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Abstract: Interferometric Synthetic Aperture Radar (InSAR) data processing applications, such as
deformation monitoring and topographic mapping, require an interferometric phase filtering step.
Indeed, the filtering quality significantly impacts the deformation and terrain height estimation
accuracy. However, the existing classical and deep learning-based phase filtering methods provide
artefacts in the filtered areas where a large amount of noise prevents retrieving the original signal.
In this way, we can no longer distinguish the underlying informative signal for the next processing
step. This paper proposes a deep convolutional neural network filtering method, developing a novel
learning strategy to preserve the initial phase noise input into these crucial areas. Thanks to the
encoder–decoder powerful phase feature extraction ability, the network can predict an accurate
coherence and filtered interferometric phase, ensuring reliable final results. Furthermore, we also
address a novel Synthetic Aperture Radar (SAR) interferograms simulation strategy that, using initial
parameters estimated from real SAR images, considers physical behaviors typical of a real acquisition.
According to the results achieved on simulated and real InSAR data, the proposed filtering method
significantly outperforms the classical and deep learning-based ones.

Keywords: deep learning; interferometric synthetic aperture radar (InSAR); phase filtering; coherence
estimation

1. Introduction

Over the last years, one of the leading remote sensing techniques has been Synthetic
Aperture Radar Interferometry (InSAR), which represents one of the best tools to perform
complex tasks, such as topography mapping and deformation monitoring. The valuable
information about Earth’s surface is encoded using an interferometric phase that exploits
the phase difference between two or more Synthetic Aperture Radar (SAR) complex images
i.e., the single-look complex (SLC). Like all the coherent imaging systems, SAR images
are characterized by an intrinsic noise-like process that depends on several physical phe-
nomena, such as the scattering mechanism, acquisition geometry, sensor parameters and
target temporal decorrelation [1,2]. Other artefacts, such as those generated by atmospheric
conditions, do not generate coherence loss, and they are not considered here. This noise
affects the interferometric phase measurement and makes phase filtering an essential pro-
cedure for the whole processing pipeline. Indeed, in order to extract accurate information
from the signal, correct phase unwrapping procedures must be performed to retrieve the
absolute phase value by adding to each pixel multiples of 2π phase values. Therefore,
good phase detail features preservation (e.g., the fringes and edges) is required during
the noise filtering to ensure the measurement accuracy in the subsequent processing steps.
In addition to the filtering process, the coherence maps must be accurately estimated. In
fact, based on the correlation degree information provided by the coherence, we can select
a set of reliably filtered pixels candidates for the phase unwrapping procedure. Thus,
interferometric phase filtering and coherence map estimation are fundamental key factors
for most InSAR application techniques.
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In recent decades, researchers have proposed several approaches to estimate both the
interferometric phase and coherence map. The most common phase filtering techniques can
be categorized into four groups: the frequency domain, wavelet domain, spatial domain
and non-local (NL) methods. Adaptive spatial-domain filters such as Lee [3], estimating the
phase noise standard deviation and selecting an adaptive directional window, reduce the
noise while achieving a compromise between the loss of the fringe details and the residual
noise. Several improved versions have appeared after following the basic Lee filter [4–7].
However, this window processing operation that tries to increase the ability to maintain
the phase detail brings excessive smoothing and curved fringes distortion.

Goldstein and Werner proposed the first frequency-domain method [8], which tries
to suppress phase noise, enhancing the signal power spectrum. To increase the overall
performance, one of its improvements [9] presented a technique for regulating the filtering
intensity by predicting the dominant component from the signal’s local power spectrum.
Further modifications have been introduced to create a filtering parameter based on the
coherence value to enhance the filtering capacity for low-coherence areas. However, all
the frequency-domain filtering approaches always result in a loss of phase details as they
suppress the high-frequency components of the fringes. Furthermore, the accuracy of the
power spectrum estimation, which determines the performance of the frequency-domain
filters, always relies on the phase noise and window size considered.

The first wavelet-domain filter approach (WInPF) based on a complex phase noise
model is proposed by Lopez-Martinez and Fabregas [10]. The performance obtained
has demonstrated that the spatial-domain approach has a more robust ability to reduce
noise, while the wavelet-domain filters have a higher capability to maintain phase details.
Following the basic idea of the WInPF, several adapted versions appear [11,12], where the
implementation of the Wiener filter, simultaneous detection or estimation techniques helps
achieve a better filtering performance and excellent spatial resolution preservation. The
result shows that the noise separation from the phase information can be more facilitated
in the wavelet domain.

Finally, more recent non-local phase filtering methods have been successfully applied
to overcome the limitation imposed by using a local window during the phase estima-
tion and providing effective noise suppression while maintaining better spatial details.
Non-local filtering’s main idea is to extract additional details from the data by looking for
similar pixels before filtering. More precisely, a patch-similarity criterion assigns a weight
to each pixel based on a similarity measurement to the reference pixel. Therefore, each
pixel is chosen by evaluating a distance metric that does not consider any spatial prox-
imity criteria. Starting from the patch-based image denoising estimator proposed in [13],
Deledalle et al. [14] presented an iterative method based on a probabilistic approach that
relies on the intensities and interferometric phases around two specified patches. In par-
ticular, the patch-based similarity criterion is applied to compute a membership value,
which is then employed in a weighted maximum likelihood estimator (WMLE) to create
the appropriate parameters. Finally, the similarity values between the parameters of the
pre-estimated patches are included to refine the estimation iteratively. As a further devel-
opment, Deledalle proposed NL-InSAR [15], the first InSAR application to estimate the
interferometric phase, reflectivity and coherence map together from an interferogram using
a non-local method.

