4,103 research outputs found

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room

    Photorealistic physically based render engines: a comparative study

    Full text link
    Pérez Roig, F. (2012). Photorealistic physically based render engines: a comparative study. http://hdl.handle.net/10251/14797.Archivo delegad

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Virtual Reality Based Simulation of Hysteroscopic Interventions

    Get PDF
    Virtual reality based simulation is an appealing option to supplement traditional clinical education. However, the formal integration of training simulators into the medical curriculum is still lacking. Especially, the lack of a reasonable level of realism supposedly hinders the widespread use of this technology. Therefore, we try to tackle this situation with a reference surgical simulator of the highest possible fidelity for procedural training. This overview describes all elements that have been combined into our training system as well as first results of simulator validation. Our framework allows the rehearsal of several aspects of hysteroscopy—for instance, correct fluid management, handling of excessive bleeding, appropriate removal of intrauterine tumors, or the use of the surgical instrument

    Visual Perception and Cognition in Image-Guided Intervention

    Get PDF
    Surgical image visualization and interaction systems can dramatically affect the efficacy and efficiency of surgical training, planning, and interventions. This is even more profound in the case of minimally-invasive surgery where restricted access to the operative field in conjunction with limited field of view necessitate a visualization medium to provide patient-specific information at any given moment. Unfortunately, little research has been devoted to studying human factors associated with medical image displays and the need for a robust, intuitive visualization and interaction interfaces has remained largely unfulfilled to this day. Failure to engineer efficient medical solutions and design intuitive visualization interfaces is argued to be one of the major barriers to the meaningful transfer of innovative technology to the operating room. This thesis was, therefore, motivated by the need to study various cognitive and perceptual aspects of human factors in surgical image visualization systems, to increase the efficiency and effectiveness of medical interfaces, and ultimately to improve patient outcomes. To this end, we chose four different minimally-invasive interventions in the realm of surgical training, planning, training for planning, and navigation: The first chapter involves the use of stereoendoscopes to reduce morbidity in endoscopic third ventriculostomy. The results of this study suggest that, compared with conventional endoscopes, the detection of the basilar artery on the surface of the third ventricle can be facilitated with the use of stereoendoscopes, increasing the safety of targeting in third ventriculostomy procedures. In the second chapter, a contour enhancement technique is described to improve preoperative planning of arteriovenous malformation interventions. The proposed method, particularly when combined with stereopsis, is shown to increase the speed and accuracy of understanding the spatial relationship between vascular structures. In the third chapter, an augmented-reality system is proposed to facilitate the training of planning brain tumour resection. The results of our user study indicate that the proposed system improves subjects\u27 performance, particularly novices\u27, in formulating the optimal point of entry and surgical path independent of the sensorimotor tasks performed. In the last chapter, the role of fully-immersive simulation environments on the surgeons\u27 non-technical skills to perform vertebroplasty procedure is investigated. Our results suggest that while training surgeons may increase their technical skills, the introduction of crisis scenarios significantly disturbs the performance, emphasizing the need of realistic simulation environments as part of training curriculum

    Emerging Challenges in Technology-based Support for Surgical Training

    Get PDF
    This paper stipulates several technological research and development thrusts that can assist in modern day approaches to simulated training of minimally invasive laparoscopic and robot surgery. Basic tenets of such training are explained, and specific areas of research are enumerated. Specifically, augmented and mixed reality are proposed as a means of improving perceptual and clinical decision-making skills, haptics are proposed as mechanism not only to provide force feedback and guidance, but also as a means of reflecting a tactile feel of surgery in simulated training scenarios. Learning optimization is discussed to fine tune the difficulty levels of various exercises. All the above elements can serve as the foundation for building computer-based virtual coaching environments that can reduce the training costs and provide a broader access to learning highly complex, technology driven surgical techniques

    Defining Reality in Virtual Reality: Exploring Visual Appearance and Spatial Experience Focusing on Colour

