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Abstract

This study examines the application of Recommender Systems in the healthcare domain, specifi-
cally focusing on their potential to assist physicians and clinicians in characterizing lung cancer.
The research provides a comprehensive overview of fundamental techniques and state-of-the-art
approaches used in Health Recommender Systems. Furthermore, it explores the utilization of an
Image Retrieval System as the core engine for a Health Recommender System dedicated to lung
cancer characterization.

The objective is to leverage medical annotations and image similarity search to assist health-
care professionals in diagnosing and characterizing lung cancer based on the retrieval of similar
cases. The study investigated mainly two employed models, a medical annotation-based approach
and Convolutional Autoencoder. Additionally, a primary investigation is performed on Supervised
Autoencoder.

The results presented the capabilities and limitations of the employed models. The medical
annotation-based approach demonstrated promising potential in retrieving similar cases based on
medical annotations. By leveraging the annotated information, it assists in identifying cases with
similar medical characteristics, thereby facilitating the retrieval of relevant past cases. However,
one of the main limitation is that it heavily relies on the availability of annotated cases in order to
perform an effective retrieval. On the other hand, the Convolutional Autoencoder model focuses
on capturing low-level visual features to retrieve visually similar lung cancer images with depen-
dency of medical annotations. While it presented promising results in terms of visual similarity, it
encountered challenges in effectively incorporating the necessary medical-specific characteristics
for accurate lung cancer characterization. Further exploration was conducted on the Supervised
Autoencoder model to address the challenges encountered in the previous model, particularly the
presence of a semantic gap. However, the results of this exploration did not yield the expected
outcomes.

Overall, this study highlights the potential of Recommender Systems in the healthcare do-
main, particularly in supporting lung cancer characterization. It emphasizes the importance of
leveraging medical annotations and image retrieval techniques. The findings contribute to a bet-
ter understanding of the capabilities and limitations of the employed models, paving the way for
further research and development in the field of Health Recommender Systems.

Index Terms — Medical Image, Computed Tomography , Chest CT, Lung Cancer, Health Rec-
ommender System, Content-based, Content-based Image Retrieval, Convolutional Autoencoder.
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Chapter 1

Introduction

Lung cancer remains one of the most prevalent and deadliest forms of cancer worldwide, posing a

significant public health challenge [1]. Early detection and accurate characterization of lung cancer

are crucial for improving patient outcomes, as timely interventions can lead to more effective

treatment strategies. With the advancements in artificial intelligence (AI) and machine learning,

there is a growing interest in developing AI systems for lung cancer characterization to assist

healthcare professionals in diagnosis, prognosis, and personalized treatment decisions.

The field of lung cancer research has witnessed significant advancements in recent years, par-

ticularly in the areas of molecular profiling and personalized medicine. The identification of spe-

cific genetic mutations and biomarkers has led to the development of targeted therapies that can

selectively inhibit tumor growth and improve treatment outcomes. Additionally, immunotherapies

have shown promising results in enhancing the immune system’s ability to recognize and eliminate

cancer cells [2].

AI systems, particularly deep learning models, have shown remarkable capabilities in ana-

lyzing medical images and extracting meaningful information for disease detection and classifi-

cation. In the case of lung cancer, medical imaging modalities such as computed tomography

(CT) scans and positron emission tomography (PET) scans provide detailed anatomical and func-

tional information about lung nodules and lesions [3]. However, the interpretation of these images

is a complex task that requires expertise and experience. AI systems can aid in this process by

automatically analyzing and characterizing lung cancer features, facilitating more accurate and

efficient diagnoses.

1.1 Motivation

In recent years, the healthcare industry has witnessed significant advancements in technology and

data availability, revolutionizing the way diseases are diagnosed, treated, and managed. New de-

velopment of AI systems have emerged as promising tools in the field of healthcare. The AI-based

solutions aim to support diagnostic and improve the clinical workflow and tasks, and increase

accuracy of complex activities. Generally, lung cancer mortality depends upon the precise and

1



Introduction 2

accurate early detection, and examination of pulmonary nodules [4].CT images have proven to be

a rapid and non-invasive way to characterize lung cancer.

The evaluation and characterization of lung cancer nodules based on CT images are essential

tasks for clinicians in their daily activities. However, manually assessing patient similarities while

researching similar cases and treatment protocols can be challenging and time-consuming. Addi-

tionally, the process of annotating nodules is typically performed by radiologists, introducing the

possibility of human errors and inconsistencies.

Machine learning models are typically designed with the assumption that the data follows an

identical distribution. However, in many real-life scenarios, including the clinical environment,

this assumption can be easily violated. Healthcare data is often scarce and unbalanced, making it

challenging to develop accurate and reliable machine learning models.

In the field of healthcare, machine learning applications have predominantly focused on tasks

such as nodule detection and classification for lung cancer diagnosis. While these tasks are critical

for early detection and treatment planning, there is a need for more comprehensive systems that

can support clinicians in the decision-making process based on medical images.

The main motivation of this study is to develop a system to focus on providing clinicians

with a tool that can present them with past similar cases based on CT images, supporting their

decision-making process.

1.2 Objectives

This dissertation aims to develop an AI system that recommends a set of relative (past) cases to

guide the decision-making process and diagnostic for the clinician. In order to achieve this goal

the sub-objetives are set:

• Understand and review the state-of-art on the topic;

• Perform a study for the State-of-the-art approaches;

• Propose and assess a search engine for Image Recommender system architecture for lung

cancer characterization.

1.3 Main contributions

The contribution of this work is the following:

• Identification of Image Retrieval System strategies that can support on HRS development.

• Development of a Image Retrieval engine for a Health Recommender System (HRS).
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1.4 Strutucture

This document is structured into five chapters. The first chapter introduces the dissertation by

providing the context and the motivation for the work proposed, as well as the objectives and

expected contributions. Chapter 2 presents some concepts and contextualises the problem, in-

cluding a description of cancer, focusing on lung cancer. Chapter 3 presents main techniques

involving recomendation systems and content-based image retrieval, enfazise the applications on

Health sector. It also introduces the overview of literature review on RS and CBIR and describes

the state-of-the-art applications related and main challenges. Chapter 4 presents the initial system

design architecture and propose the search image model to be used on the core engine for HRS.

On the Chapter 5 is presented the results and discussion about the architecture developed. Finally,

Chapter 6 concludes the dissertation by summarizing the key findings and contributions of the

research. It also outlines potential avenues for future work and highlights areas of improvement

or further investigation.



Chapter 2

Background

This chapter introduces some concepts and contextualization of the problem. The first section

offers an overview of cancer. The second section discusses the specific characteristics of lung can-

cer. In the third and fourth sections the focus shifts to the diagnosis of lung cancer and introduces

the concept and details about the biopsy process are introduced.

2.1 Cancer

Cancer continues to be a major global health issue, accounting for a significant number of deaths

worldwide. In 2020 alone, approximately 10 million individuals lost their lives to this devas-

tating disease [1]. Among the various types of cancer, breast cancer stands out as one of the

most diagnosed cancer globally as it illustrated on Figure 2.1, affecting a significant portion of

the population. On the other hand, lung cancer takes the lead as cause of cancer-related deaths,

emphasizing the urgent need for effective prevention, early detection, and treatment strategies to

combat this highly lethal form of cancer. Understanding the incidence and mortality rates of dif-

ferent cancer types can help guide public health initiatives and research efforts aimed at reducing

the burden of cancer on a global scale.

The cancer diagnoses continue to increase worldwide, impacting tremendously on multiple

fronts, including physical, emotional, and financial aspects for individuals, families, communities,

and healthcare systems [1]. Unfortunately, in many low and middle income countries, access to

timely and quality cancer diagnosis and treatment remains limited, enhancing the already severe

impact of the disease. In countries with robust healthcare systems, advancements in early detec-

tion, high-quality treatment, and survivorship care have led to improved survival rates for various

types of cancers [1].

To further illustrate the magnitude of the problem, Figure 2.2 depicts the projected growth

of new cancer cases worldwide from 2020 to 2040. These estimates demonstrate the alarming

upward trend in cancer incidence, underscoring the urgent need for effective prevention, early

detection, and comprehensive treatment strategies to mitigate the escalating impact of cancer on a

global scale.

4
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Figure 2.1: Estimated number of cancer cases and deaths worldwide by type of cancer [1].

Figure 2.2: Estimated growth of new cases of cancer worldwide [5].

Early cancer diagnoses improve the cancer outcomes as the treatment is more likely to be

effective, with a higher rate of survival, less morbidity and a less expensive treatment. Early

diagnose is, therefore, an important public health strategy. By emerging effective approaches to

identify cancer in initial stages, lives can be spared as well as the personal, societal and economic

costs of cancer care can decrease.

According to World Health Organization [5], there are two different approaches that encourage

early detection:

• Screening – identification of individuals with abnormalities indicative of a certain cancer

or pre-cancer who still have not developed any symptoms and refer them quickly for a

diagnosis and treatment

• Early diagnosis – identification of symptomatic cancer cases at the earliest possible stage;
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2.2 Lung Cancer

In the context of lung cancer, the situation is particularly alarming, with only 15% of patients

surviving beyond five years after diagnosis, primarily due to the fact that around 70% of cases are

diagnosed at an advanced stage [6]. Despite efforts to reduce smoking rates in Western countries,

the prevalence of smoking remains significant, with approximately 17 to 28% of adults currently

being smokers. Moreover, the initiation of smoking among young individuals continues to pose a

significant challenge [7]. As a result, lung cancer and other tobacco-related diseases are anticipated

to remain significant global health concerns for many years to come [6] [8]. Efforts to improve

early detection, develop effective treatment strategies, and implement preventative measures is

essential for combating this disease.

Early detection of lung cancer is critical for improving patient outcomes, as the disease is often

diagnosed at advanced stages when treatment options are limited. Symptoms may not manifest

until the disease has progressed, further emphasizing the need for effective screening and diagnos-

tic tools. Imaging techniques such as chest X-rays, CT scans, and PET scans play a crucial role in

detecting and staging lung cancer[3].

2.3 Diagnosis

CT imaging has emerged as the most effective technique for detecting lung cancer, particularly in

its early stages. Compared to traditional radiography techniques, CT scans provide more detailed

information about the localization and size of nodules, leading to improved accuracy in diagnosis.

In fact, studies have demonstrated a significant reduction in mortality rates, up to 20%, with the

implementation of low-dose CT screening programs. Additionally, the use of CT imaging has

resulted in a higher rate of positive screening tests, enabling prompt intervention and treatment for

patients. These findings underscore the crucial role of CT imaging in lung cancer detection and

emphasize its superiority over conventional radiographic methods [4].

The classification of lung nodules as malignant or benign heavily relies on the careful ex-

amination of 2D CT slices, which in turn requires a comprehensive analysis of 3D lung voxel

data. CT scans provide a wealth of information regarding the characteristics of nodules, but as

the number of images increases, accurately assessing them becomes an increasingly challenging

task for radiologists. Furthermore, the detection of lung cancer nodules can be significantly in-

fluenced by human error, which introduces the possibility of misdiagnosis or missed detections.

This highlights the need for advanced computational methods and decision-support systems to aid

radiologists in achieving more accurate and consistent nodule classification [4].

