86 research outputs found

    An investigation into the relationship between semantic and content based similarity using LIDC

    Full text link

    Autoencoder-based Image Recommendation for Lung Cancer Characterization

    Get PDF
    Neste projeto, temos como objetivo desenvolver um sistema de IA que recomende um conjunto de casos relativos (passados) para orientar a tomada de decisão do médico. Objetivo: A ambição é desenvolver um modelo de aprendizado baseado em IA para caracterização de câncer de pulmão, a fim de auxiliar na rotina clínica. Considerando a complexidade dos fenômenos biológicos que ocorrem durante o desenvolvimento do câncer, as relações entre eles e as manifestações visuais capturadas pela tomografia computadorizada (CT) têm sido exploradas nos últimos anos. No entanto, devido à falta de robustez dos métodos atuais de aprendizado profundo, essas correlações são frequentemente consideradas espúrias e se perdem quando confrontadas com dados coletados a partir de distribuições alteradas: diferentes instituições, características demográficas ou até mesmo estágios de desenvolvimento do câncer.In this project, we aim to develop an AI system that recommends a set of relative (past) cases to guide the decision-making of the clinician. Objective: The ambition is to develop an AI-based learning model for lung cancer characterization in order to assist in clinical routine. Considering the complexity of the biological phenomenat hat occur during cancer development, relationships between these and visual manifestations captured by CT have been explored in recent years; however, given the lack of robustness of current deep learning methods, these correlations are often found spurious and get lost when facing data collected from shifted distributions: different institutions, demographics or even stages of cancer development

    Towards generalizable machine learning models for computer-aided diagnosis in medicine

    Get PDF
    Hidden stratification represents a phenomenon in which a training dataset contains unlabeled (hidden) subsets of cases that may affect machine learning model performance. Machine learning models that ignore the hidden stratification phenomenon--despite promising overall performance measured as accuracy and sensitivity--often fail at predicting the low prevalence cases, but those cases remain important. In the medical domain, patients with diseases are often less common than healthy patients, and a misdiagnosis of a patient with a disease can have significant clinical impacts. Therefore, to build a robust and trustworthy CAD system and a reliable treatment effect prediction model, we cannot only pursue machine learning models with high overall accuracy, but we also need to discover any hidden stratification in the data and evaluate the proposing machine learning models with respect to both overall performance and the performance on certain subsets (groups) of the data, such as the ‘worst group’. In this study, I investigated three approaches for data stratification: a novel algorithmic deep learning (DL) approach that learns similarities among cases and two schema completion approaches that utilize domain expert knowledge. I further proposed an innovative way to integrate the discovered latent groups into the loss functions of DL models to allow for better model generalizability under the domain shift scenario caused by the data heterogeneity. My results on lung nodule Computed Tomography (CT) images and breast cancer histopathology images demonstrate that learning homogeneous groups within heterogeneous data significantly improves the performance of the computer-aided diagnosis (CAD) system, particularly for low-prevalence or worst-performing cases. This study emphasizes the importance of discovering and learning the latent stratification within the data, as it is a critical step towards building ML models that are generalizable and reliable. Ultimately, this discovery can have a profound impact on clinical decision-making, particularly for low-prevalence cases

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    This is not a real image:Generative artificial intelligence to enhance radiology education

    Get PDF
    Radiologists fulfill a critical role in our healthcare system, but their workload has increased substantially over time. Although algorithmic tools have been proposed to support the diagnostic process, the workload is not efficiently decreased in this manner. However, another possibility is to decrease workload in a different area. The main topic of this thesis is concerned with investigating how simulation training can be realized to aid in the image interpretation skills training of the radiology resident. To realize simulated training it is necessary to know (1) how we can create realistic artificial medical images, subsequently (2) How we can control their variety and (3) how we can adjust their difficulty.Firstly, it is shown that artificial medical images can blend in with original ones. For this purpose a GAN model is used to create 2-dimensional artificial medical images. The created artificial images are assessed both quantitatively and qualitatively in terms of their realism. Secondly, to better control the variety of the artificial medical images a diffusion model is used to guide both coarse- and fine-features. The results show that the model was able to adjust fine-feature characteristics of the pathology type according to the feedback of the independent classifier. Thirdly, a method is presented to describe the detection difficulty of an (artificial) medical image using quantitative pathology and image characteristics. Results show that it is possible to describe almost two thirds of the variation in difficulty using these quantitative characteristics and as such describe images as having lower or higher detection difficulty. Finally, the responsible implementation of the medical image simulator to assist in image interpretation skills is investigated. Combining the results of this thesis resulted in a prototype of a 'medical image simulator'. This simulator can take over part of the workload of the supervising radiologists, by providing a means for independent repetitive practice for the resident. The realistic artificial medical images can be varied in terms of their content and their difficulty. This can enable a personalized experience that can enhance training of image interpretation skills and make it more efficient

