184 research outputs found

    Deep Learning for InSAR Phase Filtering: An Optimized Framework for Phase Unwrapping

    Get PDF
    Interferometric Synthetic Aperture Radar (InSAR) data processing applications, such as deformation monitoring and topographic mapping, require an interferometric phase filtering step. Indeed, the filtering quality significantly impacts the deformation and terrain height estimation accuracy. However, the existing classical and deep learning-based phase filtering methods provide artefacts in the filtered areas where a large amount of noise prevents retrieving the original signal. In this way, we can no longer distinguish the underlying informative signal for the next processing step. This paper proposes a deep convolutional neural network filtering method, developing a novel learning strategy to preserve the initial phase noise input into these crucial areas. Thanks to the encoder–decoder powerful phase feature extraction ability, the network can predict an accurate coherence and filtered interferometric phase, ensuring reliable final results. Furthermore, we also address a novel Synthetic Aperture Radar (SAR) interferograms simulation strategy that, using initial parameters estimated from real SAR images, considers physical behaviors typical of a real acquisition. According to the results achieved on simulated and real InSAR data, the proposed filtering method significantly outperforms the classical and deep learning-based ones

    Range Spectral Filtering in SAR Interferometry: Methods and Limitations

    Get PDF
    A geometrical decorrelation constitutes one of the sources of noise present in Synthetic Aperture Radar (SAR) interferograms. It comes from the different incidence angles of the two images used to form the interferograms, which cause a spectral (frequency) shift between them. A geometrical decorrelation must be compensated by a specific filtering technique known as range filtering, the goal of which is to estimate this spectral displacement and retain only the common parts of the images’ spectra, reducing the noise and improving the quality of the interferograms. Multiple range filters have been proposed in the literature. The most widely used methods are an adaptive filter approach, which estimates the spectral shift directly from the data; a method based on orbital information, which assumes a constant-slope (or flat) terrain; and slope-adaptive algorithms, which consider both orbital information and auxiliary topographic data. Their advantages and limitations are analyzed in this manuscript and, additionally, a new, more refined approach is proposed. Its goal is to enhance the filtering process by automatically adapting the filter to all types of surface variations using a multi-scale strategy. A pair of RADARSAT-2 images that mapped the mountainous area around the Etna volcano (Italy) are used for the study. The results show that filtering accuracy is improved with the new method including the steepest areas and vegetation-covered regions in which the performance of the original methods is limited.This work was supported by the Spanish Ministry of Science and Innovation (State Agency of Research, AEI) and the European Funds for Regional Development (ERFD) under Projects PID2020-117303GB-C21 and PID2020-117303-C22

    Spectral estimation model for linear displacement and vibration monitoring with GBSAR system

    Get PDF
    In recent years, there has been a growing interest in the development of ground-based Synthetic Aperture Radars (GBSAR) for the purpose of monitoring structural displacements. GBSAR offers high-resolution monitoring over a wide area and can capture data every few minutes. However, compact high-frequency multiple input multiple output (MIMO) radars have emerged as an alternative for monitoring sub-second displacements, such as structural vibrations. MIMO radar has sub-second acquisition interval. However, it has limited cross-range resolution compared to GBSAR, and interference between antennas and presence of multiple scatterers in the scene can cause strong sidelobes in the processed data. On the other hand, GBSAR utilizes a long synthetic aperture to achieve high cross-range resolution. However, due to its longer data acquisition time compared to MIMO radar, conventional methods are insufficient for detecting scatterers’ sub-second displacements that occur during the data acquisition process. This study proposes a method to effectively monitor sub-second or sub-minute displacements using GBSAR signals. The proposed method enhances the conventional radar interferometric processes by employing spectral estimation, allowing for multi-dimensional detection of targets’ azimuth angle, linear displacement, and vibrational characteristics. Consequently, this method improves both the processing of MIMO radar data and enables high-resolution fast displacement monitoring from GBSAR signals. The paper presents the theoretical details and mathematical formulations of the proposed method for both MIMO radar and GBSAR imaging modes. To evaluate the effectiveness of the proposed method, numerical simulations and real experiments are conducted. The experimental results validate the capability of the proposed method in both GBSAR and MIMO configuration modes for high-resolution monitoring of fast linear displacements and vibrations. The results exhibit promising signal-to-noise ratio (SNR) and peak-to-sidelobe ratio (PSLR) values