2.4 Biopsy

Biopsy is a commonly performed medical procedure that entails extracting a small tissue sample

from the body for microscopic examination. Its primary purpose is to identify and characterize
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abnormal cells or tissues. Biopsies serve as valuable diagnostic tools, aiding in the determination

of specific medical conditions. Moreover, they facilitate the assessment of disease severity and

grading, which are crucial factors in treatment decision-making. Biopsy results are instrumental

in selecting appropriate treatment strategies, predicting treatment response, and providing valuable

prognostic information. The information obtained from biopsies greatly contributes to enhancing

patient care and improving overall patient outcomes [9].

Biopsies, although widely used for diagnostic purposes, can sometimes yield inconclusive re-

sults or may not provide a representative sample due to the heterogeneity of tumors. In such cases,

additional tests or repeated biopsies may be necessary to confirm the diagnosis. However, this

approach is often impractical due to logistical and financial constraints. Moreover, biopsies can

be invasive and painful for patients, particularly when the tumor is located in a challenging or

inaccessible area. In certain instances, obtaining tissue samples may even be impossible. These

limitations highlight the need for alternative or complementary methods to overcome the draw-

backs associated with traditional biopsy procedures [10].

2.5 Summary

In summary this chapter introduces contextualization on the problem. It provided background

information on the nature of cancer, its prevalence worldwide, and its impact on individuals and

society. Followed by a emphasis on Lung cancer and their methods of diagnosis. On the last

section presented the purpose and importance of biopsies in the diagnostic process for lung can-

cer.Thus, it set the stage for further exploration of the research problem and the development of

innovative approaches to improve and support the diagnosis and treatment of lung cancer.



Chapter 3

Literature Review

This chapter is structured into three main sections. The first section provides an overview of the

literature pertaining to Recommender Systems (RS), with a specific focus on their application in

the healthcare sector. It introduces the fundamental concepts and techniques on Recommendation

Systems, including collaborative filtering, content-based filtering, and hybrid approaches. This

section aims to establish a solid theoretical foundation for understanding the subsequent discus-

sions on RS in healthcare. The second section reviews the most recent and relevant studies in

the field of RS and Image Retrieval Systems. This section aims to explore the intersection be-

tween these two areas and identify potential synergies that can be leveraged for the development

of effective recommendation models for healthcare. By examining the latest advancements and

approaches in RS and Image Retrieval Systems, this section provides valuable insights into the

state-of-the-art techniques and methodologies that can be applied to healthcare recommender sys-

tems. The last section of this chapter introduces the main challenges and limitations associated

with the development and implementation of Healthy Recommender Systems.

3.1 Recommender Systems

Recommender Systems are a subclass of information filtering system that use different algorithms

to analyze large amounts of data in order to provide personalized recommendations to users based

on their past behavior and preferences. The main models for Recommender Systems use two

types of data: (i) user-item interactions, such as ratings or purchasing patterns, and (ii) attribute

data about users and objects[11].

3.1.1 Collaborative filtering

One of the most popular techniques used in RS is collaborative filtering (CF), which takes in

consideration the behavior and preferences of similar users in order to generate recommendations

for a specific user. The basic idea of these technique is that if users shared the same interests in the

past they will, more likely have similar preferences in the future[12]. For instance, if they read the

8



3.1 Recommender Systems 9

same books, or bougth the same items. The Fig. 3.1 represents an illustration of the collaborative

filtering.

Figure 3.1: Representation of collaborative filtering.

The Matrix factorization is a commonly used approach within collaborative filtering, which

seeks to approximate the user-item interaction matrix as the product of two low-rank matrices.

The main challenge in designing collaborative filtering methods is that the underlying rating

matrices are sparse [11]. For instance, the RS of a streaming platform could be impacted if most

users would have viewed only a small fraction of the large universe of available movies. Addition-

ally, collaborative filtering can also suffer from the cold-start problem, where the system struggles

to make recommendations for new users or items that have little or no prior information.

3.1.2 Content-based

In content-based recommender systems (CB),the recommendations are based on characteristics

or descriptive attributes of items that a user has previously interacted with [11]. The main idea

behind content-based filtering is that if a certain user enjoys item A, the user is likely to enjoy item

B if item B has similar characteristics to item A. The Figure 3.2 exemplifies the content-based

filtering.

On these systems the first step consists in representing each item in the dataset as a feature

vector that describes its characteristics or attributes. This representation can be achieved through

various methods such as text analysis, image processing or audio analysis. The second step is to

measure the similarity between the items based on their feature vectors. This similarity measure-

ment can be achieved using various distance metrics such as Cosine similarity, Euclidean distance

or Pearson correlation. The final step is to generate recommendations based on the similarities

between the items and the user’s preferences. This can be achieved by sorting the items based on

their similarity to the items that the user has liked in the past.

The main advantage of content-based filtering is its ability to generate recommendations based

on the characteristics of items, which allows a more personalized recommendations. It is also

effective in situations where there is a limited amount of information regarding the preferences

and behaviors of users, such as the cold-start problem. However, one of the limitations of content-

based filtering is that it relies on the representation of items, which can be subject to biases and
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Figure 3.2: Simplified representation of content-based.

errors. Additionally, content-based filtering may not be able to capture the diversity of users’

preferences and may generate repetitive recommendations.

3.1.3 Knowledge-based

Knowledge-based Recommendation is another technique that incorporates knowledge by logic

inferences. This type of filtering uses explicit knowledge about an item, user preferences and

other recommendation criteria as illustrated on Figure 3.3. The definition of rules or requirements

for items are explicitly, for example “the food should not contain cheese since I am allergic to

dairy products” [13].

Figure 3.3: Simplified representation of knowledge-based.

3.1.4 Hybrid

Hybrid methods combine the strengths of multiple techniques, for instance it can combine the

collaborative and content-based filtering. By using both the user-item interactions and the item at-

tributes to generate recommendations, it can tackle the cold-start problem of collaborative filtering

by using the available information about the items for prediction[13].

Overall, the state-of-the-art in recommendation systems is constantly evolving, with new tech-

niques and approaches being proposed and evaluated regularly. The best approach for a specific

application will depend on the characteristics of the data and the goals of the system.
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3.1.5 Health Recommender Systems

Despite the extensive use of recommender systems in the e-commerce and leisure domains, their

application in healthcare is still on the beginning. These systems may be used to create tailored

health recommendations, thus reducing the cost of healthcare and fostering a healthier lifestyle in

the population. These systems can be used to recommend healthy lifestyle choices, such as exer-

cise and nutrition plans, or to suggest personalized treatment options for patients. By leveraging

data from electronic health records, wearable devices, and other sources, these systems can help

individuals make more informed decisions about their health and wellness [14].

One area of research in this field is the use of Recommender Systems for personalized nutri-

tion. Studies have shown that Recommender Systems can be used to provide personalized dietary

recommendations based on individual characteristics such as age, gender and health conditions

[15] . These systems could be be effective in promoting healthy eating habits and reducing the

risk of chronic diseases. Another area of research is the use of Recommender Systems for phys-

ical activity, where they are used to provide personalized recommendations for physical activity

based on individual characteristics such as fitness level and preferences. These systems have been

showing effectiveness in increasing physical activity levels and improving overall health [16].

In the field of lung diseases, there have been studies using Recommender Systems for person-

alized treatment recommendations. These systems analyze patient data such as medical history

and genetic information to provide personalized treatment options and support less experienced

physicians [17]. For Cancer, when the HRS effectively designed and implemented, could greatly

contribute to the management of cancer-related screenings, diagnoses, treatments, operations, and

rehabilitation programs. By leveraging HRS, individuals and healthcare professionals can gain

access to reliable and relevant information, enabling informed decision-making throughout the

various stages of cancer care. These systems play an essential role in guiding patients towards

appropriate treatment options and providing them with health recommendations [18]. The devel-

opment and implementation of well-designed recommender systems in the field of cancer care

hold significant potential for improving patient outcomes and facilitating efficient information

management. By harnessing the power of these systems, healthcare professionals can enhance

the delivery of personalized care and ensure that patients and their families are equipped with the

information they need to make informed decisions regarding their health and well-being [18].

Overall, the related work in the field of Recommender Systems for healthcare shows that these

systems have the potential to promote healthy lifestyles and prevent chronic diseases. However,

it is important to note that the majority of these studies have predominantly focused on specific

areas such as nutrition and physical activity. There is a significant opportunity for further inves-

tigation and development of Recommender Systems tailored specifically for cancer detection and

personalized treatment recommendations.
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3.2 Image Retrieval Systems

In the modern world, there is a massive need for retrieving digital images of large proportions

and multiple ranges in the most variable fields. The image retrieval system is a computer system

that allows browsing, searching and retrieving images from a database of digital images or text

annotations [19].

The number and volume of medical images has been growing intensely and image retrieval

can be extremely important in the medical field for therapeutic diagnosis and early detection of

diseases as well as in the medical research and education areas, bringing valuable insights through

image analysis [20]. In order to perform a search in a substantial volume of image databases,

efficient tools for image searching, browsing and retrieval are mandatory.

In the context of image retrieval systems, there are different approaches to retrieve relevant

images. In query-by-text, users describe the desired image using textual descriptions, providing

specific details or criteria. Alternatively, in query-by-example, users can provide an example

image that closely resembles the desired image. This example image serves as a reference for

the system to retrieve visually similar images from the database. Each of these query modalities

offers a unique way for users to convey their interests and preferences, facilitating effective image

retrieval in different scenarios [20].

There are two common approaches for image retrieval systems, text-based and content-based,

that will be detailed in the next subsection.

Figure 3.4: Simplified taxonomy of image retrieval systems[20].

3.2.1 Text-based Image Retrieval

In the field of image retrieval, text-based approaches have long been employed to retrieve images

relevant to a given input query. In this traditional approach, the input query is given as text, and the

system matches this text with the textual descriptions associated with each image in the database.

Various techniques have been developed to facilitate this matching process, including bag-of-

words models, natural language processing algorithms, and Boolean retrieval methods. These

text-based approaches leverage the annotated textual descriptions to effectively retrieve images
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that align with the user’s query, enabling efficient and accurate image retrieval based on textual

information [19].

This method has the advantages of being fast and reliable when the images are well annotated

as computation overheads associated to the image content processing and analyzing can be reduced

by only analyzing the medical annotations and by using annotations as its features [20].

On the other hand, text-based image retrieval methods are not able to perform a search on non-

annotated image databases and require an annotation process which leads to a substantial amount

of human labor, making it time-consuming and expensive, but also this method can present some

subjectivity inherent to the human perception [21].

Figure 3.5: Text-based image retrieval systems[20].

3.2.2 Content-based Image Retrieval

In the content-based approach to image retrieval, the input query is provided as images with the

objective of obtaining similar images. This approach addresses the challenge of searching for

specific digital images in large databases by analyzing the actual content of the images, including

their texture, shape, and color, and comparing them with the query image [19].

Figure 3.6: Content-based image retrieval systems[20].

Content-based Image Retrieval (CBIR) is a fully automated method. However, CBIR faces

a challenge known as the "semantic gap," which refers to the disparity between low-level image
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features and high-level concepts or perception contained within the images. This gap often leads

to the retrieval of irrelevant images [22].