    Attention-Enhanced Cross-Task Network for Analysing Multiple Attributes of Lung Nodules in CT

    Full text link
    Accurate characterisation of visual attributes such as spiculation, lobulation, and calcification of lung nodules is critical in cancer management. The characterisation of these attributes is often subjective, which may lead to high inter- and intra-observer variability. Furthermore, lung nodules are often heterogeneous in the cross-sectional image slices of a 3D volume. Current state-of-the-art methods that score multiple attributes rely on deep learning-based multi-task learning (MTL) schemes. These methods, however, extract shared visual features across attributes and then examine each attribute without explicitly leveraging their inherent intercorrelations. Furthermore, current methods either treat each slice with equal importance without considering their relevance or heterogeneity, which limits performance. In this study, we address these challenges with a new convolutional neural network (CNN)-based MTL model that incorporates multiple attention-based learning modules to simultaneously score 9 visual attributes of lung nodules in computed tomography (CT) image volumes. Our model processes entire nodule volumes of arbitrary depth and uses a slice attention module to filter out irrelevant slices. We also introduce cross-attribute and attribute specialisation attention modules that learn an optimal amalgamation of meaningful representations to leverage relationships between attributes. We demonstrate that our model outperforms previous state-of-the-art methods at scoring attributes using the well-known public LIDC-IDRI dataset of pulmonary nodules from over 1,000 patients. Our model also performs competitively when repurposed for benign-malignant classification. Our attention modules also provide easy-to-interpret weights that offer insights into the predictions of the model

