
n×q, Cc ∈ R

l×n and

Dc ∈ R
l×q.

The transition matrix of the closed loop system is

Ā =

[

Ap + BpDcCp BpCc

BcCp Ac

]

=

[

Ap 0

0 0

]

+

[

Bp 0

0 In

][

Dc Cc

Bc Ac

][

Cp 0

0 In

]

,

=: M0 + M1XM2 = Ā(X), (22)

where

X :=

[

Dc Cc

Bc Ac

]

, (23)

In the sequel, it is assumed that Ā has no repeated eigenvalues.

Let the realisation (A0
c , B

0
c , C0

c , D0
c ) of C(z) be represented by

X0 =

[

D0
c C0

c

B0
c A0

c

]

, (24)

then any realisation is given by

X =

[

I 0

0 T

]−1 [

D0
c C0

c

B0
c A0

c

][

I 0

0 T

]

, (25)

=: T−1
I X0TI , (26)

for some non-singular T ∈ R
n×n.

Let Rk = (RT
k (1) RT

k (2))T and Lk = (LT
k (1) LT

k (2))T be the right and left eigenvectors respec-

tively for the kth eigenvalue of Ā partitioned such that Rk(1), Lk(1) ∈ C
m and Rk(2), Lk(2) ∈ C

n,

i.e. the partitions correspond to the partitions of X defined by (23). Then, it can be shown (Li,

1998; Whidborne, Istepanian and Wu, 2001) that
(

∂λk

∂Ac

)T

= Rk(2)LH
k (2), (27)

(
∂λk

∂Bc

)T

= CpRk(1)LH
k (2), (28)

(
∂λk

∂Cc

)T

= Rk(2)LH
k (1)Bp, (29)

(
∂λk

∂Dc

)T

= CpRk(1)LH
k (1)Bp, (30)
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where {λk : k = 1, . . . , n + m} represents the set of unique eigenvalues of Ā.

Based on Proposition 1, the following tractable eigenvalue sensitivity index, Υ, is proposed

Υ(X) := ‖X ‖2
F

n+m∑

k=1

wkΥk (31)

where wk is a non-negative real scalar weighting and

Υk =

∥
∥
∥
∥

∂λk

∂Ac

∥
∥
∥
∥

2

F

+

∥
∥
∥
∥

∂λk

∂Bc

∥
∥
∥
∥

2

F

+

∥
∥
∥
∥

∂λk

∂Cc

∥
∥
∥
∥

2

F

+

∥
∥
∥
∥

∂λk

∂Dc

∥
∥
∥
∥

2

F

. (32)

The weights, wk, k = 1, . . . , n + m, are generally chosen so that the eigenvalues closer to the

unit circle have the larger values. The measure Υ is dependent upon the controller realisation.

Given an initial realisation (A0
f , B0

f , C0
f , D0

f ), then it can be easily shown that

‖X ‖2
F = tr(P−1A0

cPA0T
c ) + tr(P−1B0

c B0T
c ) + tr(PC0T

c C0
c ) + tr(D0

cD
0T
c ), (33)

where P = TT T and, from (27) – (30), that

Υk = tr(R0H
k (2)P−1R0

k(2)) tr(L0H
k (2)PL0

k(2)) + αk tr(L0H
k (2)PL0

k(2))

+ βk tr(R0H
k (2)P−1R0

k(2)) + αkβk, (34)

where αk = tr(R0H
k (1)CH

p CpR
0
k(1)) and βk = tr(L0H

k (1)BpB
H
p L0

k(1)). Rearranging gives

Υ(P ) =
(

tr(P−1A0
cPA0T

c ) + tr(P−1B0
c B0T

c ) + tr(PC0T
c C0

c ) + tr(D0
cD

0T
c )
)

×
(n+m∑

k=1

tr(P−1MRk
) tr(PMLk

) + tr(PWL) + tr(P−1WR) + c
)

(35)

where

MRk
= w

1/2
k R0

k(2)R0H
k (2) (36)

MLk
= w

1/2
k L0

k(2)L0H
k (2) (37)

WL = L0(2) diag(w1α1, . . . , wn+mαn+m)L0H(2), (38)

WR = R0(2) diag(w1β1, . . . , wn+mβn+m)R0H(2), (39)

are all Hermitian, and

c =
n+m∑

k=1

αkβk. (40)

Problem 2. Given an initial realisation (A0
c , B0

c , C0
c , D0

c ), calculate

Υmin = min
P∈R

n×n

P=PT >0

Υ(P ) (41)

where P = TT T , and calculate a subsequent similarity transformation Tmin such that Υmin =

Υ(TminT
T
min).
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Remark 2. The function Υ(P ) is everywhere differentiable over the set {Υ(P ) : P = P T > 0}.

Hence it is proposed that nonlinear programming is used to find local solutions to Problem 2.

The problem of finding a global solution remains open.

To solve the problem using nonlinear programming, a search is required over n×n real, positive

definite symmetric matrices. This can be accomplished by utilising a Cholesky factorisation

given by the following theorem (Golub and Van Loan, 1989, p 141).

Theorem 2 (Cholesky Factorisation). For P ∈ R
n×n, P = P T , P > 0, there exists a unique

lower triangular G ∈ R
n×n with positive diagonal entries such that P = GGT .

Thus a search can be made over the set
{
[ ga

gb
] : ga ∈ R

(n−1)n/2, gb ∈ R
n
+

}
.

