5,157 research outputs found

    Sink-Stable Sets of Digraphs

    Full text link
    We introduce the notion of sink-stable sets of a digraph and prove a min-max formula for the maximum cardinality of the union of k sink-stable sets. The results imply a recent min-max theorem of Abeledo and Atkinson on the Clar number of bipartite plane graphs and a sharpening of Minty's coloring theorem. We also exhibit a link to min-max results of Bessy and Thomasse and of Sebo on cyclic stable sets

    Sink-Stable Sets of Digraphs

    Get PDF
    We introduce the notion of sink-stable sets of a digraph and prove a min-max formula for the maximum cardinality of the union of k sink-stable sets. The results imply a recent min-max theorem of Abeledo and Atkinson on the Clar number of bipartite plane graphs and a sharpening of Minty’s coloring theorem. We also exhibit a link to min-max results of Bessy and Thomasse ́ and of Sebő on cyclic stable sets

    A network flow approach to a common generalization of Clar and Fries numbers

    Full text link
    Clar number and Fries number are two thoroughly investigated parameters of plane graphs emerging from mathematical chemistry to measure stability of organic molecules. We consider first a common generalization of these two concepts for bipartite plane graphs, and then extend it to a framework on general (not necessarily planar) directed graphs. The corresponding optimization problem can be transformed into a maximum weight feasible tension problem which is the linear programming dual of a minimum cost network flow (or circulation) problem. Therefore the approach gives rise to a min-max theorem and to a strongly polynomial algorithm that relies exclusively on standard network flow subroutines. In particular, we give the first network flow based algorithm for an optimal Fries structure and its variants

    Obstacle Numbers of Planar Graphs

    Full text link
    Given finitely many connected polygonal obstacles O1,,OkO_1,\dots,O_k in the plane and a set PP of points in general position and not in any obstacle, the {\em visibility graph} of PP with obstacles O1,,OkO_1,\dots,O_k is the (geometric) graph with vertex set PP, where two vertices are adjacent if the straight line segment joining them intersects no obstacle. The obstacle number of a graph GG is the smallest integer kk such that GG is the visibility graph of a set of points with kk obstacles. If GG is planar, we define the planar obstacle number of GG by further requiring that the visibility graph has no crossing edges (hence that it is a planar geometric drawing of GG). In this paper, we prove that the maximum planar obstacle number of a planar graph of order nn is n3n-3, the maximum being attained (in particular) by maximal bipartite planar graphs. This displays a significant difference with the standard obstacle number, as we prove that the obstacle number of every bipartite planar graph (and more generally in the class PURE-2-DIR of intersection graphs of straight line segments in two directions) of order at least 33 is 11.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Max-Min Greedy Matching

    Get PDF
    A bipartite graph G(U,V;E) that admits a perfect matching is given. One player imposes a permutation pi over V, the other player imposes a permutation sigma over U. In the greedy matching algorithm, vertices of U arrive in order sigma and each vertex is matched to the highest (under pi) yet unmatched neighbor in V (or left unmatched, if all its neighbors are already matched). The obtained matching is maximal, thus matches at least a half of the vertices. The max-min greedy matching problem asks: suppose the first (max) player reveals pi, and the second (min) player responds with the worst possible sigma for pi, does there exist a permutation pi ensuring to match strictly more than a half of the vertices? Can such a permutation be computed in polynomial time? The main result of this paper is an affirmative answer for these questions: we show that there exists a polytime algorithm to compute pi for which for every sigma at least rho > 0.51 fraction of the vertices of V are matched. We provide additional lower and upper bounds for special families of graphs, including regular and Hamiltonian graphs. Our solution solves an open problem regarding the welfare guarantees attainable by pricing in sequential markets with binary unit-demand valuations

    Decomposition theorem on matchable distributive lattices

    Full text link
    A distributive lattice structure M(G){\mathbf M}(G) has been established on the set of perfect matchings of a plane bipartite graph GG. We call a lattice {\em matchable distributive lattice} (simply MDL) if it is isomorphic to such a distributive lattice. It is natural to ask which lattices are MDLs. We show that if a plane bipartite graph GG is elementary, then M(G){\mathbf M}(G) is irreducible. Based on this result, a decomposition theorem on MDLs is obtained: a finite distributive lattice L\mathbf{L} is an MDL if and only if each factor in any cartesian product decomposition of L\mathbf{L} is an MDL. Two types of MDLs are presented: J(m×n)J(\mathbf{m}\times \mathbf{n}) and J(T)J(\mathbf{T}), where m×n\mathbf{m}\times \mathbf{n} denotes the cartesian product between mm-element chain and nn-element chain, and T\mathbf{T} is a poset implied by any orientation of a tree.Comment: 19 pages, 7 figure
    corecore