    Semantic Segmentation of Ambiguous Images

    Get PDF
    Medizinische Bilder können schwer zu interpretieren sein. Nicht nur weil das Erkennen von Strukturen und möglichen Veränderungen Erfahrung und jahrelanges Training bedarf, sondern auch weil die dargestellten Messungen oft im Kern mehrdeutig sind. Fundamental ist dies eine Konsequenz dessen, dass medizinische Bild-Modalitäten, wie bespielsweise MRT oder CT, nur indirekte Messungen der zu Grunde liegenden molekularen Identitäten bereithalten. Die semantische Bedeutung eines Bildes kann deshalb im Allgemeinen nur gegeben einem größeren Bild-Kontext erfasst werden, welcher es oft allerdings nur unzureichend erlaubt eine eindeutige Interpretation in Form einer einzelnen Hypothese vorzunehmen. Ähnliche Szenarien existieren in natürlichen Bildern, in welchen die Kontextinformation, die es braucht um Mehrdeutigkeiten aufzulösen, limitiert sein kann, beispielsweise aufgrund von Verdeckungen oder Rauschen in der Aufnahme. Zusätzlich können überlappende oder vage Klassen-Definitionen zu schlecht gestellten oder diversen Lösungsräumen führen. Die Präsenz solcher Mehrdeutigkeiten kann auch das Training und die Leistung von maschinellen Lernverfahren beeinträchtigen. Darüber hinaus sind aktuelle Modelle ueberwiegend unfähig komplex strukturierte und diverse Vorhersagen bereitzustellen und stattdessen dazu gezwungen sich auf sub-optimale, einzelne Lösungen oder ununterscheidbare Mixturen zu beschränken. Dies kann besonders problematisch sein wenn Klassifikationsverfahren zu pixel-weisen Vorhersagen wie in der semantischen Segmentierung skaliert werden. Die semantische Segmentierung befasst sich damit jedem Pixel in einem Bild eine Klassen-Kategorie zuzuweisen. Diese Art des detailierten Bild-Verständnisses spielt auch eine wichtige Rolle in der Diagnose und der Behandlung von Krankheiten wie Krebs: Tumore werden häufig in MRT oder CT Bildern entdeckt und deren präzise Lokalisierung und Segmentierung ist von grosser Bedeutung in deren Bewertung, der Vorbereitung möglicher Biopsien oder der Planung von Fokal-Therapien. Diese klinischen Bildverarbeitungen, aber auch die optische Wahrnehmung unserer Umgebung im Rahmen von täglichen Aufgaben wie dem Autofahren, werden momentan von Menschen durchgeführt. Als Teil des zunehmenden Einbindens von maschinellen Lernverfahren in unsere Entscheidungsfindungsprozesse, ist es wichtig diese Aufgaben adequat zu modellieren. Dies schliesst Unsicherheitsabschätzungen der Modellvorhersagen mit ein, mitunter solche Unsicherheiten die den Bild-Mehrdeutigkeiten zugeschrieben werden können. Die vorliegende Thesis schlägt mehrere Art und Weisen vor mit denen mit einer mehrdeutigen Bild-Evidenz umgegangen werden kann. Zunächst untersuchen wir den momentanen klinischen Standard der im Falle von Prostata Läsionen darin besteht, die MRT-sichtbaren Läsionen subjektiv auf ihre Aggressivität hin zu bewerten, was mit einer hohen Variabilität zwischen Bewertern einhergeht. Unseren Studien zufolge können bereits einfache machinelle Lernverfahren und sogar simple quantitative MRT-basierte Parameter besser abschneiden als ein individueller, subjektiver Experte, was ein vielversprechendes Potential der Quantifizerung des Prozesses nahelegt. Desweiteren stellen wir die derzeit erfolgreichste Segmentierungsarchitektur auf einem stark mehrdeutigen Datensatz zur Probe der während klinischer Routine erhoben und annotiert wurde. Unsere Experimente zeigen, dass die standard Segmentierungsverlustfuntion in Szenarien mit starkem Annotationsrauschen sub-optimal sein kann. Als eine Alternative erproben wir die Möglichkeit ein Modell der Verlustunktion zu lernen mit dem Ziel die Koexistenz von plausiblen Lösungen während des Trainings zuzulassen. Wir beobachten gesteigerte Performanz unter Verwendung dieser Trainingsmethode für ansonsten unveränderte neuronale Netzarchitekturen und finden weiter gesteigerte relative Verbesserungen im Limit weniger Daten. Mangel an Daten und Annotationen, hohe Maße an Bild- und Annotationsrauschen sowie mehrdeutige Bild-Evidenz finden sich besonders häufig in Datensätzen medizinischer Bilder wieder. Dieser Teil der Thesis exponiert daher einige der Schwächen die standard Techniken des maschinellen Lernens im Lichte dieser Besonderheiten aufweisen können. Derzeitige Segmentierungsmodelle, wie die zuvor Herangezogenen, sind dahingehend eingeschränkt, dass sie nur eine einzige Vorhersage abgeben können. Dies kontrastiert die Beobachtung dass eine Gruppe von Annotierern, gegeben mehrdeutiger Bilddaten, typischer Weise eine Menge an diverser aber plausibler Annotationen produziert. Um die vorgenannte Modell-Einschränkung zu beheben und die angemessen probabilistische Behandlung der Aufgabe zu ermöglichen, entwickeln wir zwei Modelle, die eine Verteilung über plausible Annotationen vorhersagen statt nur einer einzigen, deterministischen Annotation. Das erste der beiden Modelle kombiniert ein `encoder-decoder\u27 Modell mit dem Verfahren der `variational inference\u27 und verwendet einen globalen `latent vector\u27, der den Raum der möglichen Annotationen für ein gegebenes Bild kodiert. Wir zeigen, dass dieses Modell deutlich besser als die Referenzmethoden abschneidet und gut kalibrierte Unsicherheiten aufweist. Das zweite Modell verbessert diesen Ansatz indem es eine flexiblere und hierarchische Formulierung verwendet, die es erlaubt die Variabilität der Segmentierungen auf verschiedenden Skalen zu erfassen. Dies erhöht die Granularität der Segmentierungsdetails die das Modell produzieren kann und erlaubt es unabhängig variierende Bildregionen und Skalen zu modellieren. Beide dieser neuartigen generativen Segmentierungs-Modelle ermöglichen es, falls angebracht, diverse und kohärente Bild Segmentierungen zu erstellen, was im Kontrast zu früheren Arbeiten steht, welche entweder deterministisch sind, die Modellunsicherheiten auf der Pixelebene modellieren oder darunter leiden eine unangemessen geringe Diversität abzubilden. Im Ergebnis befasst sich die vorliegende Thesis mit der Anwendung von maschinellem Lernen für die Interpretation medizinischer Bilder: Wir zeigen die Möglichkeit auf den klinischen Standard mit Hilfe einer quantitativen Verwendung von Bildparametern, die momentan nur subjektiv in Diagnosen einfliessen, zu verbessern, wir zeigen den möglichen Nutzen eines neuen Trainingsverfahrens um die scheinbare Verletzlichkeit der standard Segmentierungsverlustfunktion gegenüber starkem Annotationsrauschen abzumildern und wir schlagen zwei neue probabilistische Segmentierungsmodelle vor, die die Verteilung über angemessene Annotationen akkurat erlernen können. Diese Beiträge können als Schritte hin zu einer quantitativeren, verstärkt Prinzipien-gestützten und unsicherheitsbewussten Analyse von medizinischen Bildern gesehen werden -ein wichtiges Ziel mit Blick auf die fortschreitende Integration von lernbasierten Systemen in klinischen Arbeitsabläufen
    corecore