The non-local state-of-the-art approach is achieved by Sica et al. [16], using the same
two-pass strategy as block matching and 3-D filtering [17], in which the second pass was
driven by the pilot image created in the first pass. This approach exploits a block-similarity
measure, which considers the noise statistics, to create groups of similar patches of a fixed
dimension. Then, a collaborative filtering step is used to produce a denoised version in
the wavelet domain, computing the wavelet transform on the whole group. In particular,
collaborative filtering is performed using hard thresholding in the first filtering pass. Then,
Wiener filtering is performed in the second pass based on prior statistics already computed
on the pilot image.
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In the last years, the increase in Synthetic Aperture Radar Earth Observation missions,
such as TerraSar-X, Sentinel- 1, ALOS and Radarsat, has led to a new scenario characterized
by the continuous generation of a massive amount of data. On the one hand, this trend has
allowed us to disclose the inadequacy of the classical algorithms in terms of generalization
capabilities and computational performance; on the other, it paved the way for the new
Artificial Intelligence paradigm, including the deep learning one. A phase filtering tech-
nique called PFNet, which uses a DCNNs network, was proposed in [18], and another deep
learning approach for InSAR phase filtering was presented in [19]. The state-of-the-art
approach for InSAR filtering and coherence estimation is achieved by Sica et al. [20]. This
convolutional neural network (CNN) with residual connections, called Phi-Net, demon-
strates the capability of performing denoising working without any prior notions about the
input noise power. The network can manage different noise levels, including variations
within a single patch. This ensures that distributed spatial patterns, edges and point-like
scatterers (which characterize real InSAR data) are localized and well-preserved. However,
all the developed methodologies present in the literature generate a wrong filtered signal
in areas characterized by a low signal-to-noise ratio (SNR) and high spatial frequency.
This behavior does not allow a reliable result that can be used in a phase unwrapping
algorithm. This paper proposes a novel deep learning-based methodology for InSAR phase
filtering and coherence estimation. In addition to obtaining optimal noise suppression
and a retention capacity of phase details, our model addresses the challenging problem
of not generating artefacts in the filtered signal. A suitable training stage is developed
to preserve the original phase noise input in the areas characterized by a low SNR or
high spatial frequency. In this way, we ensure reliable results that can be used to obtain a
higher-precision unwrapped phase and ensure computational efficiency. Furthermore, we
also address a novel SAR interferograms simulation strategy using the initial parameters
from real SAR images. In this way, we created a training dataset that considers the physical
behaviors typical of real InSAR data. The experiments on simulated and real InSAR data
show that our approach outperforms the state-of-the-art methods present in the literature.

The remaining sections of the paper are structured as follows. Section 2 describes
the interferometric phase noise model and the image simulation procedure to generate
the synthetic image. The proposed method is introduced in Section 3 by describing the
employed architecture and the chosen learning strategy. In Section 4, the simulated and
real InSAR data results are presented, comparing the proposed method with four well-
established filtering ones. In Section 5, we draw our conclusions and provide potential
directions for future research.

2. Model for Data Generation

Deep learning methodologies require the generation of an extensive and reliable
training dataset for network learning. Furthermore, a supervised learning framework
also requires data-driven procedures, which allows us to evaluate the filtered quality by
comparing it with the ground truth. The quality and variety of the training examples have
a significant impact on the trained model’s performance. Many InSAR images, together
with their noise-free ground truth, are, in fact, necessary to properly train deep learning
networks. Fortunately, petabytes of SAR images are now accessible thanks to various
Earth Observation missions, such as Sentinel-1, Cosmo-SkyMed, Radarsat and TerraSAR-X.
However, having their equivalent noise-free labels is physically impossible. Therefore,
synthetically generating the noisy InSAR images is required. In the following subsections,
we detail the phase noise model we employed and how it was used to create our semi-
synthetic dataset.

2.1. Phase Noise Model

To statistically describe the interferometric SAR signal, we assume that the signal is
modeled as a complex circular Gaussian variable, as exploited in [21,22]. The interferogram
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is calculated by multiplying the complex value of the first SAR SLC image z1, called the
master image, by the complex conjugate of the second acquisition z2, called the slave image:

Γ = z1 · z∗2 (1)

In our model, the interferometric pair (z1, z2) is computed starting from the two
standard circular Gaussian random variables (u1, u2) as:(

z1

z2

)
= C

(
u1

u2

)
(2)

where

C =

(
A 0

Aρe−jφc A
√

1− ρ2

)
(3)

is the data covariance matrix Cholesky decomposition that depends on the clean inter-
ferometric phase φc, the coherence ρ and the amplitude A. It should be noted that the
amplitude A is assumed to be equal for both the SLC images. The coherence ρ is defined as
the amplitude of the correlation coefficient

ρ =

∣∣∣∣ E[z1z∗2 ]√
E[|z1|2]E[|z2|2]

∣∣∣∣ (4)

and it is a similarity measurement between the two images used to form the interferogram.
The more similar the two images reflectivity values are, the higher the interferogram SNR
will be (i.e., noiseless interferometric phase).

