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SINK-STABLE SETS OF DIGRAPHS∗

DÓRA ERDŐS† , ANDRÁS FRANK‡ , AND KRISZTIÁN KUN§

Abstract. We introduce the notion of sink-stable sets of a digraph and prove a min-max formula
for the maximum cardinality of the union of k sink-stable sets. The results imply a recent min-max
theorem of Abeledo and Atkinson on the Clar number of bipartite plane graphs and a sharpening of
Minty’s coloring theorem. We also exhibit a link to min-max results of Bessy and Thomassé and of
Sebő on cyclic stable sets.
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1. Introduction. It is well known that the problem of finding a stable set
of maximum cardinality is NP-complete in a general undirected graph but nicely
tractable, for example, for comparability graphs. A comparability graph is the under-
lying undirected graph of a comparability digraph, which is, by definition, an acyclic
and transitive digraph. Such a digraph can also be considered as one describing the
relations between the pair of elements of a partially ordered set. A subset S of nodes
of a directed graph D = (V,A) is defined to be stable if S is stable in the underlying
undirected graph of D.

The present investigations have three apparently unrelated sources. In solving a
long-standing conjecture of Gallai [12], Bessy and Thomassé [3] introduced a special
type of stable sets, called cyclic stable sets, and proved a min-max result on the
maximum cardinality of a cyclic stable set. They also derived a theorem on the
minimum number of cyclic stable sets required to cover all nodes. These two results
were unified and extended by Sebő [18], who proved a min-max formula for the largest
union of k cyclic stable sets. His theorem is an extension of the theorem of Greene and
Kleitman [13]. Another source is a recent min-max result of Abeledo and Atkinson on
the Clar number of plane bipartite graphs. The third source is a coloring theorem of
Minty [16]. It will be shown that there is a strong relationship among these apparently
remote results.

To this end, we introduce and study another special kind of stable sets of an
arbitrary digraph D. By a cut of a digraph D = (V,A) defined by a subset Z of nodes
we mean the set of arcs connecting Z and V − Z (in either direction). In the special
case when no arc enters Z, the cut is called a directed cut or a dicut of D. A node of
D will be called a sink node (or just a sink) if it admits no leaving arcs. A node is a
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source node if it admits no entering arcs. A subset of nodes is a sink set (respectively,
a source set) if each of its elements is a sink (respectively, a source). Clearly, a sink
set is always stable. By reorienting (or reversing) an arc uv we mean the operation
of replacing uv by vu. The reorientation of a subset B of arcs (that is, reversing B)
means that we reorient all the elements of B. We say that a subset S of nodes of D is
sink-stable if there are arc-disjoint directed cuts of D so that reorienting these dicuts
S becomes a sink set. Obviously, any subset of a sink-stable set is also sink-stable. A
source-stable set is defined analogously. Corollary 3.4 will show that a subset S ⊆ V
is sink-stable if and only if S is source-stable. Note that a node of a di-circuit never
belongs to a sink-stable set since a dicut and a di-circuit are always disjoint.

As an example, consider the acyclic digraph D = (V,A), where V = {a, b, c, d}
and A = {ab, bc, cd, ad}. Here every single node is a one-element sink-stable set, but
not every stable set is sink-stable, as is demonstrated by the stable set {a, c}. Note
that D is not transitive, and hence D is not a comparability digraph. In Theorem
4.1, we shall characterize sink-stable sets, but it is useful to observe already at this
point that in comparability digraphs sink-stable sets and stable sets are the same.

Proposition 1.1. In a comparability digraph D = (V,A), every stable set is
sink-stable.

Proof. Let S be a stable set. We may assume that S is maximal. Let Z denote
the set of nodes of V − S that can be reached along a dipath from S. We claim that
no arc can leave Z. Indeed, if uv does, then v is also reachable from a node s in S,
and hence v must be in S. Since D is acyclic, v �= s. Since D is transitive, there is an
arc sv ∈ A, contradicting the stability of S. It follows that the arcs entering Z form
a dicut, and reorienting this dicut S becomes a sink set.

The property of sink-stability is in NP in the sense that the set of disjoint dicuts
whose reorientation turns a subset S into a sink set is a fast checkable certificate
for S to be sink-stable. Theorem 4.1 will describe a co-NP characterization for sink-
stability, and its proof actually gives rise to a polynomial time algorithm. We shall
also characterize the union of k sink-stable sets for any integer k ≥ 2, and as a main
result, a min-max formula will be proven for the largest union of k sink-stable sets.

The result for k = 1 shall imply a recent min-max theorem of Abeledo and Atkin-
son [1] on the Clar number of a 2-connected bipartite plane graph G. Here the Clar
number is defined to be the maximum number of disjoint bounded faces of G whose
removal leaves a perfectly matchable graph. This notion was originally introduced
in chemistry for hexagonal plane graphs to capture the behavior of characteristic
chemical and physical properties of aromatic benzenoids.

We will also derive a sharpening of Minty’s coloring theorem [16] by proving a
min-max formula for the minimum number of sink-stable sets to cover V and show
how this result implies a theorem of Bondy [4] stating that the chromatic number of
a strongly connected digraph is at most the length of its largest di-circuit.

Finally, an interesting link will be explored to a recent min-max theorem of Bessy
and Thomassé [3] on so-called cyclic stable sets of strongly connected digraphs, a
result that implied a solution of a conjecture of Gallai [12]. A min-max theorem of
Sebő [18] on the largest union of k cyclic stable sets will also be a consequence.

To conclude this introductory section, we introduce some definitions and notation.
For a function m : V → R (or vector m ∈ RV ), we define a set-function m̃ by
m̃(X) =

∑
[m(v) : v ∈ X ], where X ⊆ V. For a number x, let x+ := max{x, 0}. Given

a ground-set S, by amultiset Z we mean a collection of elements of S where an element
of S may occur in more than one copy. The indicator function χ

Z
: S → {0, 1, 2, . . .}
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of Z tells that χ
Z
(v) copies of an element v of S occurs in Z. A multiset is sometimes

identified with its indicator function, which is a nonnegative integer-valued function
on S.

LetD = (V,A) be a digraph. For function x : A→ R, the in-degree and out-degree
functions �x and δx are defined by �x(Z) =

∑
[x(uv) : uv ∈ A, u ∈ V − Z, v ∈ Z]

for Z ⊆ V and by δx(Z) := �x(V − Z), respectively. The function x is a circulation
if �x = δx. A function π : V → R is often called a potential. For a potential π, the
potential difference Δπ : A→ R is defined by Δπ(uv) := π(v) − π(u), where uv ∈ A.
A function arising in this way is also called a tension.

By a topological ordering of a digraph D we mean an ordering v1, . . . , vn of the
nodes so that every arc a of D goes forward, that is, a is of type vivj , where i < j. It
is well known that D is acyclic if and only if it admits a topological ordering.

A circuit is a connected undirected graph in which the degree of every node is
2. A directed graph is also called a circuit if it arises from an undirected circuit by
arbitrarily orienting its edges. Typically, we use the convention for a circuit C that C
also denotes the arc-set of the circuit, while V (C) denotes its node-set. Every circuit
C with at least three nodes has two cyclic orientations. For a loop (that is, a one-
element circuit) or for a two-element circuit, there is only one cyclic orientation, and
we say in this case that the two cyclic orientations coincide. A circuit with a specified
cyclic orientation will be called a circle. If C is a circuit, the two circles belonging to
C will be denoted by

−→
C and

←−
C , and they will be said to be opposite to each other.

In a digraph, the arcs of a circle
−→
C complying with the cyclic orientation are

called forward arcs, while the remaining arcs of
−→
C are its backward arcs. The number

of forward and backward arcs of a circle is denoted by ϕ(
−→
C ) and β(

−→
C ), respectively.

Clearly, β(
−→
C ) = ϕ(

←−
C ). Sometimes we call β(

−→
C ) the β-value of

−→
C . The minimum of

ϕ(
−→
C ) and β(

−→
C ) will be denoted by η(C). When η(C) = 0, we speak of a one-way

circuit or a di-circuit. We emphasize the difference between a circuit whose arcs are
just directed arcs and a di-circuit.

We call an arc or a node of a digraph cyclic if it belongs to a di-circuit. For a
function x : A→ R, ϕx(C) denotes the sum of the x-values over the forward arcs of
circuit C, while βx(C) is the sum of the x-values over the backward arcs. Clearly,
ϕx(C)+βx(C) = x̃(C). For a subset B of arcs, ϕB(C) denotes the number of forward
arcs of C belonging to B, while βB(C) is the number of backward arcs of C belonging
to B.

In a directed graphD = (V,A), by a walk W we mean a sequence (v0, e1, v1, e2, . . . ,
ek, vk) consisting of not necessarily distinct nodes and arcs where ei is either a vi−1vi-
arc (called a forward arc) or a vivi−1-arc (called a backward arc). If every arc is
forward, we speak of a one-way walk or a di-walk, and if, in addition, the terms
of W are distinct, then W is a one-way path or a di-path. The number of forward
and backward arcs of W is denoted by ϕ(W ) and β(W ), respectively. Therefore
ϕ(W ) + β(W ) = k.

When v0 = vk and W has at least one arc, we speak of a closed walk. If the terms
of a closed walk are distinct apart from v0 and vk, we speak of a simple closed walk.
Therefore a simple closed walk with at least one arc can be identified with a circle
(which was defined as a circuit having a specified cyclic orientation).

A digraph D = (V,A) is weakly connected (or just connected) if its underlying
undirected graph is connected. D is strongly connected or strong if the in-degree of
every nonempty proper subset of V is at least 1. It is well known that D is strongly
connected if and only if there is a one-way path from every node to every other.
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2. Preliminaries on di-circuits. In this section, we summarize some impor-
tant properties, to be used in forthcoming sections, on di-circuits of digraphs.