To bridge this semantic gap, several studies have focused on developing methods to convert

high-level concepts in images into features. Depending on the feature extraction methods, features

are generally categorized into global features and local features.

Researchers have explored various techniques to extract and utilize these features effectively

in CBIR systems. The goal is to enhance the system’s ability to retrieve images that align with the

high-level concepts or perception that users have in mind when formulating their queries. Global

features, including color, texture, shape, and spatial information, provide a representation of the

entire image. They offer the advantage of faster feature extraction and similarity computations,

making them efficient for tasks such as object classification and detection. However, global fea-

tures fall short in distinguishing between the background and the object within the image, making

them less suitable for retrieval in complex scenes or object recognition. Complex scenes may

involve different image parts with varying levels of importance or relevance [22].

In contrast, local features are well-suited for image retrieval, matching tasks, and recognition.

Object recognition involves identifying and labeling objects within an image, while object detec-

tion focuses on determining the presence and location of objects belonging to predefined classes

in an image. Object detection encompasses the task of object classification as a subset [22].

Local features are defined as key points or specific parts of an image, such as corners, blobs,

or edges. They possess robustness to scale, rotation, translation, changes in backgrounds, clutter,

and partial occlusions. These features allow for more precise and detailed analysis, facilitating

accurate matching and recognition tasks[22].

The distinction between content-based and text-based retrieval systems lies in the level of hu-

man interaction involved. Text-based systems rely on human interpretation using high-level fea-

tures or concepts, such as keywords or text descriptors, to measure image similarity. In contrast,

content-based systems formerly utilize low-level features automatically extracted through com-

puter vision techniques, such as color, texture, shape, and spatial layout. It is important to note

that there is generally no direct link between these high-level concepts and the low-level features

[23] .

3.3 Related work

This section aims to provide information about relevant studies and related work to RS and

content-based image retrieval. It provides details about the research method and most recent in-

formation about other Recommender Systems and Content-Based Image Retrieval.

3.3.1 Method

This section was conducted in conformance with the main steps required for systematic reviews

according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

guidelines.
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The literature search was conducted using the Scorpus, ScienceDirect, Elsevier and Google

Scholar databases. This literature review is focused initially on Health Recommender Systems

and later on, due similarity, also extended to content-based image retrieval systems. The inclusion

criteria were:

• Studies focusing on HRS and CBIR in general;

• Studies focusing on HRS and CBIR for a specified disease;

• Conference Proceedings, Journals and paper published after 2014;

In addition, a backward search was performed by examining the bibliographies of the reviewed

papers discussed in the introduction section and the reference list of included studies to identify

any additional studies.

3.3.2 State of the art

A comprehensive literature review of the current state-of-the-art in recommendation systems can

be found in [24] [14] [25] [26] [18] [27] [13] [28] . These papers cover various aspects of Recom-

mendation Systems, including algorithmic techniques, evaluation metrics, domain applications,

main challenges and scalability issues.

As presented on Table 3.1, the scope of the existing literature has an extensive range. For

example, Stark et al. [24] focused on HRSs for medicine recommendation. De Croon et al. [26]

researched the approach of RS on different domains such Lifestyle, nutrition and general health.

Yue et al. [14] presented similar categories including two more fields, the decision-making for

patients and physicians and related to disease-related prediction.

Related to main techniques on RS, De Croon et al. [26] reported that most of the papers based

on which the study was conducted, stated the use of hybrid approach, representing 44% of the

papers, followed by a knowledge-based with 22% and 10% with the content-based. Although

collaborative filtering is a popular technique on RS, it was not used frequently in the HRS domain.

In total, 4 review studies were focused on HRS applications for the patient. On the other hand,

Calero Valdez et al. [27] reinforced the new paradigma of Doctor-in-Loop (DiL) approach.

“It pictures the doctor not only as a consumer of digital information, but also as a

someone who can interactively manipulate algorithms and tools. The doctor as a final

authority inside the loop of an expert system can make sure that expert knowledge

is integrated in the decision making process, by finding patterns and supplying tacit

knowledge, while the recommender system can integrate patient data as well as treat-

ment results and possible side-effects related to previous decisions.” [27]

Calero Valdez et al.[27] also supported the idea that procedures must be incorporated on the

design of HRS. In order to clarify the tasks definitions on HRS, the author proposed guidance

questions and additional procedures to enrich the contextual picture of the usage scenario. The

Figure 3.7 illustrates the proposed framework and guidance question elaborated by the author.
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Author Objetive Contribution
Stark
et al.
(2019)[24]

Provides an overview of the
existing Recommender Systems
with more focus on medicine
recommendation engines.

It is demonstrated the existing solutions for
the healthcare providers in order to im-
prove the medicine selection process and se-
lect an appropriate medication for the pa-
tients.Mostly systems are Ontology rule-
based model and it is proposed graph
database model the relationships between pa-
tients.

Yue
et al.
(2021)[14]

It presented a comprehensive re-
view of typical recommendation
techniques and their applications
in the field of healthcare.

Five applications proposed on health RS: Di-
etary recommendations, lifestyle recommen-
dation, training recommendation, decision-
making for patients and physicians, and
disease-related prediction.

Wiesner
and
Pfeifer
(2014)[25]

It provides a motivation, a strat-
egy and importancy of individu-
ally tailored health information
in personal health records and
the benefits for patients

It presents a strategy for integrated a Per-
sonal Health Record Systems in a HRS and
the main challenges and requirements.

De
Croon
et al.
(2021)[26]

It conducts a systematic litera-
ture review and synthesized the
results. It proposes techniques,
evaluation designs, and deploy-
ment of recommended items to
the users on HRS

It present the systematic review of the state-
of-art in HBS. It reports the hybrid recom-
mendation algorithm as the majority strategy
applied on HRS cases It also recommend five
guidelines that can serve as a reference frame
for future HRS studies.

Aalipour
and
Ghazisaeedi
(2017)[18]

It introduces the main tech-
niques used in RS, the main
challeges and some applications
in the field of health

It explores the Recommender systems as suit-
able tool for the information management of
cancer-related screenings, diagnoses, treat-
ments, operations, and rehabilitation pro-
grams. Access to treatment and health rec-
ommend

Calero
Valdez
et al.
(2016)[27]

It presents the techniques used
in RS, evaluation methods, a
framework and main considera-
tion on the development of HRS

It proposed a framework to be used on the de-
velopment of HBS and medical applications
and presents the concept of Doctor is inside
the loop of an expert system to interactively
manipulate algorithms and tools .

Tran
et al.
(2021)[13]

It provides a systematic
overview of existing research
on healthcare recommender
systems and insights into rec-
ommendation scenarios and
recommendation approaches

It provides insights on RS scenarios of
food recommendation, drug recommenda-
tion, health status prediction, physical activ-
ity recommendation. Also, provide details
about the application of the main recommen-
dation techniques CF, CB, KB, HyR, and
context-based.

Pincay
et al.
(2019)[28]

It conducts a systematic litera-
ture review and presents the re-
sults. It highligh the main tech-
niques used and similarity analy-
sis to build the recommendation
engine

It mention initiatives of machine learning and
fuzzy logic techniques as a way of achieving
higher levels of accuracy and performance of
the RS

Table 3.1: An overview of the existing literature review on health recommender system.
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Figure 3.7: Framework with three iterative step proposed by Calero Valdez et al.[27].

De Croon et al.[26] also performed some recommendations regarding the best practices for

future research on HRS. The frame for report is presented in Figure 3.8. It is requested the

information about the target user, what item is recommended and how, information about database,

outline the algorithms and techniques used as well as the methods of evaluation.

Figure 3.8: A reference guidelines for HRS studies sugested by De Croon et al.[26].

Pincay et al.[28] stated the relevance of using fuzzy logic and machine learning techniques in

order to a achieve higher levels of accuracy on RS. Zhang et al.[29] also mentioned those methods

as well as other AI techniques that might support the RS, as for example the usage of CNN’s or

auto-encoder for processing images.

Furthermore, Zhang et al.[30] proposed an a HRS called iDoctor offering users personalized

doctor recommendations. The system integrated three approachs: sentiment analysis, topic mod-

eling and hybrid matrix factorization.The sentiment analysis algorithm calculates the emotional

offset from user reviews. The modeling module extracts user’s preferences and doctor’s features

(e.g., specialty, fee range, and prescribing habits) from user reviews. The information is then used

in the hybrid matrix factorization in order to predict the ratings.

Regarding the evaluation, the most common evaluation method applied in the aforementioned
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recommendation approaches is offline evaluation, estimating the prediction quality of a recom-

mendation approach using existing datasets. This approach compares recommendations made by

a recommender system with a predetermined collection of actual user feedback, or "ground truth,"

using accuracy metrics [13].

3.3.2.1 State of the art CBIR

In recent years, there has been a notable shift in content-based image retrieval systems towards the

utilization of machine learning algorithms. This paradigm shift aims to develop models capable

of effectively handling new input data and providing accurate predictions, thereby enhancing the

overall image search process [22].

Traditionally, CBIR systems relied on handcrafted features and similarity measures to retrieve

images based on their content. However, these approaches often faced challenges in adapting to

new and diverse image datasets. As a result, the search accuracy and robustness of these systems

were limited. To overcome these limitations, researchers have increasingly turned to machine

learning algorithms, which can learn and adapt from data. By training models on large-scale image

datasets, these algorithms can capture complex patterns and relationships within the data. This

enables them to generalize demonstrating efficiency with new images and improve the accuracy

of image retrieval [22].

Siradjddin et al. [31] contributed with their work on a Convolutional Neural Network (CNN)-

based Autoencoder for feature extraction. The encoder layer has used the feature learning capa-

bility of CNN to extract important representations of images and reduce their dimensions. The

decoder layer has reconstructed the representations to make the output of the Autoencoder closer

to the input data. The extracted features from the encoder layer are used for content-based im-

age retrieval by calculating the similarity distance between the query image’s features and the

database.

Moreover, Siradjddin et al. [31] have highlighted the influence of the number of features on

the quality of the reconstructed images. Additionally, they emphasized that the number of layers

within the encoder and decoder play an essential role in feature learning and extraction. Their

experimental results demonstrated promising outcomes in terms of retrieving relevant images.

In a recent study, Agrawal et al. [32] proposed a similar model for content-based image re-

trieval system for medical images, specifically focusing on the retrieval of lung X-ray images for

early detection and classification of lung diseases, including COVID-19.

Unlike previous methods that relied on Autoencoder for feature extraction, Agrawal et al. [32]

utilized pre-trained deep neural models like VGG19 and ResNet50 to extract features from medical

images and classify them into classes of diseases. Once the classifier was trained, the embedding

vectors obtained from the feature extraction stage were utilized for image retrieval.

Besides, the feature extraction on CBIR, Hameed et al. [22] underlined the importance of

similarity measurement on the the performance of image retrieval systems. The similarity mea-

surement determines which images are considered most relevant to the query image and should be
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returned from the dataset, which means that the similarity measure determines the accuracy of the

CBIR indirectly and has an effect on the computational complexity of the system.