The interferometric phase noise can be described [3,10] similarly to the typical additive
noise model in natural images as

φ = angle(Γ) = φc + φn (5)

where φ is the real interferometric phase, φc is the noise-free interferometric phase and φn
is the zero-mean additive Gaussian noise independent from φc. It is essential to highlight
that, as the interferometric phase observed is modulo 2π (i.e., wrapped), in order to process
it correctly, a complex domain representation must be adopted. According to [10], the
complex domain phase noise model can be represented as

xreal = cos(φ) = Q cos(φc) + vr = Qxcreal + vr (6)

ximag = sin(φ) = Q sin(φc) + vi = Qxcimag + vi (7)

where xreal and ximag are real and imaginary parts of the complex interferometric phase
ej·φ, vr and vi are the zero-mean additive noise and Q is a quality index monotonically
increasing with the coherence ρ. In this way, the complex interferogram’s real and imaginary
components can be processed individually, allowing us to create an architecture that
properly filters the interferometric phase. The estimated clean interferometric phase φ′c can
be reconstructed from filtered real and imaginary parts x′creal

and x′cimag
as

φ′c = arctan(
x′cimag

x′creal

) (8)

If the phase estimation occurs simply by computing the filtered phase from the corre-
sponding real and imaginary part as just explained, for the coherence estimation, we had
to define a second different signal model that would allow us to manage both the phase
and coherence data together correctly. Indeed, to obtain a coherence prediction without
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any estimation bias due to the different values range of the phase and coherence data, we
considered the signal model defined as

γ = ρ · ej·φc (9)

from which, once the real and imaginary part has been estimated by considering

γreal = ρ · cos(φc) (10)

γimag = ρ · sin(φc) (11)

we can compute the predicted coherence as

ρ′ = |(γ′real + j · γ′imag)| (12)

As detailed in Section 3.4, the two signal models presented are then used in the two
separate loss functions to estimate phase and coherence, respectively.

2.2. Image Simulation

Following the signal model presented in the previous section, we have developed a
new SAR interferograms simulation strategy using initial parameters (i.e., amplitude, signal
distribution mean and variance, phase and coherence) estimated from real SAR images.
As detailed below, we employed an accurate topographic model to generate our semi-
synthetic data. Because the parameters are computed over a temporal stack of the same
area, the physical relationships among these quantities are intrinsically considered during
the data generation process. For instance, a common situation involves an amplitude and
interferometric phase that exhibit weakly correlated or uncorrelated patterns, although
coherence and amplitude frequently depend on one another. Based on the ground slope
and geometric distortions (e.g., layover and foreshortening areas), the interferometric
phase typically exhibits patterns with different spatial frequencies. At the same time, the
coherence and amplitude may exhibit progressively changing textures, edges and tiny
details based on some correlation degree that depends on the characteristics of the acquired
area. In addition, abrupt phase changes can occur in areas characterized by powerful
scatterers or layover regions. An example could be artificial areas, such as buildings, where
coherence and amplitude values are high and phase jumps are due to abrupt changes in the
structure’s elevation. In this way, we have obtained a semi-synthetic methodology that can
replicate physical behaviors typical of InSAR data and the results provided reliable images
regarding amplitude speckle, coherence and interferometric phase noise relationship.

Starting from an external lidar Digital Elevation Model (DEM) with 50 cm resolu-
tion, we generate the synthetic topographic wrapped phase φc according to the height-to-
phase conversion

φc =
4π

λ

Bh
R sin(θ)

(13)

where λ is the wavelength of the transmit signal, R is sensor-to-target distance, θ is the local
incidence angle, B is the baseline perpendicular to the line of sight and h is the DEM surface
height value. We choose different acquisition geometry parameters to obtain a large variety
of training data. Two examples of synthetic interferometric phase patterns are depicted in
Figure 1.



Remote Sens. 2022, 14, 4956 6 of 23

(a) (b)

Figure 1. Example of synthetic topographic wrapped phase obtained using two different acquisition
geometries: (a) small baseline; (b) large baseline.

As mentioned before, the simulated noisy interferogram φ depends on the initial
parameters estimated from real acquisitions, i.e., amplitude, signal distribution mean and
variance, phase and coherence. Therefore, we first compute the amplitude mean A and
the temporal coherence ρ over an image stack of the same area acquired in a different time
instant. Then, using a maximum likelihood estimator (MLE), we compute the signal rice
distribution mean µrice and variance σ2

rice to correct the estimated temporal coherence ρ. In
particular, we suppose both master and slave images are the sums of two contributions:
signal (a, common to both acquisitions) and noise (n, uncorrelated with the signal). Based
on Equation (4), it is then easy to compute the coherence:

ρ =

∣∣∣∣ E[(a + nslave)(a + nmaster)∗]√
E[|a + nslave|2]E[|a + nmaster|2]

∣∣∣∣ = σ2
a + |µa|2

σ2
a + |µa|2 + σ2

n
(14)

where
E[|nslave|2] = E[|nmaster|2] = σ2

n and E[|a|2] = σ2
a

and it is assumed that 

E[n] = 0

E[a] = µa = µrice

σ2
a + σ2

n = σ2
rice

E[nslave · nmaster] = E[nslave]E[nmaster]

E[a · n] = E[a]E[n] = 0

Deriving σ2
a from Equation (14) and imposing:{

σ2
a = (ρ− 1)|µrice|2 + ρσ2

rice

σ2
a ≥ 0

(15)

we obtain the following coherence correction rule:

ρ ≥ |µrice|2

|µrice|2 + σ2
rice

(16)

In this way, we retrieve the amplitude–coherence degree of interdependence according
to the nature of the imaged scene. Before the correction, we also introduce a smoothing
factor to the coherence ρ using 3 × 3 box blur filtering. Note that an averaging over more
than one point in space is required to estimate spatial coherence. Therefore, as it is impossi-
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ble to have a pixel-wise estimate resolution, the smoothing factor allows overcoming the
estimation limits imposed by considering a 1 × 1 window from which the initial temporal
coherence was computed. Finally, we can quickly obtain a pair of randomly simulated
SLC SAR images z1 and z2 according to Gaussian model in Equations (2) and (3) using
the previously estimated parameters A, φc and ρ. Figure 2 shows the processing steps
employed to simulate interferogram images. It should be pointed out that several factors
affect the coherence, such as baseline, scattering mechanism, SNR, Doppler, volume scatter-
ing and temporal decorrelation. Trying to model all the possible noise sources properly is
quite challenging as a lot of information over the considered area is required. However, in
our methodology, the coherence values used to generate the Gaussian noise are evaluated
considering several real images acquired over the area. Therefore, those coherence values
take into account all the possible noise sources that can affect an interferogram.

