29 research outputs found

    Advanced Coding And Modulation For Ultra-wideband And Impulsive Noises

    Get PDF
    The ever-growing demand for higher quality and faster multimedia content delivery over short distances in home environments drives the quest for higher data rates in wireless personal area networks (WPANs). One of the candidate IEEE 802.15.3a WPAN proposals support data rates up to 480 Mbps by using punctured convolutional codes with quadrature phase shift keying (QPSK) modulation for a multi-band orthogonal frequency-division multiplexing (MB-OFDM) system over ultra wideband (UWB) channels. In the first part of this dissertation, we combine more powerful near-Shannon-limit turbo codes with bandwidth efficient trellis coded modulation, i.e., turbo trellis coded modulation (TTCM), to further improve the data rates up to 1.2 Gbps. A modified iterative decoder for this TTCM coded MB-OFDM system is proposed and its bit error rate performance under various impulsive noises over both Gaussian and UWB channel is extensively investigated, especially in mismatched scenarios. A robust decoder which is immune to noise mismatch is provided based on comparison of impulsive noises in time domain and frequency domain. The accurate estimation of the dynamic noise model could be very difficult or impossible at the receiver, thus a significant performance degradation may occur due to noise mismatch. In the second part of this dissertation, we prove that the minimax decoder in \cite, which instead of minimizing the average bit error probability aims at minimizing the worst bit error probability, is optimal and robust to certain noise model with unknown prior probabilities in two and higher dimensions. Besides turbo codes, another kind of error correcting codes which approach the Shannon capacity is low-density parity-check (LDPC) codes. In the last part of this dissertation, we extend the density evolution method for sum-product decoding using mismatched noises. We will prove that as long as the true noise type and the estimated noise type used in the decoder are both binary-input memoryless output symmetric channels, the output from mismatched log-likelihood ratio (LLR) computation is also symmetric. We will show the Shannon capacity can be evaluated for mismatched LLR computation and it can be reduced if the mismatched LLR computation is not an one-to-one mapping function. We will derive the Shannon capacity, threshold and stable condition of LDPC codes for mismatched BIAWGN and BIL noise types. The results show that the noise variance estimation errors will not affect the Shannon capacity and stable condition, but the errors do reduce the threshold. The mismatch in noise type will only reduce Shannon capacity when LLR computation is based on BIL

    Resource Allocation for Interference Management in Wireless Networks

    Get PDF
    Interference in wireless networks is a major problem that impacts system performance quite substantially. Combined with the fact that the spectrum is limited and scarce, the performance and reliability of wireless systems significantly deteriorates and, hence, communication sessions are put at the risk of failure. In an attempt to make transmissions resilient to interference and, accordingly, design robust wireless systems, a diverse set of interference mitigation techniques are investigated in this dissertation. Depending on the rationale motivating the interfering node, interference can be divided into two categories, communication and jamming. For communication interference such as the interference created by legacy users(e.g., primary user transmitters in a cognitive radio network) at non-legacy or unlicensed users(e.g.,secondary user receivers), two mitigation techniques are presented in this dissertation. One exploits permutation trellis codes combined with M-ary frequency shift keying in order to make SU transmissions resilient to PUs’ interference, while the other utilizes frequency allocation as a mitigation technique against SU interference using Matching theory. For jamming interference, two mitigation techniques are also investigated here. One technique exploits time and structures a jammer mitigation framework through an automatic repeat request protocol. The other one utilizes power and, following a game-theoretic framework, employs a defense strategy against jamming based on a strategic power allocation. Superior performance of all of the proposed mitigation techniques is shown via numerical results

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Multi-user spatial diversity techniques for wireless communication systems

    Get PDF
    Multiple antennas at the transmitter and receiver, formally known as multiple-input multiple-output (MIMO) systems have the potential to either increase the data rates through spatial multiplexing or enhance the quality of services through exploitation of diversity. In this thesis, the problem of downlink spatial multiplexing, where a base station (BS) serves multiple users simultaneously in the same frequency band is addressed. Spatial multiplexing techniques have the potential to make huge saving in the bandwidth utilization. We propose spatial diversity techniques with and without the assumption of perfect channel state information (CSI) at the transmitter. We start with proposing improvement to signal-to-leakage ratio (SLR) maximization based spatial multiplexing techniques for both fiat fading and frequency selective channels. [Continues.

    MIMO-THP System with Imperfect CSI

    Get PDF

    Optimising multiple antenna techniques for physical layer security

    Get PDF
    Wireless communications offer data transmission services anywhere and anytime, but with the inevitable cost of introducing major security vulnerabilities. Indeed, an eavesdropper can overhear a message conveyed over the open insecure wireless media putting at risk the confidentiality of the wireless users. Currently, the way to partially prevent eavesdropping attacks is by ciphering the information between the authorised parties through complex cryptographic algorithms. Cryptography operates in the upper layers of the communication model, bit it does not address the security problem where the attack is suffered: at the transmission level. In this context, physical layer security has emerged as a promising framework to prevent eavesdropping attacks at the transmission level. Physical layer security is based on information-theoretic concepts and exploits the randomness and the uniqueness of the wireless channel. In this context, this thesis presents signal processing techniques to secure wireless networks at the physical layer by optimising the use of multiple-antennas. A masked transmission strategy is used to steer the confidential information towards the intended receiver, and, at the same time, broadcast an interfering signal to confuse unknown eavesdroppers. This thesis considers practical issues in multiple-antenna networks such as limited transmission resources and the lack of accurate information between the authorised transmission parties. The worst-case for the security, that occurs when a powerful eavesdropper takes advantage of any opportunity to put at risk the transmission confidentiality, is addressed. The techniques introduced improve the security by offering efficient and innovative transmission solutions to lock the communication at the physical layer. Notably, these transmission mechanisms strike a balance between confidentiality and quality to satisfy the practical requirements of modern wireless networks

