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Abstract: Given multiple identical polyhedral objects and a parallelepiped container, how should one place the
objects so that the largest number fits inside the container? This simple question is important in many applications,
yet the answer is elusive. In fact, we know of no published solution for this very general formulation. Still, in many
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this kind of problem, such as the no-fit polygon. We also present some of its many variations, giving in particular one
that applies to the stereolithographic rapid prototyping technology.
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1 Introduction

The problem of maximizing the number of items that fit
inside a container is one of a family of problems known
as Cutting and Packing (C&P), most of which are noto-
riously hard. For an overview of this family of problems,
see [4]. These problems include for instance the cutting
of large sheets or rolls of paper to produce a given num-
ber of specific size sheets, with minimal waste; or the or-
der and positions for placing different-sized boxes in a
container.

The particular problem we will address is that of plac-
ing the maximum number of objects in the work area
of an additive rapid manufacturing or rapid prototyping
(RP) machine. This is most relevant for those RP tech-
niques where a whole layer is processed at a time, as
is the case in stereolithography. When using extrusion-
based processes, we are usually interested in minimizing
the total path length, and thus software for those ma-
chines will try to minimize the total area occupied by a
user-specified set of parts. In stereolithography, on the
contrary, since the irradiation of a layer is done by pro-
jection, it takes an approximately constant time and en-
ergy to process each layer, regardless of the fraction of
the work area that is occupied by the fabricated parts. So,
placing more parts in the work area directly translates to
time- and energy-efficiency.

Several methods have been proposed for packing mul-
tiple distinct parts in a container, either minimizing the
length of the container or maximizing the total number
of parts. Most of those methods have some of the follow-
ing characteristics: based on heuristic, iterative, stochas-
tic; and most are formulated for two dimensional prob-
lems or for a restricted set of part geometries (for in-
stance, parallelepiped boxes). For large production runs,
trial-and-error, progressive optimization, or processing-
intensive algorithms may be useful. But for the small

or one-time series that are typical of rapid prototyp-
ing/rapid manufacturing, a fast method for obtaining
near optimal layouts is desirable.

Although this application does not require it, we will
consider only identical, congruent objects placed in a reg-
ular lattice. Also, as it is the most common case, only par-
allelepiped working areas will be considered.

This problem involves two limit-problems, according
to the relative dimensions of the container and the con-
tained objects: if the dimensions of the container are
much larger than those of the objects, the solution is
mostly dependent on the density of the placement; con-
versely, if the dimensions are similar, the solution de-
pends more on the intersection of the objects with the
boundary of the container. In the first case we have a
packing problem, whereas in the second case we have
a containment problem.

Typically, the objects to fabricate cannot be stacked
vertically, since they must be supported against gravity.
Further, as there is a privileged direction (the direction of
slicing), the orientation of the parts may be restricted in
one axis, for proper surface finishing or mechanical prop-
erties. These two restrictions are important, as we shall
see, in that they allow us to reduce this three-dimensional
packing problem to a two-dimensional equivalent.

In this paper we will focus on the fundamental con-
cepts and tools used for this kind of problem, such as
the no-fit polygon. These concepts will be illustrated by
means of an interactive software application we devel-
oped in Matlab. We briefly present two previously pub-
lished methods for finding optimal or nearly-optimal so-
lutions to the packing and containment problems in two
dimensions [1, 5], the limitations and advantages of each
method, and how they may be applied to this problem.
Finally we discuss how the interactive application devel-
oped can be useful in exploring the application of similar
techniques to a few other three-dimensional problems.
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2 DESCRIPTION OF THE METHOD

2 Description of the method

The solution to the problem stated in the introduction
involves several conceptually distinct optimization prob-
lems; this separation is helpful in understanding the prob-
lem, even if not all sub-problems can be treated indepen-
dently. The following subsections deal with each of the
steps presented below:

1. Reduction of the three-dimensional problem to a
two-dimensional one. In this section we will ana-
lyze the constraints under which it is possible to ap-
ply the algorithms for the planar packing for prob-
lems formulated in three-dimensional space.

2. Densest linear packing of polygons. In this sec-
tion we will present the concept of no-fit polygon,
how it is computed, and how it captures the non-
overlapping constraint in one dimension.