3.3.3 Limitations and challenges

The literature review was focused on Heath Recommendation Systems and extended to Image

Retrieval Systems. Topics involving Machine learning, Convolutional Neural Networks and Auto-

encoders have a strong interface with the field of study and were partially evaluated.

The studies reported a few main challenges involving HRS, such as cold start and data sparsity,

which are challenges well known in recommender system.

Zhang et al. [29] included data privacy as a major concern in HRS, as the vast amount of sen-

sitive and personal information collected and processed by these systems can easily be misused if

not properly protected. Ensuring data privacy and protecting user privacy while still providing ac-

curate recommendations is a delicate balance that must be achieved in order to build successful and

trustworthy recommendation systems. The increase of transparency of algorithms and the inter-

pretability of the HRS can be seen as a challenge as reliable explanation about the recomentations

can improve the confidence level of end-users on the System.

In the field of CBIR, Hameed et al. [22] stated that a significant challenge is the semantic gap

that exists between the high-level meaning conveyed by an image and the low-level visual fea-

tures that CBIR algorithms typically operates on. This gap arises due to the inherent complexity

of interpreting and representing the rich semantics of images solely based on their visual charac-

teristics. To address this challenge, extensive research efforts have been dedicated to bridge the

semantic gap in CBIR. Researchers have explored various strategies and techniques to enhance

the retrieval performance by incorporating novel and diverse features, as well as by leveraging the

fusion of multiple feature representations.

3.4 Summary

In summary, RS play an essential role in providing personalized recommendations to users in vari-

ous domains. Despite the significant progress made in recent years, there are still many challenges

and limitations to be addressed, including scalability, privacy, and interpretability. This Chapter

presents the progress and evolution of recommendation systems on healthcare. Besides the litera-

ture review presented, it also introduces the main challenges and limitations that HRS migth face.

On the side of CBIR, it presents the new researches and architectures based on machine learning

as an innovative approach as well as the semantic gap and main challenge for CBIR.
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Methods and Experimental design

This chapter is divided in two main parts. The first section presents the requirements for the system

design, the steps involved, the definition and the characterization of the system. The second section

provides details about potential models for search core algorithms and future implementation.

4.1 System Design Requirements

Initially, in order to design the HRS, a prior knowledge regarding the domain is mandatory. To

support the system specifications, the framework proposed by Calero Valdez et al. [27] was used

as reference.

4.1.1 Understanding the Domain

1. What items are being recommended?

As the goal is to support on lung cancer characterization, the item of recommendation is a

CT of Lung from past cases.

2. Who is the target user for the recommendation?

Typically the RS is designed for an end-user, which could be the patient. But health recom-

mender systems may extend their audience to health professionals. On this application, the

target user are doctors, clinicians and radiologists

3. For what context?

Initially, the context will be the semantic and structural similarity of an input image with

the images from the database to retrieval the ones with the most similarities according to es-

tablished factors. For personalising the recommendations, demographics information could

be include as a variant factor. Information such age, ethnicity, gender, a flag if patient is

a smoker or other could support the personalising tasks and provide different and relevant

results for a specif input image.

20
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4.1.2 Dataset

For the initial exploration the Lung Image Database Consortium(LIDC) and Image Database Re-

source Initiative (IDRI) dataset were selected. The LIDC was a result of the collaboration of seven

academic centers and eight medical imaging companies [33]. This dataset contains information

regarding the thoracic CT images data along with annotations of those images by experienced

radiologists.

The LIDC/IDRI database contains 1018 thoracic CT scans and its associated XML-based an-

notations. It has been created to foster research and development of computer methods for lung

nodule detection, classification, and quantitative assessment. In this database there are information

about 2669 lesions marked as a nodule higher or equal than 3 mm by at least one of four radiol-

ogists and 928 lesions marked as such by all four radiologists. Each radiologist’s annotations for

these lesions include nodule outlines and subjective nodule characteristic ratings [33]. The images

are similar to the one presented on Fig. 4.1

Figure 4.1: Slices of thoracic CT from a specific patient of LIDC.

The fields available on the annotations are presented on Table 4.1 proposed by Opulencia et

al. [34] :

Besides the information available about the LIDC, an Exploratory Data Analysis (EDA) was

performed in order to gain deeper insights into the main characteristics of the dataset, it generated

a series of charts based on the annotations provided by the radiologists. These charts provide valu-

able visualizations that allow us to analyze and understand the key features and patterns present
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Characteristic Description Rating
Calcification Calcification appearance in the nodule—the

smaller the nodule, the more likely it must con-
tain calcium in order to be visualized. Be-
nignity is highly associated with central, non-
central, laminated, and popcorn calcification

Popcorn,
Laminated,
Solid,
Non-central,
Central,
Absent

Internal Structure Expected internal composition of the nodule Soft tissue,
Fluid,
Fat,
Air

Lobulation Whether a lobular shape is apparent from the
margin or not—lobulated margin is an indica-
tion of benignity

Marked,
-
-
-
None

Malignancy Likelihood of malignancy of the nod-
ule—malignancy is associated with large
nodule size while small nodules are more
likely to be benign. Most malignant nodules
are non calcified and have speculated margins

Highly unlikely,
Moderately unlikely,
Indeterminate,
Moderately suspicious,
Highly suspicious

Margin How well defined the margins of the nodule
are

Poorly defined,
-
-
-
Sharp

Sphericity Dimensional shape of the nodule in terms of
its roundness.

Linear,
Ovoid,
-
Round

Spiculation Degree to which the nodule exhibits
spicules, spike-like structures, along its
border—spiculated margin is an indication of
malignancy

Marked,
-
-
-
None

Subtlety Difficulty in detection—refers to the contrast
between the lung and its surroundings

Extremely subtle,
Moderately subtle,
Fairly subtle,
Moderately obvious,
Obvious

Texture Internal density of the nodule—texture plays
an important role when attempting to segment
a nodule, since part-solid and nonsolid texture
can increase the difficulty of defining the nod-
ule boundary

Nonsolid,
-
Part-solid/mixed,
-
Solid

Table 4.1: An overview of LIDC Nodule Characteristics and definitions proposed on [34].
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Figure 4.2: Histogram of field from CT annotations.

Figure 4.3: Correlation matrix of the Medical annotations.

in the dataset. The Figure 4.2 presents the histograms depicting the distribution of these key char-

acteristics. These visualizations provide a comprehensive overview of the frequency and range of

values associated with each variable. Furthermore, to explore the interrelationship between vari-

ables, various data manipulation techniques were employed. This analysis is illustrated in Figure

4.3, which highlights the correlations and dependencies among the variables under investigation.

These visual representations serve as valuable tools for comprehending the relationships within

the dataset.
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4.1.3 Data Transformation

In this section, it is discussed the data transformation process applied on LIDC images in order to

verify and compare images by region of interest (ROI) of the object of study, in this cases the lung

nodules. The goal was to analyze and compare specific regions of interest within different images

to determine their level of similarity. This is a essential process in various applications, including

image retrieval, object recognition, and content-based image analysis.

To facilitate the comparison of specific regions within images, a cropping technique was ap-

plied to isolate the desired portions. Cropping involves selecting a rectangular or an irregular

shaped region of interest (ROI) within an image and extracting only that region for further analy-

sis. The selection of ROIs was guided by the annotations made by radiologists.

A Python script was implemented to leverage the LIDC framework for image analysis. The

script successfully accessed the LIDC dataset and extracted the coordinates of the nodules anno-

tated by radiologists. Subsequently, for each patient, the script cropped the images around the

nodules, but only for the images where nodules were detected. For a same nodule that appears in

multiple CT, it was selected coronal slice the one with more area on the annotation by the radiolo-

gist. To ensure consistency and compatibility across the dataset, the original images were resized

from their original size of 512x512 to a standardized shape of 128x128. Furthermore, the images

were converted to the Portable Network Graphics file format (.png). This process resulted in the

generation of a new dataset consisting of images of the cropped region with nodule in the center.

4.2 Methodology

4.2.1 Initial system architecture

In this subsection, it is presented the propose architecture of the recommender model and provide

an overview of system’s design characteristics. The proposed architecture, illustrated in Figure 4.4,

has been developed based on the requirements outlined in the previous section.

Figure 4.4: Proposed architecture for recommender model.



4.2 Methodology 25

The design of the HRS incorporated a fundamental mechanism that involves taking an input

image and leveraging a Convolutional Neural Network to extract characteristics and features from

the image. This process is analogous to content-based image retrieval techniques, where the visual

content of the image is thoroughly analyzed to identify and retrieve similar cases. Additionally,

an alternative approach that can be explored within the HRS framework is the utilization of text-

based retrieval methods. By incorporating text-based information, such as medical annotations or

textual descriptions, the system can enhance the retrieval process by considering both visual and

textual similarities between images.

Next, the HRS can generate a ranking of retrieved images from database based on their sim-

ilarity to the input. In addition to the layer of image retrieval, a personalization factor can be

incorporated to further enhance the relevance of the retrieved images. This personalization factor

could take into account additional characteristics such as gender, age, smoking history, presence of

multiple nodules, and other relevant patient-specific information. By considering these personal-

ized factors, the system can recommend images that not only share visual similarity with the input

image but also align with the specific characteristics and context of the patient being evaluated.

Once the architecture of the HRS is pre-established, the next step involves developing the

content-based image retrieval component that can be integrated into the system for recommending

past cases.

On the next sections, an Image Retrieval system is proposed and tested as a core engine for

the recommendation system. This study is divided into three sub-sections, each focusing on a

specific model development as a potential core component of the recommendation engine. For

each sub-section, a brief discussion is provided .These analyses serve as a guide for improving

different aspects of the solution in the subsequent iterations.

4.2.2 Model 1 - Text-based on medical annotations

In this first model, the lung nodule annotations performed by radiologists were explored. The ob-

jective is to implement a model that leverages the medical annotations provided to enable accurate

and targeted retrieval of relevant medical cases based on the similarity of the features annotations.

The Figure 4.5 illustrates the initial proposed model.

The features annotations available on LIDC dataset and utilized on this approach were: Sub-

tlety, Internal Structure, Calcification, Sphericity, Margin, Lobulation, Texture and Malignancy.

The annotations were transformed into a structured representation, specifically a dataframe, where

each row corresponds to a patient’s annotated nodule provided by a radiologist and the columns

represent the various annotated features. Prior to the computation of similarity, these features were

normalized within the range of zero to one during a pre-processing step.

4.2.2.1 Similarity/Dissimilarity

In the context of image retrieval systems, the performance is significantly influenced by the method

used to measure similarity.
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Figure 4.5: Model based on medical annotation.

The similarity measurement determines which images should be retrieved from the dataset

[22]. There are two main categories of similarity measures: distance measures and similarity

metrics. Distance measures quantify the dissimilarity between two annotations by calculating the

distance between their feature vectors. In this study, three commonly used measures will be high-

lighted: Manhattan distance, Euclidean distance, and Cosine similarity. These measures provide

different ways to assess the similarity between the feature vectors and offer distinct perspectives

on the relationships among images.