2.1. Two basic lemmas. The first one is due to Gallai (see, for example, The-
orem 8.2 in [17] or Theorem 3.1.1 in [10]). Given a digraph D = (V,A), a function
c : A→ R is called conservative if c̃(K) ≥ 0 for every di-circuit K of D. A potential
π is c-feasible or just feasible if Δπ ≤ c.

Lemma 2.1 (Gallai [11]). A cost function c : A→ R on the arc-set of a digraph
D = (V,A) is conservative if and only if there is a feasible potential. Moreover, if c
is integer-valued and there is a feasible potential π, then π can also be selected to be
integer-valued.

The lemma immediately implies for an integer-valued tension x that there is an
integer-valued potential π for which x = Δπ. With the help of the Bellman–Ford
algorithm, one can find in polynomial time either a feasible potential or a negative
di-circuit.

To formulate our second lemma on di-circuits, we call a subset L of arcs of a
digraph D = (V,A) circuit-flat or just flat if every arc of D belongs to a di-circuit
containing exactly one element of L. We say that L ⊆ A is a transversal of di-circuits
of D if L intersects all di-circuits. (Such an L is sometimes called in the literature
a feedback arc-set.) Note that a flat set L is not required to be a transversal of di-
circuits, but if it is, we speak about a flat transversal. The following pretty lemma
will be used at several places.

Lemma 2.2 (Knuth lemma [15]). Every strongly connected digraph D = (V,A)
admits a flat transversal of di-circuits.

Knuth’s proof is not particularly difficult, but Iwata and Matsuda [14] found an
even simpler one based on the ear-decomposition of strong digraphs.

2.2. A min-max theorem of Gallai. Beside Lemma 2.1, the same paper [11]
of Gallai contains a much less known but important theorem on optimal covering of
nodes by di-circuits. Let D = (V,A) be a digraph and c : A→ Z+ be a nonnegative
integer-valued function that is sometimes interpreted as an element of the vector-space
RA. For an element x ∈ RA, cx (= xc) denotes the inner product of c and x, that
is, cx =

∑
[c(e)x(e) : e ∈ A].

The c-value of a circuit C is the sum of the c-values of the arcs of C, that is, c̃(C).
We say that a multiset of nodes with indicator function z is c-independent if, for every
di-circuit K of D, z contains at most c̃(K) nodes of K, that is, if z̃(V (K)) ≤ c̃(K).

Let w : V → Z+ be a weight function. For a function y ≥ 0 defined on the set of
di-circuits of D, we say that y covers w if∑

[y(K) : K a di-circuit containing v] ≥ w(v) for every v ∈ V .(2.1)

A circulation z ≥ 0 is said to cover w if �z(v) ≥ w(v) holds for every node
v ∈ V . The following lemma describes a simple and well-known relationship between
circulations and families of di-circuits covering w.

Lemma 2.3. If y ≥ 0 is a function on the set of di-circuits covering w, then
the function z : A → Z+ defined by z(e) :=

∑
[y(K) : K a di-circuit containing e] is

a nonnegative circulation covering w for which cz =
∑

[y(K)c̃(K) : K a di-circuit].
Furthermore, if y is integer-valued, then so is z. Conversely, a circulation z ≥ 0
covering w can be expressed as a nonnegative linear combination of di-circuits, and if
z =

∑
y(K)χ(K) is such an expression, then y covers w and cz =

∑
[y(K)c̃(K) : K
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a di-circuit]. Furthermore, if z is integer-valued, then y can also be chosen integer-
valued.

The following result of Gallai [11] appeared in 1958. We cite it in its original
form because the literature does not seem to know about it. (In the theorem, Γ is a
directed graph).

(3.2.7) SATZ. Ist Γ endlich und gilt ψ[k] ≥ 0 für jeden positiven Kreis k, gibt
es ferner zu jedem Punkt X mit ϕ(X) > 0 einen positiven Kreis, der X enthält, so
ist das Minimum der ψ-Werte der punktfüllenden positiven Kreissysteme gleich dem
Maximum der ϕ-Werte der kreisaufnehmbaren Punktsysteme.

This translates to the following: If Γ is finite and ψ[k] ≥ 0 holds for every positive
circuit, and if, furthermore, every point X with ϕ(X) > 0 is included in a positive
circuit, then the minimum ψ-value of point-covering positive circuit-systems is equal
to the maximum ϕ-value of circuit-independent point-systems.

Here ψ and ϕ are integer-valued functions on the arc-set and on the node-set,
respectively, of the digraph Γ, and a positive circuit means a di-circuit. In the present
context, we use functions c and w in place of ψ and ϕ, respectively, and the theorem
can be formulated as follows.

Theorem 2.4 (Gallai, Theorem (3.2.7) in [11]). Let c : A→ Z+ and w : V → Z+

be nonnegative functions on the arc-set and on the node-set, respectively, of a digraph
D = (V,A), and assume that each node v ∈ V with w(v) > 0 belongs to a di-circuit.
Then the minimum total sum of c-values of a system of di-circuits covering w is equal
to the maximum w-weight of a c-independent multiset of nodes of D, or more formally,
to

max{wz : z ∈ ZV
+ , z c-independent}.(2.2)

Remark. In the original version cited above only the conservativeness of c (= ψ)
was assumed and not its nonnegativity. But for a conservative c there is a feasible
potential π, and then the cost function cπ defined by cπ(uv) = c(uv) − π(v) + π(u)
is nonnegative, for which c̃(K) = c̃π(K) holds for every di-circuit K. In other words,
the theorem for conservative c follows from its special case for nonnegative c.

For completeness, we outline a proof of Theorem 2.4. Let Q denote the di-circuits
versus nodes incidence matrix of a digraph D. That is, Q is a (0, 1)-matrix with
rows corresponding to the di-circuits and columns corresponding to nodes. An entry
corresponding to a di-circuit C and a node v is 1 or 0 according to whether v is in V (C)
or not. A fundamental theorem of Edmonds and Giles [9] states that a polyhedron R
is integral provided that R is described by a totally dual integral (TDI) system and
both the constraint matrix and the bounding vector are integral. Combined with the
linear programming duality theorem, the following result is equivalent to Theorem
2.4.

Theorem 2.5. Let D = (V,A) be a digraph and c : A→ Z+ be an integer-valued
function. Let Q be the di-circuits versus nodes incidence matrix of D. Let c̃ denote
a vector whose components correspond to the rows of Q (that is, to the di-circuits of
D), and the value of a component corresponding to a di-circuit K is c̃(K). Then the
linear system

{Qx ≤ c̃, x ≥ 0}(2.3)

is totally dual integral.
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Proof. Let w be an integer-valued function on V . Consider the following linear
program:

min{∑[y(K)c̃(K) : K a di-circuit] : yQ ≥ w, y ≥ 0}.(2.4)

What we have to show is that this program has an integer-valued optimum if it
has an optimum at all. We may assume that w is nonnegative. We may also assume
that each v ∈ V with w(v) > 0 belongs to a di-circuit, for otherwise (2.4) has no
feasible solution at all.

By Lemma 2.3, it suffices to show that the linear system min{cz : z ≥ 0 a
circulation covering w} has an integer-valued optimum. But this follows from the
integrality of the circulation polyhedron by applying the standard node-duplicating
technique. Indeed, replace each node v of D by nodes v′ and v′′, replace each arc
uv ∈ A by a new arc u′v′′ (with lower capacity 0 and cost c(uv)), and finally add a
new arc v′′v′ (with lower capacity w(v) and cost 0) for every original node v ∈ V . In
the resulting digraph D′, a feasible circulation z′ defines a nonnegative circulation z
of D which covers w (that is, �z(v) ≥ w(v) for v ∈ V ) and c′z′ = cz.

With some work, this proof can be used to turn a min-cost circulation algorithm
into one that computes the optima in Theorem 2.4 in polynomial time. Theorem 2.5
has a self-refining nature. Since directed loops are special di-circuits, an upper bound
g(v) on the variable x(v) (v ∈ V ) in (2.3) or (2.2) can be built in the c-independence
of x. Namely, for each node v, let ev be directed loop at node v, and let c(ev) = g(v).
If Kv denotes the one-element di-circuit consisting of v and ev, then c̃(Kv) = g(v)
and the requirement of c-independence of a vector z ∈ ZV

+ includes the inequality
z(v) = z̃(V (Kv)) ≤ c̃(Kv) = g(v). With this observation, we obtain the following
extension of Theorem 2.5.

Theorem 2.6. Let Q be the di-circuits versus nodes incidence matrix of a digraph
D. Let g : V → Z+∪{∞} be an upper bound function on the node-set and c : A→ Z+

be a function on the arc-set. The linear system {Qx ≤ c̃, 0 ≤ x ≤ g} is TDI, where a
component c̃(K) of c̃ corresponding to the di-circuit K is defined by

∑
[c(e) : e ∈ K].

In particular, for g ≡ 1 one has

max{|S| : S ⊆ V, |S ∩K| ≤ c̃(K) for every di-circuit K}(2.5)

= min

{
q∑

i=1

c̃(Ki) + |V − ∪iV (Ki)| : K1, . . . ,Kq di-circuits of D

}
.(2.6)

Cameron [5] and Cameron and Edmonds [6] rediscovered this result and slightly
extended it to the case when, in addition to the upper bound g, a lower bound f is
also imposed on x. (Note that Cameron and Edmonds formulated their theorem for
the case when c was defined on V rather than on A, but the two versions can easily be
reduced to each other.) They used Theorem 2.6 in [7] to derive the following theorem,
which had originally been conjectured by Gallai [12]. (In the theorem, α(D∗) denotes
the maximum cardinality of a stable set of the underlying undirected graph of D∗.)