    Neural Network Pattern Recognition Experiments Toward a Fully Automatic Detection of Anomalies in InSAR Time Series of Surface Deformation

    Get PDF
    We present a neural network-based method to detect anomalies in time-dependent surface deformation fields given a set of geodetic images of displacements collected from multiple viewing geometries. The presented methodology is based on a supervised classification approach using combinations of line of sight multitemporal, multi-geometry interferometric synthetic aperture radar (InSAR) time series of displacements. We demonstrate this method with a set of 170 million time series of surface deformation generated for the entire Italian territory and derived from ERS, ENVISAT, and COSMO-SkyMed Synthetic Aperture Radar satellite constellations. We create a training dataset that has been compared with independently validated data and current state-of-the-art classification techniques. Compared to state-of-the-art algorithms, the presented framework provides increased detection accuracy, precision, recall, and reduced processing times for critical infrastructure and landslide monitoring. This study highlights how the proposed approach can accelerate the anomalous points identification step by up to 147 times compared to analytical and other artificial intelligence methods and can be theoretically extended to other geodetic measurements such as GPS, leveling data, or extensometers. Our results indicate that the proposed approach would make the anomaly identification post-processing times negligible when compared to the InSAR time-series processing

    Phase Unwrapping via Graph Cuts

    Full text link

    Phi-Net: Deep Residual Learning for InSAR Parameters Estimation

    Get PDF
    Nowadays, deep learning (DL) finds application in a large number of scientific fields, among which the estimation and the enhancement of signals disrupted by the noise of different natures. In this article, we address the problem of the estimation of the interferometric parameters from synthetic aperture radar (SAR) data. In particular, we combine convolutional neural networks together with the concept of residual learning to define a novel architecture, named Phi-Net, for the joint estimation of the interferometric phase and coherence. Phi-Net is trained using synthetic data obtained by an innovative strategy based on the theoretical modeling of the physics behind the SAR acquisition principle. This strategy allows the network to generalize the estimation problem with respect to: 1) different noise levels; 2) the nature of the imaged target on the ground; and 3) the acquisition geometry. We then analyze the Phi-Net performance on an independent data set of synthesized interferometric data, as well as on real InSAR data from the TanDEM-X and Sentinel-1 missions. The proposed architecture provides better results with respect to state-of-the-art InSAR algorithms on both synthetic and real test data. Finally, we perform an application-oriented study on the retrieval of the topographic information, which shows that Phi-Net is a strong candidate for the generation of high-quality digital elevation models at a resolution close to the one of the original single-look complex data

    Mind the Modality Gap: Towards a Remote Sensing Vision-Language Model via Cross-modal Alignment

    Full text link
    Deep Learning (DL) is undergoing a paradigm shift with the emergence of foundation models, aptly named by their crucial, yet incomplete nature. In this work, we focus on Contrastive Language-Image Pre-training (CLIP), an open-vocabulary foundation model, which achieves high accuracy across many image classification tasks and is often competitive with a fully supervised baseline without being explicitly trained. Nevertheless, there are still domains where zero-shot CLIP performance is far from optimal, such as Remote Sensing (RS) and medical imagery. These domains do not only exhibit fundamentally different distributions compared to natural images, but also commonly rely on complementary modalities, beyond RGB, to derive meaningful insights. To this end, we propose a methodology for the purpose of aligning distinct RS imagery modalities with the visual and textual modalities of CLIP. Our two-stage procedure, comprises of robust fine-tuning CLIP in order to deal with the distribution shift, accompanied by the cross-modal alignment of a RS modality encoder, in an effort to extend the zero-shot capabilities of CLIP. We ultimately demonstrate our method on the tasks of RS imagery classification and cross-modal retrieval. We empirically show that both robust fine-tuning and cross-modal alignment translate to significant performance gains, across several RS benchmark datasets. Notably, these enhancements are achieved without the reliance on textual descriptions, without introducing any task-specific parameters, without training from scratch and without catastrophic forgetting