Figure 2. Schematic illustration of processing steps employed to simulate noisy interferogram and
amplitude images.

2.3. Model Input

Starting from each pair of simulated SLC SAR images z1and z2, we extract the interfer-
ometric phase φ as

φ = angle(z1z∗2) (17)

As for the other methods in the literature [18–20], we have no requirements and
conditions to use the proposed architecture. Our model inputs are the real and imaginary
part of the phase together with the normalized image amplitudes:

xreal = cos(φ) (18)

ximag = sin(φ) (19)

A1 = normalize[abs(z1)] (20)

A2 = normalize[abs(z2)] (21)

In real-world SAR images, the amplitude values range could be extremely broad and
may vary across different target sites and radar sensors. In addition, as suggested in several
deep learning studies [23,24], the learning-based method requires similar input distribution
with low and controlled variance. Hence, as already introduced in [19], all amplitude
values are normalized using an adaptive approach to fit into the range [0–1]. The model
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preserves the original image dynamics while saturating potential outliers without deleting
any crucial backscatter information. As presented in [25], we compute the modified Z score
using the sample median and Median Absolute Deviation (MAD). In particular, we first
calculate the MAD value related to the amplitude image Ai as:

MAD = median(|Ai − Adataset|) (22)

where Adataset is the amplitude median computed over the whole dataset. We then trans-
form the data into the modified Z-score domain:

Amz
i =

0.6745 ∗ (Ai − Adataset)

MAD
(23)

Amz
i represents the pixel-wise modified Z score, and the constant 0.6745 is a fixed number

computed by the author in [25] to approximate the standard deviation. In this way, we force
all potential outliers to be far from 0. Finally, a non-linear function, i.e., tanh, is applied to
give a standard input data distribution for network training:

Anorm
i =

1
2
(tanh(

Amz
i

W
) + 1) (24)

where W is a threshold for outlier detection. Data points with Amz
i score greater than W

are potential outliers to be ignored [25]. We further normalize the transformed data to the
range [0, 1].

3. Proposed Method

All the methodologies present in the literature, inspired by the principles of denoising
autoencoders [26,27], addressed the filtering problem by learning a mapping between the
interferometric phase real and imaginary part and their corresponding noise-free recon-
structions. However, this approach, which has obtained the best performances in natural
images, cannot be used in the same way for filtering the interferometric phase images.

Indeed, some InSAR phase images are affected by low-coherence areas in which a low
SNR makes it impossible to retrieve the original signal. Furthermore, there may be very
high frequency phase areas in which the fringes are very close to each other, and a small
amount of noise is enough not to be able to reconstruct them. Figure 3 shows an example
of a wrong filtered signal typical of the state-of-the-art deep learning-based methodologies.

(a) (b) (c)

Figure 3. Example of wrong filtered signal in areas characterized by low signal-to-noise ratio (SNR)
and high spatial frequency. (a) Noisy interferometric phase; (b) ground truth; (c) wrong filtered result.

We have developed a modified U-Net version that addresses the challenging problem
of not generating artefacts in the reconstructed signal. In this way, we obtain a reliable
filtering result that is fundamental in any phase unwrapping algorithm. Indeed, during
phase unwrapping, the false phase jumps introduced by the artefacts cause an incorrect
wrap count, and these errors propagate over the whole image. Thus, a suitable training
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stage is developed to preserve the original phase noise input in the areas characterized by
low SNR or high spatial frequency.

As mentioned before, we implemented a modified UNet, which is an encoder–decoder
convolutional neural network initially employed for semantic segmentation in medical
images [28]. It is an architecture designed to learn a model in an end-to-end setting. The
UNet’s encoder path compresses the input image information by extrapolating relevant
features computed at different resolution scales. As a result, various representations of
abstraction levels are provided by this hierarchical feature extraction. On the other hand,
the UNet’s decoder path reconstructs the original image by mapping the intermediate
representation back to the input spatial resolution. In particular, during this reconstruction
process, the information is restored at different resolutions by stacking many upsampling
layers. However, when a deep network is employed, some information may be lost
during the encoding process, thus making it impossible to retrieve the original image
details from its intermediate representation. To address this issue, U-Net implemented
a series of skip connections that allow relevant information to be preserved during the
decoding stage. In this way, the reconstructed image accuracy can be well preserved. In the
following, we describe the changes made to the standard UNet to adapt the network for
processing SAR images, and we introduce the learning stage for InSAR phase filtering and
coherence estimation.

3.1. Convolutional Block

Figure 4 shows the modified convolution block used to construct our optimized net-
work. At the end of each convolutional block, we added a dropout layer with a probability
of 0.3. Dropout is a neural network regularization strategy employed to reduce interde-
pendent learning between neurons, lowering the risk of network overfitting. Moreover,
it forces the network to learn more robust features that can operate well in conjunction
with distinct random subsets of other neurons. In addition to dropout, we inserted a batch
normalization layer at the end of each convolutional layer to increase the stability of a
neural network. Indeed, each layer input has a corresponding distribution during the
training process affected by the parameter initialization and input data randomness. These
randomnesses on the internal layer inputs distribution are described as internal covariate
shift, and batch normalization is used to mitigate these effects [29]. Finally, we added a
padding layer for each convolutional layer to keep the image size within the entire network
unchanged. Indeed, the standard UNet does not perform any padding in the convolution
layers, and the output size for each layer is not equal to the input size; in particular, we
used a specific type of padding, i.e., reflecting padding, to preserve the physical structure
of the SAR image both in terms of amplitude and interferometric phase values.