Theorem 2.7 (Bessy and Thomassé [3]). The node-set V of a strongly connected
digraph D∗ = (V,A∗) on n ≥ 2 nodes can be covered by at most α(D∗) di-circuits.

Proof (Cameron and Edmonds). Let F be a flat transversal of di-circuits, and let
c := χ

F
be the characteristic vector of F . Then the c-cost of every di-circuit is at

least 1; moreover, every arc, and hence every node, belongs to a di-circuit of c-cost
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1. This implies, on one hand, that S in (2.5) is a stable set. On the other hand, we
claim that the minimum in (2.6) can be written in the simpler form

min

{
q∑

i=1

c̃(Ki) : K1, . . . ,Kq di-circuits of D∗ covering V

}
.(2.7)

Indeed, if {K1, . . . ,Kq} is an optimizer family of di-circuits in (2.6) for which q is
maximum, then we must have V = V (K1) ∪ · · · ∪ V (Kq), for if there were a node
v ∈ V − (V (K1) ∪ · · · ∪ V (Kq)), then, as v belongs to a di-circuit Kq+1 of c-cost
1, {K1, . . . ,Kq,Kq+1} would be another optimizer family in (2.6), contradicting the
maximal choice of q. Now the theorem follows from (2.7) since c̃(K) ≥ 1 for every
di-circuit K.

3. Dicut-equivalence of digraphs. Sink-stability was introduced as a prop-
erty in NP. In this section we provide more flexible equivalent definitions for sink-
stable sets.

Lemma 3.1. For a subset F ⊆ A of arcs of a digraph D = (V,A), the following
are equivalent:

(A) The set F is the union of disjoint dicuts.
(B) The equality ϕF (C) = βF (C) holds for every circuit C of D.
(C) There is an integer-valued potential π : V → Z for which χ

F
= Δπ.

Proof. (A)→(B) Let C be a circuit, and let B be a dicut defined by a subset
Z ⊂ V with no arcs leaving Z. If we go around C clockwise and a node v ∈ V − Z
follows a node u ∈ Z, then vu is an arc of D, while if a node y ∈ V −Z follows a node
x ∈ Z, then xy is an arc of D. Therefore the arcs in C ∩ B are alternately forward
and backward arcs of C, and hence ϕB(C) = βB(C). Consequently, ϕF (C) = βF (C)
holds if F is the union of disjoint dicuts.

(B)→(C) Let x := χ
F
. Add the opposite arc e′ of each arc e of D and define

x(e′) := −x(e). Then (B) implies that x is conservative on the enlarged digraph.
By Gallai’s lemma, there is an integer-valued feasible potential π. For every arc
e = uv ∈ A and for its opposite arc e′ = vu, we have π(v) − π(u) ≤ x(e) and
π(u)− π(v) ≤ x(e′) = −x(e), from which π(v) − π(u) = x(e), and hence χ

F
= Δπ.

(C)→(A) Let π : V → Z be a potential for which χ
F
= Δπ. We may assume that

D is connected and also that the smallest value of π is zero. Let 0 = p0 < p1 < · · · < pq
denote the distinct values of π, and let Zi := {v : π(v) ≥ pi} for i = 1, . . . , q. No arc
uv can leave Zi, for otherwise Δπ(uv) = π(v)−π(u) ≤ −1 but Δπ is (0, 1)-valued. Let
Bi denote the set of arcs entering Zi. Since Δπ is (0, 1)-valued and D is connected, it
follows that pi = i and that the sets Bi (i = 1, . . . , q) are pairwise disjoint. We claim
that F = ∪iBi. Indeed, if e = uv ∈ F , then π(v)− π(u) = 1, and hence e belongs to
Bi, where i = π(v), while if e ∈ A− F , then π(v) − π(u) = 0 and e does not belong
to any Bi.

We call two orientations D = (V,A) and D′ = (V,A′) of an undirected graph G =
(V,E) dicut-equivalent if D′ may be obtained from D by reorienting a set of disjoint
dicuts of D. Obviously, in this case D can also be obtained from D′ by reorienting
disjoint dicuts of D′; that is, dicut-equivalence is symmetric. Dicut-equivalence is
clearly an NP-property. The next result shows that it belongs to co-NP as well and
that it is an equivalence relation. Before formulating it, recall that the node-set
of a digraph D uniquely partitions into strongly connected components of D and
the contraction of these components results in an acyclic digraph D1. By a source
component of D we mean a strongly connected component admitting no entering arc;
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that is, a source component of D corresponds to a source node of D1. The set of arcs
leaving a source component forms a special dicut of D. We shall refer to the operation
of reorienting the dicut belonging to a source node as reorienting a source-node.

Theorem 3.2. Let D = (V,A) and D′ = (V,A′) be two orientations of an
undirected graph G = (V,E). The following statements are pairwise equivalent:

(A1) The digraphs D and D′ are dicut-equivalent.

(A2) The digraph D′ can be obtained from D by a sequence of dicut reorientations
where each time a dicut of the current member of the sequence is reoriented.

(A3) The digraph D′ can be obtained from D by a sequence of reorienting dicuts
belonging to current source components.

(B) For every circuit of G, the number of forward arcs in D and in D′ are the
same.

Proof. The implication (A1)→(A2) is immediate from the definition.

(A2)→(A3) Because a dicut can never contain any arc induced by a strongly
connected component of D, by contracting each strongly connected component, we
may assume that D is acyclic. In this case, each source component is a source node.

It suffices to show that the reorientation of a single dicut can be obtained by a
sequence of reorientations of current source nodes. To this end, let Z be a subset of
nodes so that no arc enters Z, that is, the set B of arcs leaving Z is a dicut. Since D is
now assumed to be acyclic, there is a topological ordering {v1, v2, . . . , vn} of the nodes
so that the nodes of Z precede the nodes outside of Z, that is, Z = {v1, . . . , vj}, where
j = |Z|. Reorient first the source node v1. Then v2 becomes a source node. Reorient
now v2, and continue in this way until the current source node vj gets reoriented.
Since each arc induced by Z is reoriented exactly twice while the arcs leaving Z are
reoriented exactly once, this sequence of |Z| ≤ n− 1 reorientations of current source
nodes results in a digraph that arises from D by reorienting the dicut B.

(A3)→(A2) is obvious.

(A2)→(B) It clearly suffices to verify property (B) in the special case when D′

arises from D by reorienting a single dicut B of D. Consider a circuit C of G. If in
D we go around C clockwise, then the elements of B ∩C are alternately forward and
backward arcs of C since B is a dicut. Therefore the reorientation of B does not alter
the number of forward arcs of C.

(B)→(A1) Let F denote the set of arcs of D which are oppositely oriented in D′.
Property (B) implies that ϕF (C) = βF (C) holds for every circuit C of D. It follows
from Lemma 3.1 that F is the union of disjoint dicuts, and hence D′ arises indeed
from D by reorienting a set of disjoint dicuts of D.

In the proof of implication (A2)→(A3) in Theorem 3.2, we pointed out that the
reorientation of a single dicut B can be realized by a sequence of at most n − 1
reorientations of dicuts belonging to current source components. As a stable set is
sink-stable if it is a sink set in a digraph arising from D by reorienting a set of disjoint
dicuts and there may be at most n− 1 disjoint dicuts, we have obtained the following
observation.

Corollary 3.3. A stable subset S of nodes of D is sink-stable if and only if
S can be made a sink set by a sequence of at most (n − 1)2 reorientations of dicuts
belonging to (current) source components.

Since a sink set S can be made a source set by reorienting a single dicut (the one
consisting of the arcs leaving S), we obtain the following useful fact.

Corollary 3.4. A subset S of nodes of a digraph D = (V,A) is source-stable if
and only if S is sink-stable.
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This corollary is mentioned to underpin why we focus only on sink-stable sets in
what follows and do not consider source-stable sets separately.

We note that property (A3) will be used only in section 8 to explain a link between
sink-stable sets and cyclic stable sets.

Remark. Given the observation that a di-circuit and a sink-stable set are always
disjoint, one may be wondering why we take care of general digraphs in Theorem
3.2 (and also in forthcoming sections on sink-stable sets) rather than concentrating
only on acyclic digraphs. The explanation is that in the derivation of the theorem of
Abeledo and Atkinson on the Clar number (in section 6) we shall need this generality.

4. Characterizing the union of k sink-stable sets. In this section, we char-
acterize those subsets of nodes of a digraph which are the union of k sink-stable sets
where k is a positive integer. Since the cases k = 1 and k ≥ 2 behave a bit differently,
we discuss them separately.

4.1. The case k = 1: A co-NP characterization of sink-stable sets.
Sink-stability was introduced as an NP-property. The first goal of this section is to
show that sink-stability is also in co-NP. That is, the next result provides an easily
checkable tool to certify that a given stable set is not sink-stable. Recall that η(C)
denoted the minimum of the number of forward arcs and the number of backward
arcs of a circuit C.

Theorem 4.1. Let D = (V,A) be a digraph. A stable set S ⊆ V is sink-stable if
and only if

|S ∩ V (
−→
C )| ≤ β(−→C ) for every circle

−→
C of D,(4.1)

or equivalently, |S ∩ V (C)| ≤ η(C) for every circuit C of D.

Proof. If
−→
C is a circle and v ∈ V (

−→
C ) is a sink node of D, then one of the two arcs

of
−→
C entering v is a backward arc of

−→
C . Therefore β(

−→
C ) is at least the number of sink

nodes in V (C). Since reorienting a dicut does not change β(
−→
C ), we conclude that

−→
C

can contain at most β(
−→
C ) elements of a sink-stable set; that is, (4.1) is necessary.