3. Finding feasible solutions to dense regular pack-
ing of polygons. In this section we will again use
the no-fit polygon, and show how it can be ex-
tended to find non-overlapping tiling of the plane.

4. Determination of the densest tiling. This sec-
tion mainly describes the method proposed by
Stoyan and Patsuk [1] to identify, among all non-
overlapping tiling, those of maximum density.

5. The Containment Problem. In this section, for fur-
ther development, we give some directions for de-
termining the translation and rotation of a (dens-
est) periodic tiling that minimizes the number of
lattice cells intersecting the boundary of the con-
tainer, on the one hand, and if there exists a non-
optimal lattice that may produce a better overall
solution, on the other.

2.1 Reduction of the three-dimensional
problem to a two-dimensional one

The condition of no vertical overlap means that for some
given orientation of a polyhedron P, we need only con-
sider the packing of its projection on the horizontal plane
(we also use P to refer to that polygonal projection).
Thus, if we additionally restrict the rotation of P only
to the vertical axis, the problem is effectively reduced to
the two-dimensional case. The same reasoning can be ap-
plied to the containment problem.

Although rapid fabrication is sometimes used for the
production of pre-assembled multi-part structures, we
will restrict our analysis to the single part case, i.e., where
the interior of the polyhedral surface is simply connected.
This implies that the projection along any direction will
have a simply connected interior. Note that its boundary
may still not be a simple polygon. There may be ‘holes’
in the polygon, but clearly the polygon will not fit inside

its own holes; so, in fact, we may consider only the outer
boundary of the polygon.

FIGURE 1: A polyhedron with a polygonal contour
separating facets with upward and downward normals.

The union of the contour projections is represented as the
shadowed area. Downward oriented facets are displayed in

the separated picture.

FIGURE 2: Dilation of a polygon by a regular octagon
(approximation of circumference) equate to enforcing a

separation between parts.

Obtaining the polygonal boundary of the projection
can be done as follows: find the sets of edges that sep-
arate facets with upward and downward normal; chain
those edges to form closed oriented contours; finally, ob-
tain the union of the regions bounded by those oriented
contours projected into the plane, as illustrated in the up-
per part of Figure 1.

In many cases it may be required to have a minimum
separation between adjacent parts. This can be enforced
by replacing the part with its dilation by sphere of proper
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2 DESCRIPTION OF THE METHOD

radius. But since we will only deal with the projection, an
easier approach is to apply, say dilation, to the projection.
This procedure is illustrated in Figure 2.

The exact shape of the dilation of a polygon by a cir-
cumference will not be polygonal, since it will contain
arcs of circumference. Still, as the desired gap will usu-
ally be much smaller than the typical dimensions of the
part, it can be approximated by a regular polygon. The
dilation of a polygon by another polygon can be com-
puted by using the same concept of no-fit polygon that
we will use for defining the non-overlapping condition,
which will be introduced in the next section.

2.2 Densest linear packing of polygons

In order to find the optimal lattice packing, we must be
able to efficiently determine when two objects overlap in
any given direction. This is done via the concept of no-fit
polygon (NFP) or the closely related phi-function 0-level
[2].

The no-fit polygon represents the set of translations
of a polygon P1 such that P1 and another polygon P0 just
touch; it can also be viewed as the boundary of the region
defined by the points P=(r;theta) such that the transla-
tions of polygon P1 by OP does intersect polygon P0. As
the name implies, this boundary is polygonal. We will de-
note this as NFP(P0,P1).

It is important to note that the NFP may be non-
convex and even non-simple – i.e., composed of multi-
ple disjoint polygons. The meaning of a non-simple NFP
is that some admissible translations might require ’lifting’
one of the polygons (see for instance figure 3 below). For
some applications this positions might not be acceptable,
as the two pieces become interlocked.

The NFP may also contain zero-area components: an
isolated point or loops of parallel overlapping edges.
Those correspond to tight fit of the two polygons such
that they can not move (isolated point) or can only move
in a linear path. When we consider only the boundary of
the NFP without those degenerate cases, it is called the
‘regularized NFP’ [11].