J J K K K K K

M
 x

 N

(M
 +

 1
) x

 (N
 +

 1
)

M
 x

 N

M
 x

 N

(M
 +

 1
) x

 (N
 +

 1
)

M
 x

 N

M
 x

 N

Reflective Pad

Conv 3x3 + Relu

Batch Norm

Dropout

Input 

Image

Figure 4. Convolutional block modification.
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3.2. Network Structure

Figure 5 shows the architecture derived from the original U-Net. As explained above,
the UNet architecture follows the structural composition of an encoder–decoder. Both the
encoder, bottleneck and decoder are composed of our modified convolutional blocks, i.e.,
the ensemble of convolutional layer (Conv), batch normalization (BN), ReLU activation
functions and dropout, as depicted in Figure 4. A two-by-two max-pooling follows each
convolutional block in the encoder path. Note that the number of feature maps after
each block doubles (from 64 to 1024) so that architecture can effectively learn complex
structures. The bottleneck, composed of one convolutional block followed by a two-
by-two upsampling transposed convolutional layer, mediates between the encoder and
decoder layers. On the decoder side, a two-by-two upsampling transposed convolutional
layer follows each convolutional block, and the number of decoder filters is halved (from
1024 to 64) to maintain symmetry during the corresponding reconstruction. After each
transposed convolution, the image is concatenated with the corresponding one from the
encoder through the skip connection. As explained above, skip connections help recover
the information that may have been partially lost during the encoding phase, allowing
for a more detailed reconstruction. Finally, the last decoder building block comprises a
one-by-one convolution layer with a filters number equal to the number of the desired
output, i.e., 4.

64

128 X 128

12
8 

X 
12

8

128

64
2

64
2

32
2

32
2

256

512

1024

16
2

16
2

82 82

64

128

256

512

1024

16
2

512

16
2

512 256

32
2

32
2

256 128

64
2

64
2

128 64

12
8 

X 
12

8

12
8 

X 
12

8

128 X 128

4 4

2x  (pad, conv 3x3, relu, BN) + Dropout

max pool 2x2

up-conv 2x2

conv 1x1

copy

Figure 5. Modified UNet.

3.3. Learning

In order to extract accurate information from the filtered signal, phase unwrapping
procedures must be performed to retrieve the absolute phase. Therefore, it is essential to
preserve good phase detail features (e.g., fringes and edges) during the noise filtering to
ensure measurement accuracy in the subsequent processing step. Note that the window
size and shape used in most of the classical filtering methods are automatically set by the
network during the learning process, and it is not visible outside the network. All the
architectures present in the literature [18–20] are trained to address the filtering problem
by learning the filtered interferometric phase (real and imaginary part) directly from their
corresponding noise-free ground truth. However, this approach, typically used in the
natural images field, cannot be used for interferometric phase filtering as it generates
artefacts in the reconstructed signal. This behavior is due to the fact that some InSAR
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phase images are characterized by low-coherence (i.e., low SNR) or high-frequency fringes
areas where the noise amount does not allow to retrieve the original signal. Consequently,
developing a suitable training phase to preserve the original phase noise input into these
crucial areas is necessary. More in detail, in the noisy areas, i.e., coherence close to zero,
we preserve the original data as it is impossible to estimate any signal. On the other hand,
in the high-coherence areas characterized by a low expected a posteriori variance, we
filter out the noise to completely recover the underlying signal. Finally, in fast fringes and
low-coherence areas, where a greater a posteriori variance is expected, we partially filter
the noisy input signal to avoid introducing artefacts. Thus, the desired behavior is achieved
by creating a “noisy” ground truth where the noise level depends on the expected estimate
a posteriori variance as a function of the coherence and spatial frequency.

Starting from the simulated noiseless interferometric phase image φc, we computed
the magnitude gradient ∇(φc) using a 5 × 5 Sobel filter to extract phase fringes frequency
information. We then created a specific function that manages the overlap between the
pixels to be filtered and those in which the original noise must be kept. The overlap function
S2, computed using a series of two logistic functions that takes in the magnitude gradient
∇(φc) and the coherence values ρ, respectively, is defined as

S2 =
1

1 + e−k(ρ−S1)
(25)

where
S1 =

b
1 + e−m(∇(φc)−q)

(26)

and k is an exponential increasing factor associated to each magnitude gradient value range.
The tuning parameters b, m and q, empirically set after preliminary experiments, are used
to manage the overlap function and provide different filtering versions. Figure 6 shows an
example of the overlap function S2 used during training.

Figure 6. Overlap function S2 example. Red values (i.e., 1) associate the clean interferometric phase
as ground truth. Blue values (i.e., 0) associate the original input noisy phase as ground truth.
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Finally, for each pixel in the images, we first calculate the associated overlap values,
and then we compute the “mixed” ground truth as

φmixed = angle(S2 · e(j∗φc) + (1− S2) · e(j∗φ)) (27)

Figure 7 shows an example of a “mixed” ground truth based on magnitude gradients
and the coherence values.

(a) (b)

(c) (d)

Figure 7. Example of “mixed” ground truth based on magnitude gradients and the coherence values.
(a) Original ground truth; (b) magnitude gradient; (c) coherence; (d) “mixed” ground truth.