To see sufficiency, assume the truth of (4.1). We use induction on |S|. Since the
empty set is sink-stable, we can assume that S is nonempty. Let s ∈ S be an element
of S. By induction, S − s is sink-stable; that is, after reorienting a suitable set of
disjoint dicuts, the elements of S − s are all sink nodes. If no arc enters s, then the
arcs leaving s form a dicut B. By reorienting B, the whole S becomes a sink set and
we are done.

Therefore we can assume that at least one arc enters s. Let T denote the set of
nodes u for which us ∈ A. Let D′ denote an auxiliary digraph arising from D in such
a way that we add to D the opposite of all arcs of D entering an element of S − s.
Let Z ⊆ V denote the set of nodes reachable in D′ from s. There are two cases.

Case 1. Z ∩ T �= ∅; that is, D′ admits a di-path P from s to a node t in T . Now
P + ts is a di-circuit of D′. This di-circuit determines a circuit C of D. If we consider
C as a circle

−→
C in which ts is a forward arc, then there are exactly |(S − s) ∩ V (

−→
C )|

backward arcs of
−→
C . Hence β(

−→
C ) = |(S− s)∩V (

−→
C )| = |S ∩V (

−→
C )|− 1, contradicting

(4.1).
Case 2. Z ∩ T = ∅. Since no arc of D′ leaves Z, no arc of D can leave Z either.

In addition, no arc entering S− s can enter Z since the opposite of such an arc leaves
Z and belongs to D′. Therefore the set of arcs entering Z is a dicut B of D. By
reorienting B, every element of S − s remains a sink node. Furthermore, s becomes
a source node since the head of each arc leaving s is in Z, while the tail of each arc
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entering s is not in Z. Finally, by reorienting the arcs leaving the source node s, s
also becomes a sink node; that is, the whole S will be a sink set.

Note that Theorem 4.1 not only provides a co-NP characterization of sink-stability,
but its proof above can easily be turned to a polynomial algorithm as well, which ei-
ther finds a circuit C violating (4.1) or else transforms S into a sink set by reorienting
a (polynomially long) sequence of (current) dicuts, showing in this way that S is a
sink-stable set.

Our next goal is to show that in some cases that are important for applications
Theorem 4.1 can be sharpened in the sense that condition (4.1) need not be required
for all circles but only for so-called N -clean circles, and in applications this fact will
prove particularly useful. Let N be a subset of arcs of D. A circle

−→
C is called N -clean

if all the backward arcs and no forward arcs of
−→
C belong to N . This is equivalent to

requiring that reversing N make C a one-way circuit. Clearly, β(
−→
C ) = |N ∩ C|. A

circuit C is N -clean if one of the circles
−→
C and

←−
C is N -clean. An N -clean circle is

N -singular (or just singular) if it contains exactly one member of N . The set N is
thin if every arc of the digraph belongs to an N -singular circle.

Observe that N is thin if and only if
−→
N is flat in the digraph DN arising from

D by reorienting N where
−→
N denotes the set of arcs arising from N by reorienting

its elements. Another example comes from a 2-connected planar bipartite graph
G = (S, T ;E) with a perfect matching M . Let H denote the digraph arising from G
by orienting each edge of M toward S and all other edges toward T . Let D denote
the planar dual digraph of D, and let N be the set of arcs of D corresponding to M .
(For a definition of planar dual digraphs, see the introduction of section 6.) Then N
is thin in D. In a third example, if we duplicate each arc of a digraph in parallel, then
the set N of original arcs is thin in the resulting digraph.

We remark that a thin set does not always exist, as shown by a single di-circuit.
We shall address neither the problem of the existence of a thin set nor the related
problem of deciding whether a given set of arcs is thin or not.

The next lemma will be used only for circles, but its proof is more convenient for
closed walks.

Lemma 4.2. Let N ⊆ A be a thin subset of arcs. The node-set V (W ) of a closed

walk W can be covered by N -clean circles
−→
C1, . . . ,

−→
Cq so that β(W ) =

∑
i β(
−→
Ci).

Proof. We call an arc of W bad if it is backward and is not in N or if it is forward
and is in N .

Suppose first that no bad arcs exist, that is, W itself is N -clean: the N -arcs of W
are exactly its backward arcs. In this case the walk WN arising from W by reversing
the elements of N is a di-walk in DN . By replacing each arc e of WN by as many
parallel copies as the number of times WN uses e, we obtain a di-Eulerian digraph,
and this can be partitioned into q di-circuits. These di-circuits correspond to N -clean
circles

−→
C1, . . . ,

−→
Cq of D for which ∪iV (

−→
Ci) = V (W ) and

∑
i β(
−→
Ci) = β(W ).

Suppose now that W has some bad arcs. By the hypothesis of the lemma, each
forward arc ei = vi−1vi ∈ N ofW belongs to anN -singular circle

−→
C . Then P := C−ei

is a one-way path from vi−1 to vi that contains no backward arc. Replace the subwalk
{vi−1, ei, vi} by P . Similarly, each backward arc ei = vi−1vi �∈ N of W belongs to an

N -singular circle
−→
C . Then P := C−ei is a path from vi−1 to vi that contains exactly

one backward arc, and that one is in N . Replace the subwalk {vi−1, ei, vi} by P .
The closed walk W ′ obtained in this way from W is N -clean, for which V (W ) ⊆

V (W ′) and β(W ) = β(W ′) hold, and hence the lemma follows from the first part of
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the proof.
Theorem 4.3. Let N be a thin subset of arcs of a digraph D = (V,A). A stable

set S ⊆ V is sink-stable if and only if

|S ∩ V (
−→
C )| ≤ β(−→C ) (= |N ∩ −→C |) for every N -clean circle

−→
C of D.(4.2)

Proof. Condition (4.2) is a special case of (4.1), and hence the necessity of (4.2)
follows.

For sufficiency, let
−→
C be an arbitrary circle of D. By applying Lemma 4.2 to

W =
−→
C , we obtain that V (

−→
C ) can be covered by N -clean circles

−→
C1, . . . ,

−→
Cq so that

β(
−→
C ) =

∑
i β(
−→
Ci). Hence |S ∩ V (

−→
C )| ≤ ∑

i |S ∩ V (
−→
Ci)| ≤

∑
i β(
−→
Ci) = β(

−→
C ) and

Theorem 4.1 applies.

4.2. co-NP characterization of the union of k ≥ 2 sink-stable sets. By
the k-union of sink-stable sets we mean a subset U of nodes that can be partitioned
into k sink-stable sets. Such a subset U is also called k-sink-stable. How can one
characterize k-sink-stable sets when k ≥ 2? Before answering this question, we recall
a pretty theorem of Minty [16]. By the chromatic number χ(D) of a digraph D
we simply mean the chromatic number of the underlying undirected graph. Minty
provided an interesting upper bound for χ(D).

Theorem 4.4 (Minty). Let D = (V,A) be a digraph and k ≥ 2 be an integer. If

|C| ≤ kη(C) for every circuit C of D,(4.3)

then χ(D) ≤ k; that is, the node-set of D can be partitioned into k stable sets.
Note that (4.3) implies that D is acyclic, and hence Minty’s theorem is interesting

only for acyclic digraphs. The theorem shows that (4.3) is a sufficient condition for
k-colorability, that is, for the existence of a partition of V into k stable sets. As a
sharpening, we prove that (4.3) is actually a necessary and sufficient condition for the
existence of a partition of V into k sink-stable sets. In fact, we prove a bit more.

Theorem 4.5. Let D = (V,A) be a digraph and k ≥ 2 be an integer. A subset
S ⊆ V is k-sink-stable if and only if

|S ∩ V (
−→
C )| ≤ kβ(−→C ) for every circle

−→
C of D,(4.4)

or equivalently,

|S ∩ V (C)| ≤ kη(C) for every circuit C of D.(4.5)

Proof. We have already observed in Theorem 4.1 that a circuit C can contain at
most η(C) elements of a sink-stable set from which the necessity of (4.5) follows.

To see sufficiency, consider the digraph D∗ = (V,A∪A′) arising from D by adding
the reverse of every arc of D. Define a cost function c on A ∪ A′ as follows. For an
arc a of D, let c(a) = k, and for the reverse a′ of a, let c(a′) = 0. For a two-element
di-circuitK consisting of arcs a and a′, we have |S∩V (K)| ≤ |V (K)| = 2 ≤ k = c̃(K).
Hence (4.5) is equivalent to the following condition:

|S ∩ V (K)| ≤ c̃(K) for every di-circuit K of D∗.(4.6)

Revise now c in such a way that c(e) is reduced by 1 for every arc of D∗ for which
the head is in S. Let c∗ denote the resulting cost function. Observe that the c̃∗-cost of
a di-circuit K of D∗ is equal to c̃(K) minus the number of arcs of K having their head
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in S, that is, c̃∗(K) = c̃(K) − |S ∩ V (K)|. Therefore (4.6) is equivalent to requiring
that c∗ be conservative.

By Lemma 2.1, there is an integer-valued c∗-feasible potential π. Since π can be
translated by a constant, we can assume that the smallest value of π is 0. Let M
denote the maximum value of π, and consider the following sets for i = 0, . . . ,M :

Pi := {v : π(v) = i} and Ui := {v : π(v) ≤ i}.

Moreover, define for j = 0, . . . , k − 1 the following sets:
Vj := {v : π(v) ≡ j mod k} and Sj := Vj ∩ S.

For each uv ∈ A, we have π(v) ≥ π(u) since c∗(vu) ≤ 0, from which π(u)−π(v) ≤
c∗(vu) ≤ 0. Therefore no arc of D enters any Ui; that is, the set Bi of arcs ofD leaving
Ui is a dicut of D. Obviously, the sets Sj partition S. We are going to prove that
each Sj is a sink-stable set from which the theorem will follow. To this end, consider
the dicuts Bj , Bj+k, Bj+2k, . . .. These are disjoint since π(v) − π(u) ≤ c∗(uv) ≤ k
holds for each arc uv ∈ A.