FIGURE 3: Interlocking and non-simple NFP. The holes in
the NFP (on the left) represent non-overlapping

translations of polygon P that can not be achieved without
crossing P.

FIGURE 4: The NFP of polygons P1 with P2, and P2 with
P1, and how they relate to the translations of the second
polygon that do not overlap the first one. Point M on the
no-fit polygon of P2 with P1 (botton left) corresponds to
the translation of P1 by v21 = OM such that P1’ touches

P2 but doesn’t intersect it. Moreover, considering a point in
P2’ and sliding it around P1 will trace the outer contour of

the NFP(P1,P2) (bottom right).

A mechanistic interpretation of the NFP, is that we
bring the two polygonal regions to contact and slide one
of them (P1) along the boundary of the other, tracing the
position of a fixed point in P1 (see for instance Fig. 2 or
Fig 4). This clearly shows that the boundary of the NFP
is formed by the edges of the two original polygons. In-
deed, if both polygons are convex, the sliding movement
is along the full extent of each edge of both polygons,
whereas if any of them is non-convex or non-simple, slid-
ing traverses only part of some edges. Note that if any of
the polygons is non-convex, not all edges will be neces-
sarily present in the NFP.

The NFP is defined for two polygons, but for our ap-
plication we shall consider the NFP of a polygon with it-
self, which we will denote by NFP (P ) = NFP (P, P ). In
this case, the NFP will obviously have central symmetry,
since NFP (P0, P1) = −NFP (P1, P0). Additionally, if P
is convex, NFP(P) is also convex; and if P is a star poly-
gon, the NFP(P) is also a star polygon. Further properties
of the NFP can be found in [2].

The NFP can also be used to enforce the minimal gap
between adjacent parts, as mentioned in previous section.
Let us consider only a dilation of a polygon by a circle. If
we consider the NFP of P with a circle of radius R, by the
orbiting or sliding interpretation, using the center of the
circle as the reference point, we can see that each point of
the NFP will be at a distance at least R from P. So, if we
take this NFP as the new polygon P’, the condition that
P ′ + v touches P ′ implies that any point in P + v is at a
distance of at least 2R of a point in P.

2.3 Methods for computing the NFP

Efficient methods for computing the NFP of two polygons
are mainly based on two approaches: the edge prece-
dence and the Minkowski sum [2].
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2 DESCRIPTION OF THE METHOD

The first technique is simple and efficient, but only
for the convex-convex or simple-convex cases. It is based
on the sliding interpretation described above, and mainly
uses the ordering of the slope of edges of both P1 and the
reflection of P2 about the origin; for convex-convex case,
the NFP is obtained by chaining together all edges in that
order.

The second method, on the other hand, has been ef-
fectively used for arbitrary polygons, at the cost of com-
putational complexity. The Minkowski sum, represented
by ⊕, is defined for two sets of points Sa and Sb as the
set of points S = {a + b | a ∈ Sa, b ∈ Sb}. If we consider
Sa and Sb as the interior of Pa and Pb, we can define the
Minkowski sum of two oriented polygons Pa ⊕ Pb as the
boundary of Sa⊕ Sb. If we consider two edges ea = AA′

and eb = BB′, we may define their Minkowski sum as the
parallelogram with edges ea+B , eb+A, ea+B′ and eb+A′ .
For instance, in figure 8b, the parallelogram T ij is the
Minkowsky sum of edges ei and ej .

The formal analysis of how the Minkowski sum is re-
lated to the NFP was done by Stoyan and Ponomarenko
[9], who related the NFP to the boundary of int(Pa) ⊕
(int(−Pb)). Ghosh showed that the NFP is determined
only by the boundaries of both polygons, and developed
methods for computing the NFP as a combination of the
edges of the polygons, embodied in the edge precedence
approach (see [10] and its references).

A full description of a general method for computing
the NFP of two arbitrary polygons can be found in Ben-
nell and Song [2]. It is based on the fact that the NFP
of a convex polygon with a simple polygon can be easily
computed by the edge precedence method; thus, one of
the polygons may be transformed in a convex polygon by
replacing concave edges, for computing an approximate
NFP; then the ‘fake’ edges are replaced by the original
concave ones, and finally the real boundary of the form-
ing the NFP is obtained by appropriate clipping of the
edges. This is a fairly complex algorithm, and computa-
tionally expensive.