3.4. Loss Function

The loss function is essential during neural network training to update the network’s
weights and build a better-fitting model. To optimize our network parameters, we exploit
a combination of two Mean Square Error (MSE) by minimizing the error between the
predicted image and the “mixed” ground truth as

Ltot = Lphase + β · Lcoh (28)

where the weight β = 7 is empirically set to ensure that the losses rely on the same range
of values. The first MSE, related to the phase prediction of the filtered real and imaginary
part, is defined as

Lphase =
1
N

N

∑
i=1

(||xi − x′i ||22) (29)
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with
xi = [Re(ej·φimixed ), Im(ej·φimixed )] (30)

x′i = [Re(ej·φ′imixed ), Im(ej·φ′imixed )] (31)

where N is the number of pixels of the images, xi and x′i represent the label and the network
output of the ith pixel. On the other hand, the second MSE is related to the coherence
estimation, and it is defined as

Lcoh =
1
N

N

∑
i=1

(wi||yi − y′i||22) (32)

with
y = [Re(ρ · ej·φimixed ), Im(ρ · ej·φimixed )] (33)

y′ = [Re(ρ · ej·φ′imixed ), Im(ρ · ej·φ′imixed )] (34)

where N is the number of pixels of the images, yi and y′i represent the label and the network
output of the ith pixel and wi is the weight term applied to balance the loss function with
respect to the coherence values of our dataset. The additional weight is calculated as

wi =

√
Ntot

Nk
with k = 1, 2......70 (35)

where Ntot is the dataset total number of pixels and Nk is the number of pixels of the
coherence interval k to which the considered ith pixel belongs. The coherence histogram is
evaluated over 70 bins uniformly distributed. Note that the two loss functions are based on
two different signal model that differ from each other by the coherence ρ multiplicative
term as depicted in Equations (31) and (33). The reason why we do not estimate the filtered
phase φmixed directly from the second model (i.e., ρ · ej·φmixed ) lies in the fact that, in this
way, the network is no longer able to estimate the noisy part of the “mixed” ground truth
during training.

4. Results

We created an appropriate set of experiments that included synthetic and real images
to evaluate our model performance. The synthetic dataset enables us to quantitatively
compare the accuracy of our predictions to the other state-of-the-art (SOA) techniques, while
real InSAR images are employed to show how the suggested architecture can be successfully
applied in a real setting. All the experiments were performed with an NVIDIA RTX Ti 2080
GPU. Table 1 summarizes the settings used for our main results. In the following section,
we provide an overview of the dataset we created to conduct the experiments, and we
show our results in comparison with the state-of-the-art methods together with the final
conclusions that can be drawn.

Table 1. Values of parameters used for network training.

Parameters Configuration

optimizer AdamW
base learning rate 1 × 10−3

weight decay 0.01
amsgrad False
optimizer momentum β1, β2 = 0.9, 0.999
batch size 64
training epochs 320
training time 3.20 h
gradient clip 1
precision Mixed precision (16 bit)
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4.1. Synthetic Dataset

Our semi-synthetic dataset has been built using the phase model and the simulated
method described above. The dataset is composed of 128 × 128 patches extracted from
four different mining sites. In particular, the training set contains 5400 patches extracted
from three mining sites and the validation set contains 1900 patches extracted from another
mining site. Both datasets are built to have a number of balanced patches in terms of
the coherence and phase fringes values. Table 2 summarizes the parameters used to
construct them. Note that the listed parameters identify a simulation strategy considering
an acquisition through a point antenna (i.e., the infinite critical baseline). The spatial
coherence losses caused by the baseline decorrelation are already included in the coherence
estimation computed over the stack of images considered.

Table 2. Values of parameters used for the simulation of synthetic phase patterns.

Simulation Parameters

wavelength 6 cm
sensor-to-target distance 600 km
average local incidence angle π

6 rad
baseline 100, 300, 600, 900, 1200, 1500 m

Each patch includes three channels that correspond to the parameters used to simulate
the interferograms (i.e., A, ρ and φc) according to Equations (2) and (3). In our setting,
the simulation procedure is carried out online. In other words, new synthetic images are
created for each training phase iteration. This type of approach allows the model to mitigate
overfitting, thus avoiding losing generalization capabilities on unseen samples. Indeed,
by introducing a distinct noise image at each training step, the model is driven to learn
a more robust mapping between the input and label pairs. Additionally, the samples are
augmented at each training step by randomly combining 90◦ and 270◦ rotations, horizontal
and vertical flips and flipping in both directions.

4.2. Performance Evaluation

We compared the proposed method against the InSAR-BM3D [16], NL-InSAR [15],
and Phi-Net methods [10] on both the simulated and real InSAR data. The evaluation of
the final results was carried out using qualitative and quantitative criteria. In particular,
the qualitative evaluation is based on visual observation. Therefore, we provide filtered
and noisy interferometric phase images together. This evaluation method checks whether
the noise is reduced, the phase fringes are maintained and artefacts are not introduced.
On the other hand, the quantitative indexes are based on the Mean Square Error (MSE)
and the Spectral Flatness (SF) between the filtered and ideal phases. The MSE metric
measures the difference between the filtered and clean interferometric phases. Smaller
values correspond to the filtered interferometric phase closer to the clean one. However,
this index does not consider the artefacts introduced where the original signal cannot
be filtered due to a large amount of noise. This is critical as, in many InSAR processing
applications (e.g., motion displacement monitoring), data artefacts lead to an erroneous
analysis with consequent unreliable results. Therefore, it is better to sacrifice complete
filtering to reduce the chance of having fringe artefacts in the reconstructed signal. To solve
this problem, we adopt a spectral-flatness index which consists of a flatness evaluation
of the residue spectrum. The residues are defined as the difference between filtered and
clean interferometric phases. This custom metric indicates the number of uncontrolled
artefacts introduced during the filtering process. When the flatness of the spectrum is low,
the residual spectral power is concentrated in a limited number of bands, and consequently,
a large amount of uncontrolled artefacts is present in the predicted image. Instead, high
values of spectral flatness indicate that the spectrum has roughly equal power throughout
all spectral bands, making the spectrum graph appear smooth and flat. Figure 8 shows
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a comparison example between a low- and high-spectral-flatness case. The final filtering
evaluation is computed simultaneously, considering the MSE and spectral flatness as
filtering and artefacts indicators. In particular, in order to balance the metrics and validate
the results, we adopt a combination of the MSE and SF, defined as