Let z ∈ Sj . For any arc uz ∈ A entering z, we have π(z)−π(u) ≤ c∗(uz) = k− 1,
and hence uz is not in any of the dicuts Bj , Bj+k, Bj+2k, . . .. For any arc zv ∈ A
leaving z, we have c∗(vz) = −1, from which π(z) − π(v) ≤ c∗(vz) = −1, and hence
π(v) − π(z) ≥ 1. Therefore zv belongs to one of the dicuts Bj , Bj+k, Bj+2k, . . ..
Consequently, each node z ∈ Sj is a sink node in DB, where B is the union of the
dicuts Bj , Bj+k, Bj+2k, . . . and DB denotes the digraph arising from D by reversing
B.

With the help of the well-known Bellman–Ford algorithm, one can compute in
polynomial time, given an arbitrary cost function c, either a c-feasible potential or
a di-circuit of negative c-cost. Therefore the proof of Theorem 4.5 gives rise to an
algorithm that either finds a partition of S into k sink-stable sets or finds a circuit C
of D violating (4.5).

Remark. It is useful to observe that for k = 1 the statement in Theorem 4.5 fails to
hold: in a digraph consisting of two nodes and a single arc, (4.5) holds automatically
since there is no circuit at all but V is not a stable set. This is why we assumed a
priori in Theorem 4.1 that S is a stable set. We also remark that the proof technique
of Theorem 4.5 can be used for k = 1, as well, to obtain an alternative proof for the
nontrivial direction of Theorem 4.1 since in the latter case the stability of S is part
of the assumption.

Analogously to the case k = 1, when we were given a thin set N , it suffices to
require (4.5) in Theorem 4.5 only for N -clean circuits.

Theorem 4.6. Let N be a thin subset of arcs of a digraph D = (V,A), and let
k ≥ 2 be an integer. A subset S ⊆ V is a k-sink-stable set if and only if

|S ∩ V (C)| ≤ kβ(−→C ) for every N -clean circle
−→
C of D,(4.7)

or equivalently,

|S ∩ V (C)| ≤ k|N ∩C| for every N -clean circuit C of D.(4.8)

Proof. Condition (4.7) is a special case of (4.5), and hence the necessity of (4.7)
follows.

For sufficiency, let
−→
C be an arbitrary circle of D. By applying Lemma 4.2 to

W =
−→
C , we obtain that V (

−→
C ) can be covered by N -clean circles

−→
C1, . . . ,

−→
Cq so that
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β(
−→
C ) =

∑
i β(
−→
Ci). Hence |S ∩ V (

−→
C )| ≤ ∑

i |S ∩ V (
−→
Ci)| ≤

∑
i kβ(

−→
Ci) = kβ(

−→
C ) and

Theorem 4.5 applies.
Corollary 4.7 (Bondy [4]). The chromatic number χ(D∗) of a strongly con-

nected digraph D∗ = (V,A∗) is at most the length of the longest di-circuit of D∗.
Proof. Let F be a flat transversal of di-circuits ensured by Lemma 2.2. Let

D := D∗
F be the digraph arising from D∗ by reorienting F , and let N denote the set

of arcs of D corresponding to F . Since F is flat, N is thin.
Let k denote the length of the longest di-circuit of D∗. Since F is a transversal of

di-circuits of D∗, we have β(
−→
C ) ≥ 1 for every N -clean circle of D. Since |S∩V (C)| =

|V (C)| ≤ k ≤ kβ(
−→
C ), (4.2) holds for S := V . Theorem 4.6 implies that V can be

partitioned into k sink sets, and hence χ(D∗) ≤ k.
The brevity of this proof shows the advantage of the characterization in (4.8) over

that in (4.4). In the last section, we shall describe a link between sink-stable sets and
so-called cyclic stable sets introduced by Bessy and Thomassé [3]. We stress that it
was their paper that first showed how Bondy’s theorem follows from min-max results
on cyclic stable sets.

5. Optimal sink-stable sets. Our next goal is to investigate sink-stable sets
of largest cardinality and, more generally, of maximum weight. The main device for
obtaining min-max theorems for these parameters is Theorem 2.4 due to Gallai [11].

Recall that a circle
−→
C in a digraph was defined as a circuit C with a specified cyclic

order and the β-value β(
−→
C ) of

−→
C means the number of backward arcs.

Let w : V → Z+ be an integer-valued function on the node-set of D. We say that
a system consisting of circles and arcs cover w if the number of circles containing v
plus the number of arcs having v as a head or tail is at least w(v) for each node v. (In
the special case, when w is the characteristic vector of a subset U ⊆ V , we say that
a system of circles and arcs cover U if each element u of U is contained by a circle
from the system or u is the head or the tail of some arc from the system.) The value
of such a system is defined to be the sum of β-values of its circles plus the number of
its arcs.

Theorem 5.1. Let D = (V,A) be a digraph with no isolated nodes, and let
w : V → Z+ be an integer-valued weight-function on the node-set of D. The maximum
w-weight of a sink-stable set of D is equal to the minimum value of a system of
circles and arcs covering w. More concisely, the following linear system is totally
dual integral:

x̃(V (
−→
C )) ≤ β(−→C ) for every circle

−→
C ,

x(u) + x(v) ≤ 1 for every arc uv ∈ A,
x ≥ 0.

Proof. For a sink-stable subset S, an arc can cover at most one element of S. In
Theorem 4.1, we already observed that a circle

−→
C can cover at most β(

−→
C ) elements

of a sink-stable set from which max ≤ min follows.
The proof of the reverse direction max ≥ min can be carried out separately for

the components of D, and hence we can assume that D is weakly connected. Let
D∗ = (V,A ∪ A′) be the digraph arising from D by adding the reverse of each arc of
D. Here A′ denotes the set of reverse arcs of D. The digraph D∗ is clearly strongly
connected. Define c : A ∪A′ → {0, 1} as follows:

c(f) :=

{
1 if f ∈ A′,
0 if f ∈ A.(5.1)
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Recall that a c-independent vector z : V → Z+ is an integer-valued vector (or
multiset) for which z̃(V (K)) ≤ c̃(K) for every di-circuit K of D∗.

Claim 5.2. A c-independent vector z is {0, 1}-valued, and the subset S := {v :
z(v) = 1} is sink-stable in D.

Proof. For any arc a = uv ∈ A of D, the pair of arcs a and a′ = vu ∈ A′ forms a
di-circuit K of D∗ for which c̃(K) = 1. It follows from the c-independence that z is
{0, 1}-valued; moreover, the subset S := {v : z(v) = 1} is a stable set.

We show that S is actually a sink-stable set in D. To this end, let
−→
C be a circle

of D. We may assume that β(
−→
C ) ≤ ϕ(

−→
C ). By replacing each backward arc of C by

its reverse, we obtain a di-circuit K of D∗. By the c-independence of z, it follows that

|S ∩ V (
−→
C )| = z̃(V (K)) ≤ c̃(K) = β(

−→
C ),

and hence Theorem 4.1 implies that S is indeed sink-stable.
It follows from Claim 5.2 and from Theorem 2.4 that the maximum w̃-weight of

a sink-stable set of D is equal to the minimum total sum of c-values of a system of
di-circuits of D∗ covering w.

There may be two types of di-circuits of D∗ occurring in the minimum covering
of w. Type I is of form K = {e, e′}, where e = uv ∈ A and e′ = vu ∈ A′, and in this

case c̃(K) = 1. A type II di-circuit K arises from a circle
−→
C of D by reversing its

backward arcs. Therefore β(C) = c̃(K), and hence the minimum system of di-circuits
of D∗ covering w determines a system of circuits and arcs of D covering w for which
the total β-value of the circles and the number of the arcs is the total c-value of the
covering di-circuits. This completes the proof of Theorem 5.1, which includes Claim
5.2 and its proof.

Corollary 5.3. Let D = (V,A) be a digraph with no isolated nodes, and let
U ⊆ V be a given subset of nodes. The maximum cardinality of a sink-stable subset
of U is equal to the minimum value of a system of circles and arcs covering U .

Proof. Apply Theorem 5.1 to the special case w := χ
U
.

Remark. One may be wondering whether the minimal covering of U in Corollary
5.3 can perhaps be realized only by circuits, without using arcs. The following example
shows, however, that the use of arcs is unavoidable. Let U := V := {a, b, c, d, e}, and
let the arcs of D be {ab, ac, ad, eb, ec, ed}. In this digraph S = {b, c, d} is a largest
sink-stable set. On the other hand, each circlet C of D has four arcs and β(C) = 2.
Therefore the total value of the best covering of V only by circles is 4. An optimal
covering consists of a circle with arc-set {ab, be, ec, ca} and of an arc ad with total
value 3.

Fig. 1. The largest sink-stable set in this graph is S = {b, c, d}. An optimal covering consists
of a circuit C = {ab, be, ec, ca} and an arc ad, and the total value of this covering is 3.
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We close this section by exhibiting another characterization of maximum weight
sink-stable sets in terms of N -clean circles. The result may be viewed as a more
structured form of Theorem 5.1 and will be used in the next section to derive a recent
min-max theorem of Abeledo and Atkinson [1] on the Clar number of a graph.

Recall the definitions of an N -clean circle and a thin set that were introduced
before Lemma 4.2. By the N -value of an N -clean circle, we simply mean the number
of N -arcs of the circle (which is in this case the number of backward arcs), while the
total N -value of a family of N -clean circles is the sum of the N -values of these circles.