For Manhattan distance (also known as L1 distance) and the Euclidean distance (also known

as L2 distance) was utilized the Minkowski family of distances. Both are included in the general

formula as follows:

Minkowski(x,y) =

(
n

∑
i=1

|xi − yi|p
) 1

p

The feature vectors for the calculation distance are represented by X (x1,x2,x3, ...,xn) and Y

(y1,y2,y3, ...,yn). When parameter p=1 it is equivalent to the Manhattan distance and when p=2 is

equivalent to the Euclidean distance. The Minkowski distance encompasses both of these distances

as well as other variations when p takes different values. For these distance measures, the smaller

the distance between two images, the more similar they are considered to be in terms of their

features.

Cosine similarity calculates the cosine of the angle between two vectors, providing a measure

of their similarity. A larger value indicates a higher degree of similarity between the vectors. [35].

CosineSimilarity(X ,Y ) =
X ·Y

∥X∥.∥Y∥

4.2.2.2 Ranking results

The rank of similar annotations is obtained by utilizing a similarity search algorithm called K-

Nearest Neighbor (KNN). This algorithm calculates the distance between two features based on a
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similarity metric and returns the k most similar features. In this study, the retrieval process was

implemented and tested using all the distance metrics mentioned earlier.

The results of the retrieval process provided a ranking of similarity based on the medical an-

notations. For example, a nodule annotation retrieved with smaller euclidean distance are ranked

higher, indicating a higher level of similarity to the query image. This ranking enables the pre-

sentation of the most relevant and similar cases at the top of the recommendation list. To enhance

the relevance of the retrieved similar images, a threshold technique could be applied. By setting a

similarity threshold, only images that reached the threshold are considered as similar or relevant

for retrieval system.

Below, on Figure 4.6 it is presented an example of the query annotation and the annotations

results. On the Figure 4.7, demonstrate the respective images from the previous annotation query.

Figure 4.6: Results annotation from Query patient.

Figure 4.7: Image results for query annotation.
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This approach performs an interesting retrieval specially because it is based on the similarity

of radiologist’s annotations, leading to retrieval similar annotation cases. An enhanced approach

for this model could utilize the potential uses of weight euclidean distance, where it is possible to

attribute distinct weight according to the importance of features considered by the user. A more

detailed analysis of the results of this model is discuss on the next chapter.

Additionally, it’s important to note that the success of this approach relies on the quality and

consistency of the radiologist annotations. Furthermore, it is necessary to consider the limitations

and variability in radiologist interpretations when inferring similar results. A dependency of the

existing annotation is also a limitation on this model, since it is only possible to perform a search

when the annotation are available, which in some cases are very time consuming or might have

not a clear consensus on the annotation. Presenting this limitation, a new approach is explored

focusing on content image analysis of the nodule patients for similar cases retrieval.

4.2.3 Model 2 - Convolutional Autoencoder architecture

This section presents a methodology employed focusing on the utilization of Autoencoder as a

core engine component of an image recommender system. The proposed architecture builds upon

a previous research reported by Siradjuddin et al. [31] and aims to leverage the potential of Au-

toencoder in extracting essential structural features from the dataset images.

The Figure 4.8 illustrates the proposed model, wherein a Convolutional Autoencoder architec-

ture is employed. This architecture is responsible for extracting and compressing the key structural

features of the dataset images into a latent space representation, which subsequently allows the re-

construction of the original images. The encoder component of the Autoencoder serves as a feature

extractor, with the objective of processing the images and generating their respective latent repre-

sentations. This latent space retains the intrinsic features of the images and serves as a mechanism

for indexing and comparing the dataset images, thereby facilitating efficient image retrieval from

the CT image database.

Figure 4.8: Convolutional Autoencoder model.
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The Convolutional Autoencoder employed in this study undergoes a self-training process on

the pre-processed images of LIDC dataset. The model is designed to learn the ability to compress

the input images into a lower-dimensional latent space representation and capturing the essential

features of the images. The encoder component of the Autoencoder assumes the responsibility

of mapping the high-dimensional input image to a lower-dimensional latent space representation.

This latent space representation is situated within a bottleneck layer, reducing the dimensions

of the data. On the other hand, the decoder component is responsible to reconstruct the input

image based on the information encoded in the latent space [36]. Consequently, the latent vector

serves as a compact representation of the original high-dimensional input. The architecture of the

Convolutional Autoencoder is outlined on Figure 4.9 , where it is illustrated the components and

their role in the compression and reconstruction process.

After encoding the images, the similarity between two images can be determined by comparing

their respective latent space representations. Various distance metrics, such as Euclidean distance

or cosine similarity, can be employed for this purpose. By calculating the distance or similarity

score between the latent representations of two images, we can quantitatively measure their level

of similarity.

To retrieve similar images on visual and semantic aspect for a given query image, a nearest

neighbor search is conducted in the latent space. The query image is encoded using the trained

Autoencoder, generating the corresponding latent representation. Subsequently, the similarity be-

tween the query image’s latent representation and the latent representations of all other images in

the dataset is computed. The images with the closest latent representations to the query image are

considered the most similar.

For Euclidean distance, the minimum distance value signifies the highest degree of similar-

ity. The retrieved nodules are presented to the user in descending order based on the similarity

measure. This ranking facilitates the presentation of the most relevant and visually similar images

first. The results visualizations may include displaying the query image alongside its top-ranked

similar images, enabling users to visually compare and assess the level of similarity between the

query image and the retrieved images, similar to the retrieval from previous model, as illustrated

on the Figure 4.7.

4.2.3.1 Architecture and Training

The proposed architecture for the Convolutional Autoencoder (CAE) in this study is illustrated in

Figure 4.9. The encoding phase of the CAE comprises a series of convolutional layers, followed

by the application of the non-linear activation function ReLU, and downsampling operations such

as max pooling with a 2x2 kernel size as illustrated on 4.2. Throughout the encoding phase, the

number of channels in the convolutional layers typically increases while the spatial dimensions of

the feature maps gradually decrease. This gradual compression of information in the image allows

for the learning of low-dimensional representations of nodule images. In the initial architecture,

the size of the layers was configured to generate a latent vector of size 4096 (16 x 16 × 16) which

serves as the compressed representation of the input image thought convolutional layers. The
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initial experiments were performed using the parameters presented on 4.2. Besides this initial

setup layer, different configuration for layers were also tested.

Table 4.2: Parameters for the initial architecture of Convolutional Autoencoder.

Layer L1 L2 L3 L4 L5 L6 L7 L8 L9
Type conv pool conv pool conv pool deconv deconv deconv
Channel 16 - 32 - 32 - 32 32 16
Kernel size 3x3 2x2 3x3 2x2 3x3 2x2 2x2 2x2 2x2
Stride 1 2 1 2 1 2 2 2
Padding 1x1 - 1x1 - 1x1 - - - -
dilation - 1 - 1 - 1 - - -
Activation ReLU - ReLU - ReLU - ReLU ReLU ReLU

The decoding phase of the CAE aims to reconstruct the image from the latent vector. It in-

volves gradually increasing the spatial dimensions of the feature maps while decreasing the num-

ber of channels, enabling the decoder to properly reconstruct the original image. Similar to the

encoder, non-linear activation functions such as ReLU may be applied after the deconvolutional

layers to introduce non-linearity into the reconstruction process. Through this encoding-decoding

process, the CAE learns to capture and preserve the essential features of the input images in a

compressed latent space representation.

The output of the decoder in the Autoencoder model possesses the same dimensions as the

input image. By training the model with an undercomplete representation, it is imposed a con-

straint that encourages the Autoencoder to learn the most significant and essential features present

in the training data. This constraint is achieved by imposing limitations on the activity of the

hidden representations within the model [37]. When the architecture is appropriately adjusted by

incorporating regularization terms, the Autoencoder might acquires additional qualities beyond its

ability to replicate the input image as the output. These additional qualities include the extraction

and encoding of the most salient features from the input data, which can enhance its capacity for

feature representation.

Figure 4.9: Convolutional Autoencoder architecture.
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The objective of training is to minimize the reconstruction loss. The loss function used for

the Autoencoder model was the Mean Squared Error (MSE), which measures the average squared

difference between the input data and the reconstructed output. Mathematically, the MSE loss is

defined as:

MSELoss =
1
N

N

∑
i=1

(xi − x̂i)
2 (4.1)

where N represents the number of data samples, xi denotes the original input data, and x̂i

represents the corresponding reconstructed output. The MSE loss quantifies the dissimilarity be-

tween the input and output, with a lower value indicating a better reconstruction performance.

Minimizing the MSE loss during the training process enables the Autoencoder to learn the most

representative latent features and effectively reconstruct the input data.

The training of the Convolutional Autoencoder was conducted utilizing two optimization algo-

rithms: stochastic gradient descent (SGD) and the AdamW optimizer. SGD is widely recognized

as the go-to algorithm for effective training of Convolutional Neural Networks (CNNs). It excels

in learning discriminative linear classifiers when applied to convex loss functions, rendering it a

popular choice in the field. On the other hand, AdamW, an improved variant of the Adam opti-

mizer, was employed. Introduced by Loshchilov and Hutter in their work titled ’Decoupled Weight

Decay Regularization’, AdamW rectifies the Weight Decay Regularization issue in Adam, lead-

ing to models with superior generalization capabilities [38]. As a result, AdamW can effectively

compete with SGD while significantly speeding the training process.

The entire set of nodules was divided into a training set (80%) and a testing set (20%), and the

split was employed at nodule-level and patient-level, i.e slices of the patient’s nodule were only

used for training or only for testing, to prevent data leakage.

Table 4.3: Hyperparameters for Convolutional Autoencoder.

Hyper-parameters Values
Batch size 16, 32, 64
Learning Rate 1e-2, 1e-3, 1e-4
Loss Function MSE, L1
Optimizer AdamW, SGD

The hyper-parameters selected for this experiment were illustated on Table 4.3 The best results

were achieved when using batches size of 32,learning rate of 1e-4 with Loss function MSE and

AdamW as optimizer.

During the traning, it was also evaluated the impact of changing the latent representation size,

specifically exploring the range of 512, 1024, 2048, and 4096 as the output dimensions of the

Convolutional Layers. The focus was mainly on testing three-layer configurations with different

setups for the first and second output layers, such as 32,64, 16,64, and 16,32 . By altering the size

of the last output layer, it is possible to control the dimensionality of the latent representation.
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The Figure 4.10 illustrates the impact of the latent layers in the reconstruction of an image

using the Convolutional output for the first and second layers with a configuration of (32, 64, x),

where x is variable to adjust the size of last layer, manipulating the latent representation size. It

demonstrates how varying the last output layer allows changes in the size of the latent representa-

tion.

Figure 4.10: Reconstructed images for different latent representation sizes.

4.2.3.2 Retrieval and Relevant items

For retrieval of similar images, the algorithm used was the K-Nearest Neighbours (KNN).The

KNN is a well-established technique for measuring similarity between data points based on their

feature vectors. In this study, the KNN is employed to build a model that identifies the K most

similar images to a given query image. By selecting the K nearest neighbors, it can retrieve images

that share similar visual characteristics with the query image[39].

The proposed algorithm uses the information provided by the encoder’s latent representation

to perform the similarity search. The K-NN combined with the encoder will be able to:

1. Generate a Matrix of latent representation of all the images of the dataset.

2. Process the query image as an input and calculate the latent representation of the query

image.

