195 research outputs found

    Computer tool for maximizing the placement of congruent polyhedra

    Get PDF
    Given multiple identical polyhedral objects and a parallelepiped container, how should one place the objects so that the largest number fits inside the container? This simple question is important in many applications, yet the answer is elusive. In fact, we know of no published solution for this very general formulation. Still, in many circumstances, further restrictions apply, resulting in a large number of variations requiring different algorithmic strategies. This paper is the continuation of [12] and focus on the fundamental concepts and tools that are used for this kind of problem, such as the no-fit polygon. We also present some of its many variations, giving in particular one that applies to the stereolithographic rapid prototyping technology

    The Construction of Conforming-to-shape Truss Lattice Structures via 3D Sphere Packing

    Get PDF
    Truss lattices are common in a wide variety of engineering applications, due to their high ratio of strength versus relative density. They are used both as the interior support for other structures, and as structures on their own. Using 3D sphere packing, we propose a set of methods for generating truss lattices that fill the interior of B-rep models, polygonal or (trimmed) NURBS based, of arbitrary shape. Once the packing of the spheres has been established, beams between the centers of adjacent spheres are constructed, as spline based B-rep geometry. We also demonstrate additional capabilities of our methods, including connecting the truss lattice to (a shell of) the B-rep model, as well as constructing a tensor-product trivariate volumetric representation of the truss lattice - an important step towards direct compatibility for analysis.RYC-2017-2264

    Discrete Geometry

    Get PDF
    The workshop on Discrete Geometry was attended by 53 participants, many of them young researchers. In 13 survey talks an overview of recent developments in Discrete Geometry was given. These talks were supplemented by 16 shorter talks in the afternoon, an open problem session and two special sessions. Mathematics Subject Classification (2000): 52Cxx. Abstract regular polytopes: recent developments. (Peter McMullen) Counting crossing-free configurations in the plane. (Micha Sharir) Geometry in additive combinatorics. (József Solymosi) Rigid components: geometric problems, combinatorial solutions. (Ileana Streinu) • Forbidden patterns. (János Pach) • Projected polytopes, Gale diagrams, and polyhedral surfaces. (Günter M. Ziegler) • What is known about unit cubes? (Chuanming Zong) There were 16 shorter talks in the afternoon, an open problem session chaired by Jesús De Loera, and two special sessions: on geometric transversal theory (organized by Eli Goodman) and on a new release of the geometric software Cinderella (Jürgen Richter-Gebert). On the one hand, the contributions witnessed the progress the field provided in recent years, on the other hand, they also showed how many basic (and seemingly simple) questions are still far from being resolved. The program left enough time to use the stimulating atmosphere of the Oberwolfach facilities for fruitful interaction between the participants
    corecore