Theorem 5.4. Let N be a thin set of arcs of digraph D = (V,A) with no isolated
nodes, and let w : V → Z+ be an integer-valued weight-function on the node-set of
D. The maximum w-weight of a sink-stable set of D is equal to the minimum total
N -value of N -clean circles of D covering w. In particular, for a given subset U ⊆ V ,
the maximum cardinality of a sink-stable subset of U is equal to the minimum total
N -value of N -clean circles of D covering U .

Proof. Consider an optimal covering of w by circuits and arcs provided by Theo-
rem 5.1. Since N is thin, each arc e in the covering can be replaced by an N -singular
circle containing e. (Note that the N -value of such a circuit is 1.) Furthermore, by

Lemma 4.2 each circle
−→
C in the optimal covering of w can be replaced by a set of

N -clean circles whose total N -value is β(
−→
C ).

Note that Theorem 5.1 can easily be derived from Theorem 5.4. To this end, let
D2 = (V,A ∪N) denote the digraph arising from D by duplicating each arc of D in
parallel where N denotes the set of new arcs. Then N is clearly thin in D2, and by
applying Theorem 5.4 to D2 and N , we obtain Theorem 5.1.

We emphasize that in Theorem 5.4 the digraph D was not assumed to be acyclic.
This is apparently a superfluous generality, as a sink-stable set is disjoint from a
di-circuit, but the application in the next section requires Theorem 5.4 in the given
form.

6. Clar number of plane bipartite graphs. As an application of Theorem
5.4, we derive a recent min-max theorem of Abeledo and Atkinson [1, 2] on the
Clar number of bipartite plane graphs. For a connected graph G = (V,E), a cut B
belonging to a subset Z of nodes consists of the edges connecting Z and V − Z, that
is, B = Δ(Z). A cut B is minimal if no proper subset of B is a cut. A well-known
property is that a cut is minimal if and only if both Z and V −Z induce a connected
subgraph. A minimal cut is sometimes called a bond. A cut of a digraph is also called
minimal if it is a minimal cut in the underlying undirected graph.

Let G∗ = (R,E∗) denote the planar dual of a connected planar graph G. It
is known that there is a one-to-one correspondence between the circuits of G and
the bonds of G∗. The concept of the planar dual digraph D := H∗ of a plane
digraph H is analogous to the undirected case, with the difference that if an arc of
H is represented in the plane by a vertical line segment oriented downward, then the
corresponding horizontal dual arc of D is oriented from right to left. A subset of arcs
of H (respectively, D) is a minimal dicut if and only if the corresponding subset of
arcs of D (respectively, H) is a di-circuit. In particular, the bounding circuit of a
bounded region S of H is a di-circuit if and only if the node s of D corresponding to
S is a sink-node of D.

Let G = (S, T ;E) be a perfectly matchable 2-connected bipartite plane graph.
The expression plane graph means thatG is planar, and we consider a fixed embedding
in the plane. The embedding subdivides the plane into regions; among them exactly
one is unbounded. The bounded regions will be referred to as faces of G. Since G is
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2-connected, the border of each region can be identified with a circuit of G. In what
follows, the term disjoint circuits means that the circuits are pairwise node-disjoint,
while a set of faces is said to be disjoint if their bounding circuits are pairwise node-
disjoint.

A set of disjoint faces of G is called resonant if the removal of the node-sets of
their bounding circuits from G leaves a perfectly matchable graph (where the graph
with no node is also considered perfectly matchable). There are two natural questions
concerning this notion: (A) What is the maximum cardinality of a resonant set of
faces? (B) When is it possible to partition the faces into k resonant sets?

The maximum in problem (A) is called the Clar number of G. For example, if G is
the graph of a cube, then the Clar number is 2, independently of the embedding. It is
not difficult to find an example where the Clar number does depend on the embedding.
This notion was originally introduced in chemistry by Clar [8] for hexagonal graphs
(where each face is bounded by a 6-circuit) to capture the behavior of characteristic
properties of aromatic benzenoids.

In order to answer problems (A) and (B), we describe first a characterization of

resonant sets. Let
−→
G denote the digraph arising from G = (S, T ;E) by orienting each

edge toward T . For a perfect matching M of G, we will denote by
−→
GM the digraph

arising from
−→
G by reorienting the arcs corresponding to the elements of M . A cut

B of G is feasible if it corresponds to a minimal dicut of
−→
G . The value val(B) of

a feasible cut B is defined to be the absolute value of |S ∩ Z| − |T ∩ Z|. It is an
easy exercise to see that val(B) = dM (Z) = |M ∩ B| for any perfect matching M of
G, where dM (Z) denotes the number of elements of M connecting Z and V − Z. In
particular, this means for a feasible cut Δ(Z) that dM (Z) is independent of the choice
of perfect matching M .

Lemma 6.1. Let M be a perfect matching of a 2-connected bipartite plane graph
G = (S, T ;E), let D = (V,A) denote the planar dual digraph of H :=

−→
GM , and let N

denote the set of arcs of D corresponding to M . Then N is thin.

Proof. Since every node of
−→
G determines a dicut, each cut of H determined by a

node has one arc in one direction (the one belonging to M) and all the other arcs in
the other. Hence every arc of H belongs to such a cut, and therefore every arc of D
belongs to an N -singular circuit; that is, N is thin.

Theorem 6.2. Let G,D,H,M,N be the same as in Lemma 6.1. For a set S of
disjoint faces of G, the following are equivalent:

(A1) Set S is resonant.

(A2) The set S of nodes of D corresponding to S is sink-stable.

(B1) Every feasible cut B intersects at most val(B) members of S.
(B2) Every N -clean circle

−→
C of D contains at most |N ∩ −→C | nodes from S.

Proof. First we show the equivalence of (A1) and (A2). By definition, S is
resonant if there is a perfect matching M ′ of G so that the bounding circuit of each
member of S is M ′-alternating. This is equivalent to requiring that these bounding
circuits be di-circuits in

−→
GM ′ . By reorienting such a di-circuit if necessary, we can

assume that the bounding circuits of the members of S are clockwise oriented di-
circuits in

−→
GM ′ . Since the symmetric difference of two perfect matchings of G consists

of disjoint alternating circuits, DM ′ arises from DM by reorienting disjoint di-circuits
of DM . Therefore S is resonant if and only if it is possible to reorient disjoint di-
circuits of DM so that the members of S will be clockwise oriented di-circuits. This
is, in turn, equivalent to requiring that it be possible to reorient some disjoint dicuts
of D so that the members of S become sink nodes, that is, for S to be a sink-stable
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set in D, and the equivalence of (A1) and (A2) follows.

The equivalence of (A2) and (B2) is nothing but the reformulation of Theorem
4.3 for the current D, and the theorem can really be applied since N is thin by
Lemma 6.1. Finally, the equivalence of (B1) and (B2) comes from planar duality as

an N -clean circle
−→
C of D corresponds to a minimal M -clean cut of H (in which the

M -arcs go in one direction the other arcs go in the other direction) belonging to a
subset Z of nodes, and an M -clean cut corresponds to a feasible cut B of G for which
|N ∩ −→C | = dM (Z) = val(B).

In the theorem of Abeledo and Atkinson [1], the Clar number is expressed with
the help of feasible cuts.

Theorem 6.3 (Abeledo and Atkinson [1]). Let G = (S, T ;E) be a 2-connected
perfectly matchable plane bipartite graph. The Clar number of G is equal to the min-
imum total value of feasible cuts intersecting all faces of G.

Proof. Let M be a perfect matching of G. Let H,N , and D be the same as in
Lemma 6.1. Let U denote the set of nodes of D corresponding to the faces of H . By
Lemma 6.1, N is thin. By Theorem 5.4, the maximum cardinality of a sink-stable
subset of U in D is equal to the minimum total N -value of N -clean circuits of D
covering U . Since an N -clean circuit C of D corresponds to a feasible cut B of G
whose value is |N ∩ C|, the theorem follows by Theorem 6.2.

The proof can be applied almost word for word to obtain the following extension
of Theorem 6.3.

Theorem 6.4. Let G = (S, T ;E) be a 2-connected perfectly matchable plane
bipartite graph, and let U be a specified subsets of its regions. Then the maximum
cardinality of a resonant subset of U is equal to the minimum total value of feasible
cuts intersecting all members of U .

Remark. In the proof of Theorem 6.3, we applied Theorem 5.4 to a digraph D
that was defined as the planar dual of H :=

−→
GM . Note that this D may comprise

di-circuits not intersected by N . This is the explanation why we considered flat sets
rather than just flat transversals and why we formulated Theorem 5.4 for general
digraphs and not only for acyclic ones. (The acyclicity of D is equivalent to the
strong connectivity of H , and H is strongly connected if and only if every edge of G
belongs to a perfect matching.)

Finally, we answer problem (B) above on partitionability of the faces of G into k
resonant subsets.

Theorem 6.5. The faces of a 2-connected perfectly matchable bipartite plane
graph can be partitioned into k resonant sets if and only if, for every feasible cut B
of G, the number of faces intersected by B is at most k val(B).

Proof. Let G,H,D,M,N be the same as in Lemma 6.1. Then N is thin and by
Theorem 6.2, a set S of disjoint faces of G is resonant if and only if the corresponding
subset S of nodes of D is sink-stable. Therefore the faces of G can be partitioned into
k resonant sets if and only if the node-set of D can be partitioned into k sink-stable
sets.

Let S denote the subset of nodes of D corresponding to the faces of G. By
Theorem 4.6, S can be partitioned into k sink-stable sets if and only if |S ∩ V (C)| ≤
k|N ∩ C| for every N -clean circuit C of D. There is a one-to-one correspondence
between N -clean circuits C of D and feasible cuts B of G. In this correspondence,
|S ∩ V (C)| is equal to the number of faces of G intersected by B, and |C ∩ N | =
|B ∩M | = val(B), and hence the theorem follows from Theorem 4.6.