MSE√
SF

(36)

The coherence estimation performance is computed instead, considering only the MSE
between the prediction and the ground truth.

(a) (b) (c)

Figure 8. Comparison example between a low- (top) and high-spectral-flatness (bottom) case. (a)
Filtered interferometric phase; (b) residues; (c) residue spectrum.

4.3. Experiments on Simulated Data

Visual comparisons with the considered coherence and filtering estimation methods
are presented. In particular, for the filtering part, we compared our result with respect to
InSAR-BM3D and Phi-Net as classical and deep learning-based SOA methods, respectively.
On the other hand, because InSAR-BM3D does not estimate the coherence, we compared
our coherence predictions with respect to NL-InSAR and Phi-Net. In order to better
understand how our network manages the critical area in which the original signal cannot
be restored, we provide two filtering versions obtained by tuning the parameters b, m and
q in Equation (26). More in detail, the soft version (m = 5, q = 0.78 and b = 0.85) generates
fewer artefacts, maintaining the original input noise. Opposite to that, the hard version
(m = 5, q = 1 and b = 1) tries to filter as much as possible, thus generating some artefacts in
the final prediction. In addition to the predicted images, we also show the residual phase
map corresponding to the difference between the estimated quantity and its corresponding
clean reference. We consider three different case studies depending on the phase fringe
frequency (i.e., low, medium and high).

From the first visual inspection in Figures 9–11, it is visible that the proposed archi-
tecture outperforms all previous SOA approaches in all the considered cases as it can
accurately reconstruct details even with strong noise levels. Our model is more effective
than other techniques in separating the noise contribution from the underlying informative
signal. Indeed, we can follow the fringes structures even in interruptions due to a large
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amount of noise present in the image. Furthermore, it is possible to observe how the model
does not introduce large artefacts, thus making the prediction usable for a subsequent
phase unwrapping step. As shown in Figure 12, also in the coherence estimation, it is
visible that the proposed method can maintain a significantly higher level of detail than the
SOA ones. The numerical results, summarized in Figures 13–15, confirm that the proposed
model significantly outperforms all other methods on the most coherence bins for the
custom combined metric (Equation (36)) considered. Note that, although the MSE for some
bins is similar in the filtering prediction, the spectral-flatness values differ significantly.
This behavior emphasizes that the MSE is not always a good indicator of the filtering
performance. Indeed, the introduction of noise in the prediction sometimes implies a
worsening of the comparison with the ground truth, but on the other hand, it is responsible
for a notable increase in the spectral flatness (i.e., it does not generate artefacts). In contrast
to that, completely different behavior for the InSAR-BM3D method can be noticed. Here,
the spectral flatness assumes high values despite the high values of the MSE. This trend is
due to the wrong noise content in the filtered interferograms, which, on one side, causes
an increase in the MSE and, on the other side, makes the spectrum smooth and causes
an increase in the spectral flatness. The custom combined metric provides a complete
evaluation of the filtering performance for all the possible behaviors. Tables 3–5 show
the final numerical result of the combined metric considering the three different phase
fringe frequency cases separately. Finally, Table 6 and Figure 16 confirm that the proposed
method can also maintain a significantly higher level of detail in the coherence estimation,
outperforming the other ones.

Figure 9. Filtered interferometric phase (top) and corresponding residues (bottom) of the three
compared methods tested on low-frequency synthetic data.

Figure 10. Filtered interferometric phase (top) and corresponding residues (bottom) of the three
compared methods tested on medium-frequency synthetic data.
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Figure 11. Filtered interferometric phase (top) and corresponding residues (bottom) of the three
compared methods tested on high-frequency synthetic data.

Figure 12. Coherence predictions on two different synthetic examples for the three methods under
comparison.

(a) (b) (c)

Figure 13. Low-frequency case: mean square error (a), spectral flatness (b) and custom metric (c) for
all methods under comparison.
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(a) (b) (c)

Figure 14. Medium-frequency case: mean square error (a), spectral flatness (b) and custom metric
(c) for all methods under comparison.

(a) (b) (c)

Figure 15. High-frequency case: mean square error (a), spectral flatness (b) and custom metric (c) for
all methods under comparison.

Figure 16. Coherence performance evaluation: mean square error for all methods under comparison.
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Table 3. Quantitative index Equation (36) of the compared methods on simulated low-frequency
fringes.

Low Frequency

Coherence Range
Methods

InSAR- BM3D Phi-Net Soft Hard

0–0.3 1.9190 2.0199 2.1121 1.7909
0.3–0.6 0.6940 0.2448 0.1865 0.1602
0.6–1 0.3502 0.0927 0.0478 0.0456

Table 4. Quantitative index Equation (36) of the compared methods on simulated medium-frequency
fringes.