    Modeling Watershed Response in Semiarid Regions With High-Resolution Synthetic Aperture Radars

    Get PDF
    In this paper, we propose a methodology devoted to exploit the outstanding characteristics of COSMO-SkyMed for monitoring water bodies in semiarid countries at a scale never experienced before. The proposed approach, based on appropriate registration, calibration, and processing of synthetic aperture radar (SAR) data, allows outperforming the previously available methods for monitoring small reservoirs, mainly carried out with optical data, and severely limited by the presence of cloud coverage, which is a frequent condition in wet season. A tool has been developed for computing the water volumes retained in small reservoirs based on SAR-derived digital elevation model. These data have been used to derive a relationship between storage volumes and surface areas that can be used when bathymetric information is unavailable. Due to the lack of direct measures of river's discharge, the time evolution of water volumes retained at reservoirs has been used to validate a simple rainfall-runoff hydrological model that can provide useful recommendation for the management of small reservoirs. Operational scenarios concerning the improvement in the efficiency of reservoirs management and the estimation of their impact on downstream area point out the applicative outcomes of the proposed method

    Outlining where humans live -- The World Settlement Footprint 2015

    Full text link
    Human settlements are the cause and consequence of most environmental and societal changes on Earth; however, their location and extent is still under debate. We provide here a new 10m resolution (0.32 arc sec) global map of human settlements on Earth for the year 2015, namely the World Settlement Footprint 2015 (WSF2015). The raster dataset has been generated by means of an advanced classification system which, for the first time, jointly exploits open-and-free optical and radar satellite imagery. The WSF2015 has been validated against 900,000 samples labelled by crowdsourcing photointerpretation of very high resolution Google Earth imagery and outperforms all other similar existing layers; in particular, it considerably improves the detection of very small settlements in rural regions and better outlines scattered suburban areas. The dataset can be used at any scale of observation in support to all applications requiring detailed and accurate information on human presence (e.g., socioeconomic development, population distribution, risks assessment, etc.)

    Innovative Techniques for the Retrieval of Earth’s Surface and Atmosphere Geophysical Parameters: Spaceborne Infrared/Microwave Combined Analyses

    Get PDF
    With the advent of the first satellites for Earth Observation: Landsat-1 in July 1972 and ERS-1 in May 1991, the discipline of environmental remote sensing has become, over time, increasingly fundamental for the study of phenomena characterizing the planet Earth. The goal of environmental remote sensing is to perform detailed analyses and to monitor the temporal evolution of different physical phenomena, exploiting the mechanisms of interaction between the objects that are present in an observed scene and the electromagnetic radiation detected by sensors, placed at a distance from the scene, operating at different frequencies. The analyzed physical phenomena are those related to climate change, weather forecasts, global ocean circulation, greenhouse gas profiling, earthquakes, volcanic eruptions, soil subsidence, and the effects of rapid urbanization processes. Generally, remote sensing sensors are of two primary types: active and passive. Active sensors use their own source of electromagnetic radiation to illuminate and analyze an area of interest. An active sensor emits radiation in the direction of the area to be investigated and then detects and measures the radiation that is backscattered from the objects contained in that area. Passive sensors, on the other hand, detect natural electromagnetic radiation (e.g., from the Sun in the visible band and the Earth in the infrared and microwave bands) emitted or reflected by the object contained in the observed scene. The scientific community has dedicated many resources to developing techniques to estimate, study and analyze Earth’s geophysical parameters. These techniques differ for active and passive sensors because they depend strictly on the type of the measured physical quantity. In my P.h.D. work, inversion techniques for estimating Earth’s surface and atmosphere geophysical parameters will be addressed, emphasizing methods based on machine learning (ML). In particular, the study of cloud microphysics and the characterization of Earth’s surface changes phenomenon are the critical points of this work
    • …
    corecore