Note that the proof of Theorem 6.5 can easily be adapted to obtain the following
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extension.
Theorem 6.6. A subset U of regions of a 2-connected perfectly matchable bipar-

tite plane graph can be partitioned into k resonant sets if and only if every feasible
cut B of G intersects at most k val(B) members of U .

In the next section, we describe a common generalization of the theorem of
Abeledo and Atkinson and Theorem 6.5 by deriving a min-max formula for the max-
imum number of faces that can be partitioned into k resonant sets.

7. Optimal k-union of sink-stable sets. After providing characterizations
for maximum weight sink-stable sets along with an application to the Clar number of
plane bipartite graphs, in this section we show how these results can be extended to
optimal k-unions of sink-stable sets where k ≥ 2 is an integer.

Theorem 7.1. Let D = (V,A) be a digraph, k ≥ 2 be an integer, and w : V → Z+

be an integer-valued weight-function on the node-set of D. Assume that every node v
with w(v) > 0 belongs to a circuit of D. Then

max{w̃(S) : S ⊆ V a k-sink-stable set}

= min
y:CD→Z+

⎧⎨⎩k ∑
−→C∈CD

y(
−→
C )β(

−→
C ) +

∑
v∈V

⎛⎝w(v)− ∑
−→C∈CD ,v∈V (−→C)

y(
−→
C )

⎞⎠+⎫⎬⎭ ,(7.1)

where CD denotes the set of circles of D. Moreover, if c is integer-valued, the optimal
y in (7.1) can be chosen integral. More concisely, the following linear system is totally
dual integral:

{x̃(V (
−→
C )) ≤ kβ(−→C ) for every circle

−→
C of D, 0 ≤ x ≤ 1}.(7.2)

Proof. We can assume that D is weakly connected. Let D∗ = (V,A ∪ A′) be the
digraph arising from D by adding the reverse of each arc ofD. Here A′ denotes the set
of reverse arcs of D. Then D∗ is clearly strongly connected. Define c : A∪A′ → {0, 1}
as follows:

c(f) :=

{
k if f ∈ A′,
0 if f ∈ A.(7.3)

By Theorem 2.4 of Gallai [11], the linear system {x̃(V (K)) ≤ c̃(K) for every di-
circuit K, 0 ≤ x ≤ 1} is TDI. Since every di-circuit K of D∗ corresponds to a circle−→
C of D for which β(

−→
C ) = c̃(K), the TDI-ness of the system in (7.2) follows.

Theorem 7.2. Let D = (V,A) be a digraph, k ≥ 2 be an integer, and w : V → Z+

be an integer-valued weight-function on the node-set of D. Assume that every node v
with w(v) > 0 belongs to a circuit of D. Let N ⊆ A be a thin set. Then

max{w̃(S) : S ⊆ V a k-sink-stable set}

= min
y:CD→Z+

⎧⎨⎩k ∑
−→C∈CD

y(
−→
C )|N ∩−→C |+

∑
v∈V

⎛⎝w(v) − ∑
−→C∈CD,v∈V (−→C)

y(
−→
C )

⎞⎠+⎫⎬⎭ ,(7.4)

where CD denotes the set of circles of D. Moreover, if c is integer-valued, the optimal
y in (7.3) can be chosen integral. More concisely, the following linear system is totally
dual integral:

{x̃(V (
−→
C )) ≤ k|N ∩ −→C | for every N -clean circle

−→
C , 0 ≤ x ≤ 1}.(7.5)
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Proof. By applying Theorem 7.1 and Lemma 4.2, the result follows.
Corollary 7.3. Let D = (V,A) be a connected digraph, U ⊆ V be a subset

of nodes, and k ≥ 2 be an integer. Let N ⊆ A be a thin set. Then the maximum
cardinality of a k-sink-stable subset of U is equal to

min

{
k

q∑
i=1

|N ∩ −→C i|+ |U − ∪qi=1(V (
−→
C i))|

}
,

where the minimum is taken over all sets {−→C 1, . . . ,
−→
C q} of circles of D.

Proof. Let w := χ(U) be the characteristic vector of U , and apply Theorem
7.2.

In the same way as the theorem of Abeledo and Atkinson (Theorem 6.3) was
derived from Theorem 5.4, the following result can be obtained from the second part
of Theorem 7.2.

Theorem 7.4. Let G = (S, T ;E) be a 2-connected perfectly matchable bipartite
plane graph, and let k ≥ 2 be an integer. The maximum number of faces that can be
partitioned into k resonant sets is equal to the minimum of

k
∑q

i=1 val(Bi)+ the number of faces avoided by B1, B2, . . . , Bq,

where the minimum is taken over all choices of feasible cuts B1, . . . , Bq.

8. Link to cyclic stable sets. Originally, we started our investigations with the
recognition that the min-max theorem of Abeledo and Atkinson on the Clar number
of plane bipartite graphs can be extended to a min-max theorem on sink-stable sets
of general digraphs. We realized only later that this latter result is closely related to a
min-max theorem of Bessy and Thomassé [3] on cyclic stable sets. This was developed
to prove a famous conjecture of Gallai stating that the node-set of a strongly connected
digraph D∗ on n ≥ 2 nodes can be covered by at most α(D∗) di-circuits (see Theorem
2.7). We outline now the relationship between sink-stable and cyclic stable sets.

8.1. Cyclic stable sets. Suppose that D∗ = (V,A∗) is a strongly connected
loopless digraph on n ≥ 2 nodes, and consider a linear order (or enumeration in [3])
L = [v1, . . . , vn] of the nodes of D

∗. An arc e of D∗ is a forward arc with respect to L
if its tail precedes its head; otherwise e is a backward arc. The acyclic digraph D(L)
defined by L arises from D∗ by reversing all backward arcs.

Let P be a regular n-gon in a horizontal plane, and assign the nodes of V to the
vertices of P in this order. In this way, we arrive at a cyclic order O = (v1, . . . , vn) of
D∗ where O is placed clockwise in P . Note that O is identical with the cyclic orders
(vi, . . . , vn, v1, . . . , vi−1) for each vi ∈ V . A set of consecutive elements is called an
interval of O. For example, both {v2, v3, v4} and {vn−1, vn, v1, v2} are intervals. Each
arc uv of D∗ can be represented in the plane by a geometric arc going from u to v
clockwise outside P . Clearly, the linear order Oi := [vi, . . . , vn, v1, . . . , vi−1] defines
the same cyclic order for each vi. Each of these n linear orders is called an opening of
O. The set of backward arcs of the opening Oi is called the arc-set belonging to Oi.

Let K be a di-circuit of D∗. Starting from a node v of K and going along K,
finally we arrive back to v. In the plane, this closed walk goes around P one or more
times. This number is called the winding number or the index of K and is denoted by
ind(K). It follows from this definition that if F denotes the set of arcs belonging to
any opening of O, then

ind(K) = |F ∩K|.(8.1)
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For example, if D∗ itself is a di-circuit K with the arcs {v1v2, . . . , vn−1vn, vnv1},
then the index of K with respect to the cyclic order (v1, . . . , vn) is 1, while ind(K) =
n− 1 with respect to the reverse cyclic order (vn, . . . , v1).

These notions were introduced by Bessy and Thomassé [3], who called a cyclic
order of D∗ coherent if each arc of D∗ belongs to a di-circuit of index 1. They proved
that every strong digraph has a coherent ordering. Let O be a cyclic ordering and F
be the set of arcs belonging to an opening of O. Iwata and Matsuda [14] observed the
following link between flat transversals of di-circuits and coherent cyclic orderings.

Lemma 8.1. Let D∗ = (V,A∗) be a strongly connected digraph. A subset F of
arcs is a flat transversal of di-circuits if and only if F belongs to an opening of a
coherent ordering of D∗.

Proof (outline). If F belongs to an opening of a cyclic order O, then F is clearly
a transversal of di-circuits. If O is, in addition, coherent, that is, if each arc belongs
to a di-circuit of index 1, then F is flat since ind(K) = |F ∩K| for every di-circuit.

Conversely, if F is a flat transversal of di-circuits, then F is certainly a minimal
transversal with respect to inclusion. An easy exercise shows that the digraph D
arising from D∗ by reversing the elements of F is acyclic. Hence any topological
ordering L of D has the property that the elements of F (in D∗) are precisely the
backward arcs. Therefore the cyclic order determined by L is coherent.

Due to this correspondence, the existence of a coherent cyclic order is equivalent
to Knuth’s lemma on the existence of a flat transversal of di-circuits.

Bessy and Thomassé called the exchange of two consecutive elements u and v in a
cyclic order elementary if there is no arc (in either direction) between u and v. They
called two cyclic orders equivalent if both of them can be obtained from the other by
a sequence of elementary exchanges. Finally, a stable set of nodes is cyclic stable with
respect to a given cyclic order O if there is an equivalent cyclic order where S forms
an interval.

In a linear order L = [vi, vi+1, . . . , vi−1] of V , there are two types of elementary
exchanges: (α) and (β). Type (α) consists of exchanging two consecutive elements
u and v of L when there is no arc (in either direction) between u and v. Type (β)
consists of replacing L by the linear order L′ = [vi+1, . . . , vi−1, vi]. Note that an
exchange of type (α) does not affect the digraph defined by the linear order, while
the effect of an exchange of type (β) to D(L) is that the source node vi of D(L) gets
reoriented to become a sink node in D(L′). (Recall that reorienting a source node v
means that we reorient all the arcs leaving v.)

Two linear orders are called equivalent if one can be obtained from the other by
elementary exchanges. An obvious observation shows that two linear orders L1 and
L2 are equivalent if there are equivalent cyclic orders O1 and O2 so that L1 is an
opening of O1 and L2 is an opening of O2.