Medium Frequency

Coherence Range
Methods

InSAR- BM3D Phi-Net Soft Hard

0–0.3 3.4832 3.4673 2.6974 2.5543
0.3–0.6 1.3924 0.7199 0.4749 0.3977
0.6–1 0.6577 0.2181 0.0822 0.0799

Table 5. Quantitative index Equation (36) of the compared methods on simulated high-frequency
fringes.

High Frequency

Coherence Range
Methods

InSAR- BM3D Phi-Net Soft Hard

0–0.3 3.6572 4.1706 3.1042 3.0426
0.3–0.6 2.4025 1.4076 1.0314 0.8700
0.6–1 2.1257 0.4811 0.2466 0.2015

Table 6. Mean square error of the compared methods on simulated coherence data.

Coherence Range
Methods

NL-InSAR Phi-Net Proposed Method

0–0.3 0.0060 0.0025 0.0024
0.3–0.6 0.0622 0.0700 0.0525
0.6–1 0.0959 0.0949 0.0601

4.4. Experiment on Real Data

This section provides the results from real interferometric SAR images acquired by
the TerraSAR-X and the Sentinel-1 missions. We tested our proposed method on areas
where the water presence guarantees fixed low-coherence values with consequent noisy
phase areas. In particular, for the TerraSAR-X example, we selected a scenario related to an
acquisition of the Miami coast overlooking the Atlantic Ocean. The choice of this place lies
in the fact that, as shown in Figure 17 (site A-I), we want to test our methodology in water
areas characterized by different amplitude values. In this way, we ensure that the coherence
predictions are not strictly linked to the value of the amplitude input, and consequently, the
network keeps the phase noise correctly as the final prediction. As shown in Figure 17 (site
A-II), we also tested our method in mountainous areas, where the presence of geometric
distortions, such as layover, foreshortening and shadows, causes spatial decoration with a
consequent loss of coherence. Finally, concerning the Sentinel-1 images in Figure 17 (site
A-III), we use the exact test images presented in the Phi-Net paper to directly compare the
two deep learning-based methods.
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Figure 17. Amplitude (top) and corresponding noisy interferometric phase (bottom) of the three case
study examples on real Interferometric Synthetic Aperture Radar (InSAR) data.

We employ a qualitative comparison to assess the filtering performance rather than a
quantitative evaluation as we do not have noise-free real images to compute the metrics.
As can be noticed from Figure 18, the proposed method has powerful denoising abilities
on real InSAR data. Contrary to other methods, we can observe that we provide a strong
noise suppression, keeping the noise input in the areas where the original signal cannot be
filtered. Indeed, it is possible to highlight how the artefacts in the incoherent noisy area are
significantly reduced, and the filtered dense interferometric fringe patterns appear cleaner
and smoother. Note that the soft version provides a more conservative filtering estimation
that can be used to obtain a completely reliable phase unwrapping final result. As shown
in Figure 19, a similar result is observed for the coherence as well. Indeed, our network
estimates appear more detailed than the NL-InSAR and Phi-Net ones.

Figure 18. Filtered interferometric phase images of the considered sites A-I and A-II estimated using
all the compared methods.
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Figure 19. Coherence images of the considered sites A-I and A-II estimated using all the compared
methods.

Moreover, it can be noted that the coherence values relating to the water areas are
much lower in our prediction than the others. The greater precision in the estimation is
due to the fact that our network, unlike other works in the literature, has been trained with
simulated data starting from real data. This allowed us to replicate physical behaviors
typical of InSAR data, providing reliable images. Similar results can be observed in the
Sentinel-1 data, as shown in Figures 20 and 21. According to the results obtained from
the TerraSAR-X data, we note that we can suppress the noise and preserve details in both
the phase and the coherence images. As before, the soft version provides a conservative
estimate of the filtering, thus ensuring a completely reliable result.

Figure 20. Filtered interferometric phase images of the considered site A-III estimated using all the
compared methods.

Figure 21. Coherence images of the considered site A-III estimated using all the compared methods.
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5. Discussion

In this article, we presented a novel deep learning model to estimate both the coher-
ence and the interferometric phase from SAR data. In particular, we designed a learning
strategy that, combined with a novel data simulation procedure, allowed us to train a
CNN architecture suitable for interferometric phase processing. The first contribution is
based on integrating a novel learning paradigm into network training. The methodology
implemented, which has never been explored before for the InSAR filtering task, has shown
interesting features. The desired behavior, achieved by creating a ground truth containing
noise pixels where the original signal cannot be filtered, effectively represents the interfero-
metric signal and the superimposed noise. It results in our network’s ability to maintain any
fringe density patterns while keeping the original noise in the critical areas. A visual exami-
nation of the synthetic data phase and coherence images demonstrates that the phase fringe
structures are well-preserved compared to the other SOA methods. In this way, thanks to
the a priori knowledge on the wrap count, we can guarantee a completely reliable filtering
result than can be used in the subsequent phase unwrapping step. Furthermore, real InSAR
data experiments confirm our observations made on the synthetic data. Indeed, we can
preserve high-resolution details and spatial textures while maintaining the original noisy
input in areas where the underlying signal cannot be reconstructed. The training dataset
plays a key role in the performance estimation. Our data generation has been realized,
starting from real InSAR acquisitions. In this way, the physical behaviors typical of real In-
SAR data are considered to model the relationships between the amplitude, coherence and
interferometric phase. The addition of these valuable details greatly enhanced the network
performance. Indeed, the model can outperform the SOA approaches on the examined test
cases composed of synthetic test patterns and real data. In future developments, we plan to
compare different phase unwrapping methods using the proposed filtering results as input.
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