3. Measure the distance between the query latent representation and the latent representation

of the images in the dataset. In order to calculate the similarity, the Euclidean distance will

be applied.

4. Retrieve K nearest images based on the distance measured in the previous step.

Initially, a range of k values from 1 to 6 will be experimented with. One of the noteworthy

features of this approach is that when the nearest neighbors are used, the retrieved images are

ordered based on their similarity. This allows the system to rank the retrieved images, enabling

the possibility of providing recommendations.

Regarding the evaluation of the recommendation system, the accuracy of the retrieved images

needs to be assessed. However, this measurement cannot be directly obtained due to the unique

characteristics of the system and the absence of labeled classes in the dataset. In such cases,

alternative evaluation metrics and methodologies need to be employed to gauge the effectiveness

of the recommendation system.
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The results of this model will be analysed and discussed in detail in the next chapter. However,

as a summary, one of the main challenges encountered during the evaluation was the semantic

gap between the features learned by an Autoencoder and manual medical annotation. It revealed

limitations on assessing features such as malignancy, spheracity, subtlety, margin as well as others

that required high expertise on medical domain.

The decrease of the semantic gap is an ongoing research topic, and the effectiveness of these

techniques can vary depending on the specific dataset and task. It is recommended to experiment

with different approaches and evaluate their impact on reducing the semantic gap in each particular

use case. In this study, it was decided to proceed with an implementation of a supervised learning

architecture based also on the annotations to attempt to mitigate this gap.

4.2.4 Model 3 - Hybrid Autoencoder architecture

This section introduces a new architecture proposal intended to address the limitation of the pre-

vious model, specifically targeting the semantic gap issue identified. The proposed architecture

builds upon the principles of Supervised Autoencoder, drawing inspiration from prior research

reported about personalized classification model using similarity learning via Supervised Autoen-

coder by Jo and Jun [40].

In the previous experiment, although the retrieved images exhibited a general similarity in

terms of their overall structure, a deeper analysis revealed that the medical annotations associated

with those images were not sufficiently similar to the query image. This phenomenon highlights

the presence of a semantic gap, which refers to the disparity between the high-level medical se-

mantic concepts contained on the annotations and the low-level visual features from retrieved

image [41].

Figure 4.11: Supervised Autoencoder architecture.

The primary objective of this new architecture is to enforce the latent vector to preserve the

desired features of the input images and minimize the semantic gap by incorporating a supervised

layer. To achieve this, a new mechanism was implemented to indirectly manipulate the latent

space, aiming to retain the desired information within it.

The proposed solution performs an adjustment on the loss function. The proposed solution

included the implementation of a loss function that aimed to learn image features while aligning

them with manual medical annotations. To achieve this, it was included a new classification layer
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on the network and it was performed a combination of reconstruction loss and classification loss,

as it is demonstrated on Fig. 4.11.

The purpose is that the reconstruction loss measures the difference between the original image

and its reconstructed image, ensuring that the Autoencoder learns to preserve important features.

On the other hand, classification loss aims to reduce the discrepancy between the learned features

and the desired feature indicated by the annotations. On the initial settings was chosen the feature

Malignancy to be included on the model. For the target class, a rank of malignancy 1 and 2 it

was labeled as benign.For rank of malignancy 4 and 5 as malignant, 3 is neglected for this initial

evaluation and further scenarios could be explored [42] .

In terms of retrieval images, the algorithm was designed to work similar to previous model. It

generates a Matrix from process of transforming images into latent representations, calculates the

distance between the query image and dataset images, and retrieving the K nearest images based

on their similarity to the query.

The design of this new system is centered around the preservation of the original image output,

while disregarding the output of the classifier. The primary objective is to retrieve the most similar

images, thereby reducing the existing semantic gap. By focusing solely on image similarity, the

system aims to prioritize the retrieval of visually and structurally similar images, aligning with the

intended purpose of the image retrieval task.

However, it is worth noting that in certain scenarios, the incorporation of a classifier can pro-

vide additional benefits. For medical professionals, the classifier’s output can serve as valuable

support in the interpretation and explanation of the retrieved images. In these specific cases, the

classifier’s output can be utilized to provide relevant insights and explanations to the medical prac-

titioners. This integration of classification and retrieval serves to enhance the interpretability and

comprehensibility of the image retrieval system, providing valuable support and explanations to

the medical practitioners.

4.3 Evaluation Metrics

In the context of content-based image retrieval for medical image similarity, several evaluation

metrics are commonly used to assess the performance of retrieval algorithms. These metrics pro-

vide insights into the effectiveness and efficiency of the retrieval system.

Precision (P) is the ratio of the number of relevant images within the first k results to the total

number of images that are retrieved and is expressed as follow, (1) where TP refers to the relevant

images retrieved and FP refers to the false positive, i.e., the images misclassified as relevant im-

ages. Precision quantifies the system’s ability to retrieve only relevant images, disregarding any

irrelevant ones.

Precision =
T P

T P+FP
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Precision@K is a metric that focuses on evaluating the precision of the top K retrieved images.

It measures the proportion of relevant images among the top K retrieved results. Precision@K is

particularly useful when users are only interested in examining a limited number of top-ranked

images.

Precision@k =
Number o f relevant items in top k

k

Average Precision (AP) for a single query for k items is obtained by taking the mean over

the precision values at each relevant image, providing a comprehensive evaluation of the system’s

performance. It considers the precision at various levels and provides a summarized measure of

the system’s retrieval quality:

AveragePrecision =
1
n

n

∑
k=1

P(k) · rel(k)

Where:

n: Total number of retrieved instances.

P(k): Precision at the k-th position in the ranked list when the k-th instance is retrieved.

rel(k): An indicator function that is 1 if the k-th instance is relevant, and 0 otherwise.

Normalized Cross-Correlation (NCC) is a valuable metric used in image analysis and has

found applications in the medical field. The NCC, along with its variations, is employed to esti-

mate the similarity between images [43]. This metric considers both spatial and intensity infor-

mation present in the images. It provides a similarity score ranging from -1 to 1, where a value

of 1 indicates perfect similarity and -1 indicates perfect dissimilarity. In the context of this study,

a range of 0.5 to 1 can be considered as indicative of a moderate to strong correlation between

images and utilizes the formula below:

NCC(I1, I2) =
∑i, j(I1(i, j)− Ī1)(I2(i, j)− Ī2)√

∑i, j(I1(i, j)− Ī1)2 ·∑i, j(I2(i, j)− Ī2)2

4.4 Hypothetical relevant images

One of the limitations encountered in content-based image retrieval for the LIDC dataset was a

lack comprehensive ground-truth that accurately represents relevant images for a given query. This

limitation makes it challenging to evaluate and analyze the effectiveness of the proposed models

solely based on ground-truth annotations.

By acknowledging the need for expert medical validation, the proposed strategy aims to bridge

the gap between computational retrieval methods and the expertise of medical specialists. While

the models can retrieve images based on their visual similarity to a query image, the final interpre-

tation and validation of the results heavily rely on the assessment of a medical specialist.
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Figure 4.12: Distribution of the Euclidean distance for the top 6 retrieval.

To enable a meaningful comparison between the proposed models and deeper analysis, a hy-

pothetical scenario is introduced. This scenario establishes a similarity threshold based on the

Euclidean distance between the query image’s annotation and all the images in the dataset. A

distance of medical annotations was calculated between the query image and the first 6 retrieval.It

was performed this calculation for all images on the dataset and the Figure 4.12 represents this dis-

tribution. For the Euclidean distance, a lower distance value signifies a higher level of similarity

between two entities. It was established the value that retrieves the 20% lowest values for the dis-

tribution.Thus, the euclidean distance on the query below this value of 0.517 would be considered

hypothetically relevant for the retrieval analysis and model comparison.

Ultimately, this strategy aims to provide a foundation for evaluating and comparing the per-

formance of the models by considering the hypothetical relevance of retrieved images, thereby

facilitating a more in-depth analysis and interpretation of the results.

4.5 Summary

In summary, on this Chapter is presented an initial architecture for the Health Recommender

System, along with the development of three models: medical annotation-based, Convolutional

Autoencoder, and Supervised Autoencoder. Acknowledging the limitations encountered during

the study, various modifications were incorporated into the design to address the main challenges

associated with image retrieval, with a specific focus on text-based retrieval and content-based

image retrieval (CBIR) for the characterization of lung cancer cases.



Chapter 5

Experimental Results and Discussion

This chapter presents the results obtained for the proposed models for the core engine of the

recommender system presented in the methods section.

5.1 Results and discussion of Text-based on medical annotations

In this section, it is presented the results of the study regarding the first proposed model, which

aimed to retrieve similar images based on the similarity of medical annotation. The evaluation of

the system involved several experiments and analyses with the objective of assessing its perfor-

mance and effectiveness in retrieving relevant images.

The retrieval starts when a patient id and a nodule is selected. Then the system performs

a search to find similar cases through the calculation of a metric distance between the feature

vectors and return them by a ranking, according to the relevancy.

On this scenario three metrics were tested: Euclidean distance, Cosine similarity and the Man-

hattan distance.

For example, taking in consideration the retrieval from the image below Fig. 5.1 :

Figure 5.1: Example of a query image.

For this single instance, the retrieval results demonstrate that the first image was the same

for all the three calculation methods. Additionally, out of the six retrieved images in each of the

37
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Figure 5.2: Retrieval images from Cosine similarity calculation.

Figure 5.3: Retrieval images from Euclidean distance calculation.

Figure 5.4: Retrieval images from Manhattan distance calculation.

calculation methods, three images were the same in all methods. Furthermore, the Euclidean and

Manhattan distance presented similarity on the images retrieved and their order, with only the last

image retrieved being different. The first image retrieval, the same for all methods, was able to

match five of the nine features with zero difference, as it is illustrated on Table 5.5. In general,the

three method presented some similarities on images results but, when analysing the results for the

medical annotation similarity they presented a strong similarity (Table 5.5).

Figure 5.5: Medical annotation from retrieved images.
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5.1.1 Overall evaluation

It was performed an overall analysis to evaluate the performance on retrieving other images of the

dataset. To evaluate the overall retrieval based on semantic annotation similarity, it is important to

define a ground truth or a set of relevant images for each query to perform an evaluation. With lack

of this information, the analysis of the system is limited. For an accurate analysis it is necessary

to involve medical experts to support the validation.

In the hypothetical scenario, to establish a reference performance for the proposed model, it

was considered as relevant retrieval an annotation with a value below the define threshold (0.517),

as discussed in the evaluation metrics section. The average distance for the annotation retrieval

is 0.232 ± 0.121, calculated over a total of 4310 samples for k=6. This corresponds to an hypo-

thetical precision of 97.7% based on medical annotations, which will serve as baseline for further

comparisons with other models.

In terms of evaluating the structural image similarity, it was compared the six images retrieved

from each patient and nodule using the three different algorithms. To measure the similarity

between the images, it was employed the Normalized Cross-Correlation (NCC) method. The

NCC operates within a range of -1.0 to 1.0, where a range of 0.5 to 1.0 was adopted as an indicator

of a moderate to strong correlation between the image structures [44]. The average scores obtained

from the retrieval of all images are presented in Table 5.1.