From a complexity point of view, a slight disadvantage of the given definition of
cyclic stability is that it does not show that the property belongs to NP. Indeed, in
principle it could be the case that a cyclic order can be obtained from an equivalent
cyclic order only by a sequence of exponentially many elementary exchanges, and
in such a case the definition would not provide a polynomially checkable certificate
for cyclic stability. Sebő [19], however, pointed out that a cyclic order can always
be obtained from an equivalent cyclic order by a sequence of at most n2 elementary
exchanges. Hence cyclic stability is an NP-property. Moreover, Sebő proved the
following co-NP characterization of cyclic stability.

Theorem 8.2 (see statement (5) in Sebő [18]). A subset S of nodes of a strongly
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connected digraph D∗ is cyclic stable with respect to a coherent cyclic ordering if and
only if |S ∩ V (K)| ≤ind(K) for every di-circuit K of D∗.

The proof of this result provides a polynomial algorithm that either finds a se-
quence of elementary exchanges that transform S into an interval or else finds a
di-circuit K violating the inequality in the theorem. The two main theorems of Bessy
and Thomassé [3] are as follows.

Theorem 8.3 (Bessy and Thomassé). Given a strong digraph D∗ = (V,A∗)
along with a coherent cyclic ordering, the maximum cardinality of a cyclic stable set
of D is equal to the minimum total index of di-circuits covering V .

Theorem 8.4 (Bessy and Thomassé). Let D∗ = (V,A∗) be a strong digraph
along with a coherent cyclic ordering, and let k ≥ 2 be an integer. The node-set of
D can be partitioned into k cyclic stable sets if and only if |K| ≤ k ind(K) for every
di-circuit K.

As a common generalization of the theorems of Bessy and Thomassé, Sebő [18]
proved the following.

Theorem 8.5 (Sebő). Let D∗ = (V,A∗) be a strong digraph along with a coherent
cyclic order. Let k ≥ 1 be an integer and U be a subset of nodes. The maximum
cardinality of the union of k cyclic stable subsets of U is equal to

min

{
k

q∑
i=1

ind(Ki) + |U − ∪qi=1V (Ki)| : {K1, . . . ,Kq} a set of di -circuits

}
.

Sebő actually proved this result in a more general form by providing a min-max
formula for the maximum w-weight of the k-union of cyclic stable sets.

Our next goal is to show how these results follow from the corresponding min-max
theorems on sink-stable sets.

8.2. From sink-stability to cyclic stability. Let O = (v1, v2, . . . , vn) be a
cyclic order of V , and consider the opening Oi = [vi, vi+1, . . . , vi−1]. Let F = Fi

denote the set of arcs belonging to Oi (that is, the set of backward arcs), and let
D := Di = D∗

F denote the acyclic digraph arising from D∗ by reversing F . Let N
denote the set of reversed arcs. Then a di-circuit K of D∗ corresponds to an N -clean
circuit C of D and

ind(K) = |F ∩K| = |N ∩ C|.(8.2)

Moreover, O is coherent if and only if N is thin. The following proposition is also
straightforward from these definitions.

Proposition 8.6. Let Oi = [vi, vi+1, . . . , vi−1] and Oi+1 = [vi+1, vi+2, . . . , vi] be
two consecutive openings of O. Then vi is a source node in Di and a sink node in
Di+1, and Di+1 arises from Di by reorienting vi.

Now we prove the following extension of Theorem 8.2.
Theorem 8.7. Let S ⊆ V be a stable set in a strongly connected digraph D∗ =

(V,A∗), and let O be a coherent cyclic order of V . Let L = Oi be an opening of O,
and let D, F , and N denote the terms defined above. Then the following statements
are equivalent:

(S1) S is cyclic stable in D∗.
(S2) |S ∩ V (K)| ≤ind(K) for every di-circuit K of D∗.
(S3) |S ∩ V (C)| ≤ |N ∩ C| for every N -clean circuit C of D.
(S4) S is sink-stable in D.
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Proof. (S1) → (S2) An elementary exchange does not affect the index of a di-
circuit. Since S is cyclic stable, we can assume that S is an interval. But then a
di-circuit K of D∗ can contain at most as many elements of S as its winding number
ind(K).

The equivalence of (S2) and (S3) is immediate from (8.2). The equivalence of
(S3) and (S4) is nothing but Theorem 4.3. To derive the implication (S4)→ (S1), we
distinguish two cases.

Case 1. If S is a sink set in D, then there is no arc between an element s of S and
any other element following s in Oi. Therefore, by elementary changes of type (α),
we can achieve the elements of S being the last |S| elements of an equivalent linear
order and hence form an interval, and this means that S is cyclic stable.

Case 2. If S is not a sink set, then by property (A3) in Theorem 3.2, S can be
made a sink set by a sequence of reorienting current source nodes. Let Dfin denote
the final digraph obtained in this way from D in which S is a sink set.

Let us consider the effect of reorienting a single source node z. Since z is a source
node, it is not connected to any element preceding z in L. By elementary changes of
type (α), we can achieve z becoming the first element of an equivalent linear order
L′. By applying an elementary exchange of type (β) to L′, we obtain the linear order
L′′. By Proposition 8.6, the digraph defined by L′′ arises from D by reorienting z. It
follows that Dfin is a digraph defined by a linear order that is equivalent to L, and
hence Case 1 applies.

By Theorem 8.7, Theorem 5.4 directly implies Theorem 8.3, while Theorem 4.6
implies Theorem 8.4. In the same way, Theorem 7.2 on optimal k-sink unions implies
Theorem 8.5.

8.3. From cyclic stability to sink-stability. Suppose that D is a weakly
connected digraph. Let D∗ be the digraph obtained from D by adding an oppositely
directed copy of each original arc, and let L denote the set of new arcs. Then D∗ is
clearly strongly connected.

First, we point out in the special case when D is acyclic that sink-stability in D
is equivalent to cyclic stability in D∗. If D is acyclic, then L is a flat transversal of di-
circuits of D∗. Furthermore, in this case the cyclic order determined by a topological
order of D is coherent for D∗, and it follows from Theorem 8.7 that a subset S of
nodes is sink-stable in D if and only if S is cyclic stable in D∗. Moreover, consider
the digraph D2 obtained from D by adding a parallel copy of each original arc; that
is, D2 arises from D∗ by reorienting L. Let N denote the set of new arcs. Since
D is now acyclic, D2 is also acyclic and N is a thin set of arcs in D2. Due to this
correspondence, we conclude that, in the special case when D is acyclic, the min-max
theorems on sink-stable sets are direct consequences of those on cyclic stable sets.

Suppose now that D is not necessarily acyclic (and this generality was important
in deriving results on resonant sets of plane graphs). Then the reduction above fails
to work, and no result seems to exist asserting that a subset of nodes is sink-stable
in D if and only if it is cyclic stable in a corresponding strongly connected digraph
on the same node-set. Even in this case, however, our results on sink-stable sets can
be derived from the corresponding results on cyclic stable sets. To see how, recall
that both the co-NP characterizations of k-sink-stability and the min-max results on
k-sink-stable sets were formulated first in a weaker form and then in a stronger form
using the notion of thin sets. The reason was that the stronger form could be used
in applications. To understand the idea, we concentrate only on the proof of the
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following special case of Theorem 5.4.

Corollary 8.8. Let N be a thin set of arcs of digraph D = (V,A) with no
isolated nodes, and let U ⊆ V be a subset of nodes. The maximum cardinality of a
sink-stable subset of U is equal to the minimum total N -value of N -clean circles of D
covering U .

Proof (outline). We can assume that D is weakly connected. Let DN denote the
digraph arising from D by reversing the elements of N , and let F denote the set of
reversed arcs in DN . Note that there is a one-to-one correspondence between the
di-circuits of DN and the N -clean circuits of D. Also, since N is thin in D, F is flat
in DN . It follows that DN is strongly connected since every arc belongs to a di-circuit
(intersected by F exactly once).

Suppose first that there is a di-circuit K of D not intersected by N . It can be
checked that N ′ := N − K is thin in the digraph D′ arising from D by contracting
K. By induction, the min-max relation holds for D′, N ′, U ′ := U − V (K). Hence
it holds in the original D as well since an N ′-clean circuit can be made an N -clean
circuit by using arcs from K and K itself is an N -clean circuit of N -value zero.

Suppose now that every di-circuit ofD is intersected byN . Then F is a transversal
of di-circuits of DN , and hence DN−F is acyclic. Let L = [v1, . . . , vn] be a topological
order of the nodes of DN − F . Since F is a flat transversal of di-circuits, F are
backward arcs of L. It follows that the cyclic order O = (v1, . . . , vn) is coherent.

A slight extension of Theorem 8.3 (also proved by Bessy and Thomassé) asserts
that the maximum cardinality of a cyclic stable subset of a specified subset U ⊆ V is
equal to the minimum total index of di-circuits of DN covering U . This result implies
the corollary via Theorem 8.7.

8.4. Conclusion. In this paper we introduced the notion of sink-stable sets and
derived min-max theorems concerning the maximum weight of the union of k sink-
stable sets. The results imply a recent min-max theorem of Abeledo and Atkinson [1]
on the Clar number of a bipartite plane graph as well as a sharpening of a coloring
theorem of Minty [16].

We pointed out that there is a strong relationship between results on sink-stable
sets and those on cyclic stable sets. This relationship is a bit similar to that between
flows and circulations: in several applications, flows are the convenient tools, while
other applications can be more easily treated with the help of circulations. An advan-
tage of sink-stable sets is that it does not need the notion of coherent cyclic ordering
and it relies only on standard tools from network flows. The treatment of the paper
is completely self-contained (apart from the lemmas of Gallai and of Knuth in section
2).
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