Remark 3. Since V V T = I where V is any orthogonal matrix, then Pmin = GminV V T GT
min

and so

Tmin = GminV. (42)

This provides an extra degree of freedom which could be utilised to find, for example, sparse

realisations (Li et al., 1992).

6 Example

The following numerical example is taken from Gevers and Li (1993, pp 236-237). The discrete

time system to be controlled is given by

Ap =










3.7156 −5.4143 3.6525 −0.9642

1.000 0 0 0

0 1.000 0 0

0 0 1.000 0










, (43)

Bp =
[

1 0 0 0
]T

, (44)

Cp =
[

0.1116 0.0043 0.1088 0.0014
]

× 10−5. (45)

A pole-placement controller is designed to place the closed-loop poles at

0.9844 ± 0.0357j, 0.9643 ± 0.0145j, (46)

and a state observer is designed with poles located at

0.7152 ± 0.6348j, 0.3522 ± 0.2857j. (47)
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The initial realisation of the feedback controller C(z) is given by (to 4 decimal places)

A0
c = Ap + BpC

0
c − B0

c Cp (48)

=










2.6743 −5.7443 2.5096 −0.9176

0.2877 −0.0273 −0.6947 −0.0088

−0.3377 0.9871 −0.3294 −0.0042

−0.0830 −0.0032 0.9190 −0.0010










, (49)

B0
c =

[

1.0963 0.6385 0.3027 0.0744
]T

× 106, (50)

C0
c =

[

0.1818 −0.2831 0.0500 0.0617
]

, (51)

D0
c = 0. (52)

The weights are set to wi = (1 − λmax)/(1 − |λi|) where λmax = maxi{|λi|} and {λi} are

the eigenvalues of A0
c and Ā (from (22)) for the open-loop and closed-loop sensitivity indices

respectively. Thus the eigenvalues closer to the unit circle have the larger weighting values.

The initial realisation has an open-loop pole sensitivity, Φ = 1.5737×106. From Theorem 1, the

optimal open-loop pole sensitivity Φmin = 6.1746, which can be achieved with the realisation

(to 4 decimal places):

Ac =










0.6194 −0.1992 −0.0835 −0.1265

0.1346 0.6052 −0.2297 0.0171

0.0508 0.1650 0.5315 −0.2813

0.2047 0.0653 0.2218 0.5605










, (53)

Bc =
[

0.6508 0.0048 2.0020 0.2961
]T

× 106, (54)

Cc =
[

0.1100 0.0222 −0.0142 −0.0168
]

. (55)

The closed-loop pole sensitivity for the initial realisation is Υ = 3.9903× 1022 and for the open-

loop optimal realisation, it is Υ = 9.8156 × 1021. It is a fairly common practice to implement

controllers using a balanced realisation. Using the MATLABr routine balreal.m, a balanced

realisation was obtained (to 4 decimal places):

Ac =










0.1119 0.5408 −0.1954 −0.0531

−0.5408 0.7216 0.1647 0.0350

−0.1954 −0.1647 0.7643 −0.1298

0.0531 0.0350 0.1298 0.7189










, (56)

Bc =
[

203.1819 −63.5703 32.0424 −4.1143
]T

, (57)

Cc =
[

203.1819 63.5703 32.0424 4.1143
]

. (58)
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The closed-loop pole sensitivity for the balanced realisation is Υ = 1.2546 × 1011.

The MATLABr routine fminsearch.m was used with the Cholesky factorization of Theorem 2

to solve Problem 2. The routine fminsearch.m implements the Nelder-Mead simplex method.

Using a 350 MHz Pentium PC, from a random starting point, the routine took about 30 minutes

to converge. An optimal closed-loop pole sensitivity value of Υmin = 4.3366× 108 was obtained

with a realisation (to 4 decimal places):

Ac =










−1.0614 −0.9631 −0.0054 −0.0018

2.2892 1.7570 −0.0235 0.0057

−1.4089 0.4759 0.6716 −0.0868

1.7421 −2.3837 0.4706 0.9494










, (59)

Bc =
[

129.2367 −137.2672 56.4560 −23.7868
]T

, (60)

Cc =
[

155.1427 −119.5560 32.1475 1.0368
]

. (61)

7 Discussion and conclusions

In previous works, the eigenvalue sensitivity approach to obtain optimal digital filter and con-

troller realisations so as to account for the finite precision inherent in digital computing devices

has been thoroughly investigated. However, there has been an assumption that the parameter

uncertainty is additive. This assumption is perfectly valid for filter and controller implemen-

tations that use fixed-point arithmetic, however, for floating-point arithmetic, the parameter

uncertainty is multiplicative. It is becoming increasingly common to use floating-point arith-

metic for digital filters and controllers. Thus, in this paper, the work of Gevers and Li (1993)

is extended to obtain optimal floating-point digital filter realisations; and the work of Whid-

borne, Istepanian and Wu (2001) is extended to obtain optimal floating-point digital controller

realisations.

The methods are demonstrated on a numerical example of a control system. Both the initial

realisation of the controller and the optimal open-loop realisation result in very high closed-loop

pole sensitivities. This is significantly reduced by using a balanced realisation. However, the

closed-loop pole sensitivity of the balanced controller realisation can be reduced by three orders

of magnitude by the optimal closed-loop realisation.
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