Table 5.1: Normalized Cross-Correlation from images.

Distance calculation Average Precision based NCC score
Cosine 0.056
Euclidean 0.053
Manhattan 0.057

Overall, the three methods presented a similar average of NCC score between themselves.

However, the average values presented were low, indicating poor structural similarity between the

query image and retrieved images.

5.1.2 Model 1 with feature of structural enhancement

In the first model, the implementation takes into account the medical annotations and their re-

spective images. To improve the retrieval based on structural similarity, an additional step on the

retrieval algorithm was added that not only orders the images by their lower distance from the

annotation but also considers the NCC score of each image. By incorporating this step, the re-

trieved images were different, emphasizing their structural composition, which in turn affects the

Euclidean distance. The Figure 5.6 illustrates the variation and the structural changes of the re-

trieved images. This approach allows setting specific requirements in the retrieval process, making

the results more aligned with the user’s preferences or requirements.

The impact on performance can vary depending on the retrieval restrictions imposed. In the

case of Figure 5.6, the requirement was to retrieve images with an NCC score of at least 0.4.
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As a result, the percentage of images meeting this criteria increased from approximately 5.5%

to 48.3%, while the average Euclidean distance increase to 0.353 ± 0.167 and the hypothetical

precision based on annotations decreased from 97.7% to 85.5%. It is important to note that these

are hypothetical scenarios used for model comparison purposes only. Expert medical evaluation

is necessary to validate and assess the results obtained from the model.

Figure 5.6: Retrieval images before and after the application of a new calculation layer based on
NCC on the model.

More experiments were conducted with different images for the model 1 and besides the capa-

bility to retrieval images with similar medical annotation, an extensive study involving specialist

is required to validate the results in terms of accuracy, precision and relevance of the model 1. Es-

pecially, because the similarity computed by NCC can be different in terms of medical structural

similarity.

The obtained results indicated a weak to moderate capability of the model to retrieve images

with similar structural composition of the query. However, as it accesses directly the medical

annotations, it is able to retrieve similar cases based on the medical annotation.

Considering the specific requirements of the medical domain, alternative approaches can be

explored. For instance, if certain features have different degrees of relevance compared to others, a

distance calculation based on the Weighted Euclidean distance could be employed. This approach

would enable the retrieval system to prioritize and emphasize the search based on one or more

specific features. Additionally, in order to address the aspect of structural similarity in images, the

inclusion of convolutional neural networks (CNNs) becomes a viable option. By incorporating
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CNNs into the model architecture, it becomes possible to leverage their capacity to learn and

extract relevant image features, without the need of medical annotations to perform the retrievals.

5.2 Results and discussion of Convolutional Autoencoder

In this section, the results of the second proposed model are presented, which aimed to retrieve

similar images based on the similarity of the encoder’s latent representation of the image.

The Convolutional Autoencoder (CAE) was trained in various scenarios, hyper-parameters,

and latent representation sizes, as described in the previous section. As it is shown in the Figure

5.7, the training phase did not suffered from any visible problem that could be spotted in its loss

values, as the final loss of the reconstruction dropped and stabilized with batch size 32, using loss

function MSE and optimizer AdamW. A mechanism of early stopping was implemented to prevent

the model from overfit. This mechanism stops the trainning when it has passed 10 Epochs without

a reconstruction loss improvement on validation set. For Learning rate 1e-2, it can be seen this

strategy of stopping the model close to Epoch 50, as illustrated the Figure 5.8, while with the

learning rate of 1e-3 it was stopped on the Epoch 250 as presented in the Figure 5.7

Figure 5.7: Training Loss for Learning Rate 1e-3.

As shown in Fig. 5.9, the reconstruction of the input images was conducted accurately. Af-

ter the dimension reduction of the latent space, the major structural features of the images were

preserved. This observation guarantees that the latent vector effectively retains the major image-

reconstructed features. However, it is essential to note that some details and areas of the generated

output images lost some definition due to the latent vector being eight times smaller than the

original image.

An evaluation of image feature extraction process based on recommending the nearest neigh-

bor was performed. The Figure 5.10 illustrates the query image and the top 6 retrieved images

results. In addition, it also exhibits their distance from the query image, the Cosine similarity, the
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Figure 5.8: Training Loss for Learning Rate 1e-2.

Figure 5.9: Reconstruction images from the model.

Euclidean distance based on Medical annotation, and NCC score of each image plotted at the top

of the image.
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Figure 5.10: Query results from the model 2.

By analyzing the network results, the importance of using an Autoencoder as a feature extrac-

tor for the recommendation was demonstrated. As shown in Figure 5.10, the composition of the

retrieved images presents similarity to the query. In objective terms, the NCC score was higher

than 0.5, which means a structural image similarity and not necessary medical similarity. This is

one of the most valuable features of the architecture, as it enables specialists to compare visually

similar images but otherwise distinct cases.

5.2.1 Overall performance

Besides the retrieval presented on Figure 5.10, to evaluate the consistency of retrieval results,

multiple queries were performed with slight variations in order to assess the system’s robustness

and reliability. The Figure 5.11 presents the retrieval of other 7 cases chosen randomly, with 6

retrieval images as results.
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Figure 5.11: Query results from the model 2 from multiples images.

Considering the inclusion of NCC in the retrieval process, a comprehensive analysis was con-

ducted using the entire validation dataset. The average precision was calculated for each image

retrieval, ranking from 1 to 6 the retrieved images. Table 5.2 provides an overview of the results,

specifically focusing on the case where k=1, indicating relevance based on structural similarity. In

contrast to the first model, which achieved a score of approximately 5.5% in terms of structural

similarity, the Autoencoder model reached a 73,8% of precision, indicating a strong capability

to retrieve images based on structural composition.The NCC precision showed a decrease as the

number of retrieved images increased, indicating that fewer relevant images were identified in

terms of structural similarity as more images were requested. In the context of the medical image
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annotations, the average Euclidean distance increase to 0.861 ± 0.361, it became evident that the

semantic meaning of these annotations was increasingly diverging.

Table 5.2: Hypothetical precision based on NCC Score.

Precision@k Precision based on NCC
k=1 0.738
k=2 0.668
k=3 0.613
k=4 0.575
k=5 0.542
k=6 0.521

In addition, there are some important factors that must be taken into account when analyzing

the results of image recommendation. Specifically, it becomes necessary to evaluate the simi-

larity between the retrieved images and the medical annotations associated with each patient’s

nodule.The Spearman correlation was used to investigate the relationship between the Euclidean

distance derived from the medical annotations and the distance of the image retrieval in order to

assess this similarity. As shown in Figure 5.12, the results reveal a Spearman’s rho coefficient of

0.08, indicating a very weak linear association between these measures.

Figure 5.12: Spearman correlation from the model 2.

As previously discussed, a hypothetical evaluation scenario was considered, where images

with an Euclidean distance below a predefined similarity threshold were considered relevant for

the purpose of comparing the models. The objective of this analysis was to assess the hypothetical

precision of the system based on medical annotations and to compare the performance of the

different models.

In contrast to the previous model, the precision based on the Euclidean distance of the medical

annotations exhibited low values, as illustrated in Table 5.3. These results indicated a limited

capability of the models to effectively learn and capture the more medical-specific characteristics

from the images. Furthermore, various experiments were conducted involving different latent
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representations, as shown in Table 5.4, in an attempt to reduce the latent space and encourage

the models to learn beyond low-level characteristics. Unfortunately, these attempts did not yield

the desired outcomes, suggesting the need for further exploration and refinement of the models’

learning capabilities in order to enhance their performance in capturing the more nuanced medical-

specific characteristics.

Table 5.3: Hypothetical precision based on Euclidean distance of the medical annotations.

Precision@k Hypothetical precision
k=1 0.294
k=2 0.292
k=3 0.285
k=4 0.274
k=5 0.279
k=6 0.270

Table 5.4: Effect of several latent representation size on the Encoder with same number of layers.

Latent representation Reconstruction Loss NCC Score Hypothetical precision
(16,16,16) 0.00325 0.747 0.228
(8,16,16) 0.00461 0.803 0.285
(4,16,16) 0.00509 0.789 0.280
(2,16,16) 0.00592 0.799 0.285

The results obtained from the Autoencoder evaluation presented a promising performance in

retrieving lung cancer images based on their visual composition, indicating its ability to capture

low-level visual features for similarity-based retrieval. However, when it was evaluated the med-

ical annotations of the query image with the medical annotations of the retrieval images it was

identify a low level of similarity. This model faces a semantic gap, which means it lacks the incor-

poration of medical-specific characteristics necessary to accurately characterize lung cancer. As a

result, the retrieved images from this model exhibit a high degree of structural similarity but a low

level of semantic similarity. Besides this, a medical expert would be required to perform a deep

analysis and validate the results from the proposal model.

5.3 Results and discussion of Supervised Autoencoder

In this section, the results of the third proposed model are presented, which aimed to retrieve

similar images based on the similarity of the encoder’s latent representation of the image, including

a supervised learning layer to address the challenge of reducing the semantic gap.

In the training phase of the new model, it was necessary to find appropriate hyperparameters

to optimize its performance. Thus, the Supervised Autoencoder was trained in various scenarios,

hyper-parameters and latent representation sizes.

After the incorporation of a classifier loss into the training process, it became essential to care-

fully balance the weights assigned to each loss term. The weight assigned to each loss determines
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the relative importance or contribution of that loss term in the overall training objective. In the ini-

tial experiments, a weight of 0.5 was assigned to the classifier loss, implying equal importance of

both the classifier loss and the reconstruction loss terms. Later on, during the experiments adjusts

were made on the iterative refinement process.

During the experiments conducted on the proposed architecture, a significant challenge arose

in stabilizing and finding a balance between the two losses incorporated in the model. The ob-

jective was to ensure that the model effectively and simultaneously performed well on both the

classification task and the image reconstruction task.

As observed in Figure 5.13, the training loss curves exhibited fluctuations and instability dur-

ing the training process, reaching the early stopping several times. This behavior indicated the

difficulty in optimizing the model to achieve optimal performance on both objectives simultane-

ously. The fluctuations in the loss curves implied that the model was struggling to strike a balance

between the two competing objectives.

Figure 5.13: Model trained with early stop parameter True and False.

Based on the classification loss instability of the previous training section, a two-step training

process was implemented to provide the model with a better initial understanding of the input data.

In the first step, the model underwent a pre-training phase that prioritized the reconstruction

loss. The main objective was to train the model to accurately reconstruct the input images. By

focusing on the reconstruction task initially, the model was able to develop a robust understanding

of the underlying structure and patterns present in the data. At this stage, it was expected that the

model had already acquired underlying features of the data through the pre-training phase.

Once the pre-training phase was completed, the model was transitioned to the second step of

training, which involved fine-tuning on the classification task as it is illustrated on Figure 5.14.

The focus shifted towards training the model to perform well on the specific classification task

between benign or malign classes.