    Get PDF
    Today, different actors in the design process have communication difficulties in visualizing and predictinghow the not yet built environment will be experienced. Visually believable virtual environments (VEs) can make it easier for architects, users and clients to participate in the planning process. This thesis deals with the difficulties of translating reality into digital counterparts, focusing on visual appearance(particularly colour) and spatial experience. The goal is to develop knowledge of how differentaspects of a VE, especially light and colour, affect the spatial experience; and thus to contribute to a better understanding of the prerequisites for visualizing believable spatial VR-models. The main aims are to 1) identify problems and test solutions for simulating realistic spatial colour and light in VR; and 2) develop knowledge of the spatial conditions in VR required to convey believable experiences; and evaluate different ways of visualizing spatial experiences. The studies are conducted from an architecturalperspective; i.e. the whole of the spatial settings is considered, which is a complex task. One important contribution therefore concerns the methodology. Different approaches were used: 1) a literature review of relevant research areas; 2) a comparison between existing studies on colour appearance in 2D vs 3D; 3) a comparison between a real room and different VR-simulations; 4) elaborationswith an algorithm for colour correction; 5) reflections in action on a demonstrator for correct appearance and experience; and 6) an evaluation of texture-styles with non-photorealistic expressions. The results showed various problems related to the translation and comparison of reality to VR. The studies pointed out the significance of inter-reflections; colour variations; perceived colour of light and shadowing for the visual appearance in real rooms. Some differences in VR were connected to arbitrary parameter settings in the software; heavily simplified chromatic information on illumination; and incorrectinter-reflections. The models were experienced differently depending on the application. Various spatial differences between reality and VR could be solved by visual compensation. The study with texture-styles pointed out the significance of varying visual expressions in VR-models

    Defining Reality in Virtual Reality: Exploring Visual Appearance and Spatial Experience Focusing on Colour

    Get PDF
    Today, different actors in the design process have communication difficulties in visualizing and predictinghow the not yet built environment will be experienced. Visually believable virtual environments (VEs) can make it easier for architects, users and clients to participate in the planning process. This thesis deals with the difficulties of translating reality into digital counterparts, focusing on visual appearance(particularly colour) and spatial experience. The goal is to develop knowledge of how differentaspects of a VE, especially light and colour, affect the spatial experience; and thus to contribute to a better understanding of the prerequisites for visualizing believable spatial VR-models. The main aims are to 1) identify problems and test solutions for simulating realistic spatial colour and light in VR; and 2) develop knowledge of the spatial conditions in VR required to convey believable experiences; and evaluate different ways of visualizing spatial experiences. The studies are conducted from an architecturalperspective; i.e. the whole of the spatial settings is considered, which is a complex task. One important contribution therefore concerns the methodology. Different approaches were used: 1) a literature review of relevant research areas; 2) a comparison between existing studies on colour appearance in 2D vs 3D; 3) a comparison between a real room and different VR-simulations; 4) elaborationswith an algorithm for colour correction; 5) reflections in action on a demonstrator for correct appearance and experience; and 6) an evaluation of texture-styles with non-photorealistic expressions. The results showed various problems related to the translation and comparison of reality to VR. The studies pointed out the significance of inter-reflections; colour variations; perceived colour of light and shadowing for the visual appearance in real rooms. Some differences in VR were connected to arbitrary parameter settings in the software; heavily simplified chromatic information on illumination; and incorrectinter-reflections. The models were experienced differently depending on the application. Various spatial differences between reality and VR could be solved by visual compensation. The study with texture-styles pointed out the significance of varying visual expressions in VR-models

    Perceptual effects of volumetric shading models in stereoscopic desktop-based environments

    Get PDF
    Throughout the years, many shading techniques have been developed to improve the conveying of information in Volume Visualization. Some of these methods, usually referred to as realistic, are supposed to provide better cues for the understanding of volume data sets. While shading approaches are heavily exploited in traditional monoscopic setups, no previous study has analyzed the effect of these techniques in Virtual Reality. To further explore the influence of shading on the understanding of volume data in such environments, we carried out a user study in a desktop-based stereoscopic setup. The goals of the study were to investigate the impact of well-known shading approaches and the influence of real illumination on depth perception. Participants had to perform three different perceptual tasks when exposed to static visual stimuli. 45 participants took part in the study, giving us 1152 trials for each task. Results show that advanced shading techniques improve depth perception in stereoscopic volume visualization. As well, external lighting does not affect depth perception when these shading methods are applied. As a result, we derive some guidelines that may help the researchers when selecting illumination models for stereoscopic rendering.Peer ReviewedPostprint (author's final draft
    corecore