    OFDM based air interfaces for future mobile satellite systems

    Get PDF
    This thesis considers the performance of OFDM in a non-linear satellite channel and mechanisms for overcoming the degradations resulting from the high PAPR in the OFDM signal in the specific satellite architecture. It was motivated by new S-DMB applications but its results are applicable to any OFDM system via satellites. Despite many advantages of OFDM, higher PAPR is a major drawback. OFDM signals are therefore very sensitive to non-linear distortion introduced by the power amplifiers and thus, significantly reduce the power efficiency of the system, which is already crucial to satellite system economics. Simple power amplifier back-off to cope with high OFDM PAPR is not possible. Two transmitter based techniques have been considered: PAPR reduction and amplifier linearization.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Underwater acoustic communications

    Get PDF
    The underwater acoustic medium poses unique challenges to the design of robust, high throughput digital communications. The aim of this work is to identify modulation and receiver processing techniques to enable the reliable transfer of data at high rate, at range between two, potentially mobile parties using acoustics. More generally, this work seeks to investigate techniques to effectively communicate between two or more parties over a wide range of channel conditions where data rate is a key but not always the absolute performance requirement. Understanding the intrinsic ocean mechanisms that influence signal coherence, the relationship between signal coherence and optimum signal design, and the development of robust modulation and receiver processing techniques are the main areas of study within this work. New and established signal design, modulation, synchronisation, equalisation and spatial processing techniques are investigated. Several new, innovative techniques are presented which seek to improve the robustness of ‘classical’ solutions to the underwater acoustic communications problem. The performance of these techniques to mitigate the severe temporal dispersion of the underwater channel and its unique temporal variability are assessed. A candidate modulation, synchronisation and equalisation architecture is proposed based on a spatial-temporal adaptive signal processing (STAP) receiver. Comprehensive simulation results are presented to demonstrate the performance of the candidate receiver to time selective, frequency selective and spatially selective channel behaviour. Several innovative techniques are presented which maximise system performance over a wider range of operational and environmental conditions. Field trials results are presented based on system evaluation over a wide range of geographically distinct environments demonstrating system performance over a diverse range of ocean bathymetry, topography and background noise conditions. A real time implementation of the system is reported and field trials results presented demonstrating the capability of the system to support a wide range of data formats including video at useful frame rates. Within this work, several novel techniques have been developed which have extended the state of the art in high data rate underwater communications:- • Robust, high fidelity open loop synchronisation techniques capable of operating at marginal signal-to-noise ratios over a wide range of severely time spread environments. These high probability of synchronisation, low probability of false alarm techniques, provide the means for ‘burst’ open loop synchronisation in time, Doppler and space (bearing). The techniques have been demonstrated in communication and position fixing/navigation systems to provide repeatable range accuracy’s to centimetric order. • Novel closed loop synchronisation compensation for STAP receiver architectures. Specifically, this work has demonstrated the performance benefits of including both delay lock loop (DLL) and phase lock loop (PLL) support for acoustic adaptive receivers to offload tracking effort from the fractional feedforward equaliser section. It has been shown that the addition of a DLL/PLL outperforms the PLL only case for Doppler errors exceeding a few fractions of a knot. • Recycling of training data has been demonstrated as a potentially useful means to improve equaliser convergence in difficult acoustic channels. With suitable processing power, training data recycling introduces no additional transmission time overhead, which may be a limiting factor in battery powered applications. • Forward and time reverse decoding of packet data has been demonstrated as an effective means to overcome some non-minimum phase channel conditions. It has also been shown that there may be further benefits in terms of improved bit error performance, by exploiting concurrent forward and backward symbol data under modest channel conditions. • Several wideband techniques have been developed and demonstrated to be effective at resolving and coherently tracking difficult doubly spread acoustic channels. In particular, wideband spread spectrum techniques have been shown to be effective at resolving acoustic multipath, and with the aid of independent delay lock loops, track individual path arrivals. Techniques have been developed which can effect coherent or non-coherent recombination of these paths with a view to improving the robustness of an acoustic link operating at very low signal-to-noise levels. • Demonstrated throughputs of up to 41kbps in a difficult, tropical environment, featuring significant biological noise levels for mobile platforms at range up to 1.5km. • Demonstrated throughputs of between 300bps and 1600bps in a shallow, reverberant environment, at a range up to 21km at LF. • Implemented and demonstrated all algorithms in real time systems
    corecore