The main goal of incorporating both reconstruction and classification losses in the training

process was for the model being able to learn both the low-level features necessary for accurate
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Figure 5.14: Model trained two-steps approach.

reconstruction and the higher-level features relevant to classification. This two-step training ap-

proach aimed to strike a balance between capturing fine details in the input images and extracting

discriminate features for effective classification. However, by analyzing the query image results,

the Supervised Autoencoder as a tool of feature extractor presented lower capability to retrieve

images with correlated composition similarity, as shown in Figure 5.15.

In this instance, it was also considered an hypothetical scenario where the images with Eu-

clidean distance below a particular threshold were considered as relevant images for the study to

evaluate if the semantic gap was reduced. Based on the table 5.5, the Euclidean distance from the

annotation compared with the previous model did not reduced.

Table 5.5: Hypothetical precision based on Euclidean distance - Model 3.

Precision@k Hypothetical precision
k=1 0.262
k=2 0.254
k=3 0.258
k=4 0.254
k=5 0.249
k=6 0.242

Despite exploring various MLP architectures with different numbers of hidden layers and try-

ing different combinations of learning rates, optimizers (SGD, Adam, and AdamW), and batch

sizes (16, 32, and 64), the achieved results did not meet the initial expectations. The selected ap-

proach, consisting of pre-training on the reconstruction loss followed by fine-tuning with a learn-

ing rate of 1e-5 and incorporating a classification loss with a weight of 0.2, did not effectively

reduce the gap between the embedding representations.

The observed reduction in retrieval images with similarity composition suggests that the pre-

training phase focused primarily on the reconstruction aspect rather than on learning discriminative

features relevant to the classification task. This mismatch between the objective of the pre-training

and the desired outcome of reducing the gap layer may have contributed to the suboptimal results.

Further investigation and experimentation are required to identify the underlying factors con-

tributing to the limited effectiveness of the embedding representation. It may be necessary to ex-
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Figure 5.15: Query results from the model 3.

plore alternative pre-training strategies or modify the fine-tuning process to encourage the model

to learn more discriminative features. Additionally, considering other architectural variations or

incorporating domain-specific knowledge into the model design could potentially yield improved

results.

5.4 Evaluation of Retrieval Time

This section examines the impact of CPU time on the performance of similarity search algorithms,

specifically focusing on the k-nearest neighbors (kNN) algorithm, that was the algorithm used to

find the most similar items to a given query item based on a similarity metric.

Retrieval time is an essential factor in image retrieval systems, as it directly impacts the user

experience and system efficiency. The retrieval time refers to the duration it takes for the system
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to process a query and retrieve relevant images from a large database. Efficient retrieval time is

essential to ensure real-time or near-real-time performance.

One important factor that affects the performance of kNN is the size of the search (number of

images) or size of the vectors being considered, in this instance the size of latent representation.

As the number of vectors increases, the computational complexity of finding the nearest neigh-

bors also increases. Consequently, the CPU time required for the search process may increase

proportionally.

To evaluate the impact of CPU time on the search similarity, experiments were conducted by

varying the size of the latent space in 256 , 512, 1024 , 2048 and 4096 and the search space in 1k,

10k, 100k. It was measured the corrresponding time taken on the interation of latent vector and

search loop using different configurations and the results were compared. In order to evaluate the

CPU time performance on a larger dataset, it was generated synthetic data to overcome the size

limitations presented on LIDC dataset.

Table 5.6: Retrieval time in ms per loop interaction for 6 images on different sizes of dataset.

Latent representation 1k images 10k images 100k images
(1,16,16) 453 µs ± 12.5 µs 1.75 ms ± 59.7 µs 19.5 ms ± 931 µs
(2,16,16) 572 µs ± 33.1 µs 3.43 ms ± 231 µs 39.7 ms ± 2.3 ms
(4,16,16) 796 µs ± 53.2 µs 7.17 ms ± 187 µs 70.7 ms ± 1.12 ms
(8,16,16) 1.26 ms ± 78.1 µs 14.2 ms ± 273 µs 142 ms ± 3.08 ms
(16,16,16) 5.35 ms ± 1.01 ms 49.9 ms ± 2.03 ms 472 ms ± 4.63 ms

The kNN algorithm was executed to find the top 6 nearest neighbors using the Colab Pro envi-

ronment with 25.5Gb of memory RAM available. The results demonstrated a noticeable increase

in CPU time as the latent space grew larger. This increase can be attributed to the higher com-

putational effort required to search through a larger space and calculate the similarity between

vectors.

As the search space increases, the computational effort required for similarity search algo-

rithms also increases. This is evident in the processing times observed in Table 5.6, where the

latent representation size of 4096 exhibits a significant increase in processing time as the number

of images in the dataset grows.

For instance, when considering a dataset of 1K images and latent representation of 4096

(16,16,16), the processing time for the similarity search is recorded as 5.35 ms. However, when

the dataset size is increased to 100K images, the processing time rises to 474 ms, representing a

substantial increase of approximately 88 times in the processing time.

In the context of this study, the retrieval times posed no significant issues due to the limited

number of slides used. Nevertheless, it is essential to recognize that concerns may arise with

respect to integration more images and scaling the system as it progress further. The impact of

CPU time on search similarity is an important consideration in practical applications. In sce-

narios where real-time or near-real-time performance is crucial, such as interactive systems or

time-sensitive applications, it becomes necessary to optimize the algorithm or employ alternative
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approaches to mitigate the computational burden. This may involve using dimension reduction

techniques, approximate nearest neighbor search methods or distributed computing frameworks to

distribute the workload and reduce the overall CPU time.

Understanding the relationship between CPU time and vector size provides insights regarding

the scalability and the efficiency of similarity search algorithms. By considering the impact of CPU

time, researchers and practitioners can make informed decisions when selecting and optimizing

algorithms for large-scale similarity search tasks, ensuring that the system can handle increasing

workloads without compromising search accuracy or response times.

5.5 Summary

In this Chapter it was presented the experimental results obtained for the three types of image

retrieval models proposed: text-based on the medical annotations, a content-based using Convolu-

tional Autoencoder and Supervised Autoencoder.

The annotation-based model demonstrated a promising performance in retrieving similar cases

based on medical annotations, effectively leveraging the annotated information to identify cases

with similar characteristics. However, regarding the structural aspects, it presented a NCC Score

of 5,5%, indicating low physical correlation between the retrieval images and demonstrated limi-

tations in capturing the structural aspects of the images, as it initially relied on textual annotations.

Furthermore, new features were implemented on the model to facilitate the search, being able

to enhance the match on structural aspects. Although it retrieved images with similar semantic

meaning, a medical validation is necessary to evaluate the relevance of the retrieved cases. On

this model the main challenge relies heavily on dependency of annotated cases, which can be

time-consuming and resource-intensive to obtain.

The Convolutional Autoencoder model showed promising performance in retrieving lung can-

cer images based on their visual composition, indicating its ability to capture low-level visual

features for similarity-based retrieval. With a NCC score of 73%, the percentage of the retrieved

images presented a strong correlation with the query image. However, when it was evaluated the

medical annotations of the query image with the medical annotations of the retrieval images it

was identified a low level of similarity. This model faces a semantic gap, which means it lacks

the incorporation of medical-specific characteristics necessary for accurately characterizing lung

cancer. As a result, the retrieved images from this model exhibit a high degree of structural simi-

larity but a low level of semantic similarity. To validate the relevance and accuracy of the retrieved

images, it is again crucial to involve medical experts who can provide their expertise and insights

in evaluating the retrieved results. This step is essential to ensure that the retrieved images are not

only visually similar but also medically relevant and informative.

In contrast, the Supervised Autoencoder model was proposed as a solution to address the se-

mantic gap in lung cancer characterization. However, the results obtained from this model were

ineffective. It struggled to retrieve images with sufficient similarity and failed to bridge the seman-

tic gap adequately. To improve the performance of the Supervised Autoencoder model, further



Experimental Results and Discussion 52

research is needed. Exploring alternative approaches, refining the model architecture, and incor-

porating additional medical-specific characteristics could help to overcome these limitations and

enhance its effectiveness in accurately characterizing lung cancer.

Furthermore, it was evaluated the computational cost of the size of latent representation and the

size of the search space and their impact on the retrieval time in retrieval system. It was highlighted

that for system implementation it is necessary to evaluate the trade-off between computational cost,

search space size, and retrieval time to support the efficiency and scalability of these systems.



Chapter 6

Conclusion and future work

In this study, it was investigated the utilization of a Content-Based Image Retrieval system as

the core engine for a health recommender system focused on lung cancer characterization. The

aim was to leverage medical annotations and image similarity search to assist healthcare profes-

sionals in diagnosing and characterizing lung cancer based on retrieval of similar cases. It was

explored and highlighted the capabilities and limitations of the employed models, namely medi-

cal annotation-based, Convolutional Autoencoder and Supervised Autoencoder, in addressing the

challenges associated with the semantic gap between visual features and medical annotations.

The primary results indicated that the text-based model showed promising performance in

retrieving similar cases based on medical annotations. The model effectively leveraged the anno-

tated information to identify cases with similar characteristics, leading to the retrieval of relevant

past cases. However, when it comes to image similarity, the model exhibited a lower correlation

with the structural aspects of the images as the model was primarily relied on the textual anno-

tations. Additionally, a required medical validation is necessary to evaluate the relevance of the

retrieval cases. One of the main challenges encountered is that this model heavily relies on the

availability of annotated cases in order to perform effective retrieval. This poses a limitation, as

obtaining comprehensive and accurate annotations for the past cases can be time-consuming and

resource-intensive.

The results of the Autoencoder model exhibited promising performance in retrieving lung can-

cer images with a strong correlation to their image composition. This capability indicates that the

Autoencoder effectively captured and leveraged low-level visual features to retrieve visually simi-

lar images. However, a notable limitation of the Autoencoder-based approach was the presence of

a semantic gap when compared to the medical annotations associated with the lung cancer images.

The model struggled to bridge this gap, as it focused primarily on visual similarity and failed to

incorporate the necessary medical-specific characteristics required for accurate lung cancer char-

acterization.

On the other hand, the Supervised Autoencoder, designed with the attempt to address the

semantic gap presented an ineffective results. It exhibited limitations in retrieving images with

sufficient similarity and failed to effectively bridge the semantic gap. The Supervised Autoencoder

53
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presented new challenges and complexities associated with training and architecture of image

retrieval system in this particular scenario of lung cancer characterization.

Further research and exploration of different types of architectures are essential to overcome

the technical challenges encountered in this study. One promising avenue is the utilization of

pre-trained models, fine-tuning techniques and restrict the problem for a multi-class classifica-

tion. Fine-tuning these models on the targeted dataset can enhance their effectiveness in capturing

relevant patterns and structures related to lung cancer characterization.

Additionally, exploring the development of an embedded model that incorporates the analysis

of slices from a 3D perspective could be a interesting approach for enhancing the capabilities of

the recommendation system.The use of 3D slices allows for a more comprehensive representation

of the lung cancer cases, capturing additional spatial information and contextual cues that may

contribute to more accurate retrieval and characterization

Moreover, collaboration with medical experts and domain-specific guidance is essential for

developing effective health recommender systems. Close collaboration will ensure that the system

aligns with the requirements and expectations of healthcare professionals while it supports the

improving of system’s performance and enhancing its clinical relevance.
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