For this application, only the NFP of a polygon with
itself is needed. Also, as stated previously, we will only
consider the cases where the polygon is simple. As such,
in our work we use a simplified version of the Minkowski
sum technique, which is easier to describe and imple-
ment. The procedure is based on two operations: the
union of two polygonal regions and the removal of cyclic
components. For methods that can be used to perform
these operations see [8].

S1 and S2 being the sets of vertices of each polygon,
we may define the Minkowski sum of P1 and P2 as the

union of all translations of P2 by
−→
OV, for each V in S1.

P1 ⊕ P2 =
⋃

V ∈S1

(

P2 +
−→
OV

)

With this definition in mind, the first step of our pro-
cedure consists in computing

P1,2 = (P1 ⊕ (−P2)) ∪ ( (−P1)⊕ P2)

(where −P represents the reflection of P about the
origin).

For a single polygon P , the procedure is further sim-
plified, since

P12 = (P ⊕ (−P )) ∪ ( (−P )⊕ P )

= (P ⊕ (−P )) ∪ − (P ⊕ (−P ))

Note that the obtained polygon P1,2 is not the NFP,
since it will possibly contain some additional edges, form-
ing loops or cycles connected to the external boundary of
P1,2 (see figure 5b). Those cycles have a particular mean-
ing: they represent the positions where some edges of one
polygon cross an even but non-zero number of edges of
the other. This implies that edge begins and ends on the
outside of the other polygon, while still intersecting it; a
translation vector with endpoint in the region limited by
such loop will leave all vertices of P’ outside of P.

In order to obtain the true NFP, regardless of whether
we are computing the NFP for two or one polygon, we
must remove the cycles. But if we are not interested in
interlocking packings, we may as well remove all interior
regions, that is, keep only the outer boundary of P1,2.

FIGURE 5: Computing the NFP of a) two polygons or b)
one single polygon with itself. In b) the point P (red) lies in

a ‘hole’ of P_12; the corresponding translation, while
leaving all vertices of the translated polygon outside of the

original, still leads to intersection.
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FIGURE 6: Conditions for a dense packing. If P is simply
connected, and it touches P + u and P + v, and does not

intersect P + (u± v), then it can not touch any other
neighbor, and (u, v) generate a packing.

2.4 Finding feasible solutions to regular
planar packing of polygons

Given the no-fit polygon (NFP) of polygon P with itself,
we seek to determine all lattice bases, defined by vec-
tors −→v1 ,

−→v2 that produce non-intersecting tiling of P. This
seems to imply that any linear combination of −→v1 and −→v2
with integer coefficients must be considered for possible
intersection. We will see that for our purpose we need
only consider a subset of regular packings, called dense
packings. A dense packing is defined as a packing where
adjacent polygons touch in at least two directions.

By considering the paths connecting two copies of P,
we can see that the no-overlap conditions can be sim-
plified for dense packings, provided that int(P) is sim-
ply connected. Indeed, in two dimensions, provided that
two immediate neighbor copies of P, i.e., with (n,m) ∈

{−1, 0, 1}
2
, touch P, there is no need to consider other

possible intersections. Figure 6 shows that the points A,
B,A′ = A−v1 andB′ = B−v2 where P touches its imme-
diate neighbors in a dense packing must be connected by
a part of the frontier P; since B′+ v2 = B, the immediate
neighbors form a closed path, so that there is no possi-
ble path connecting P to higher order neighbors without
entering a first-order neighbor.

The dashed lines in Figure 6 illustrate why this fails if
int(P) is not simply connected (the downward path), or
if the packing is not dense.

Notice that the same reasoning does not apply in three
dimensions. Since in that case the touch points do not en-
sure a closed surface, the higher order neighbors are not
isolated.

From the above, we can use the NFP to restrict our
search to only the lattice packings that are possibly op-
timal as follows: the bases formed by vectors −→v1 ,

−→v2 with
origin in the center of the NFP, endpoint on its bound-
ary, and such that their sum and difference are not in the
interior of the NFP:
−→v1 = OP , −→v2 = OQ , with P,Q ∈ ∂NFP
−→v+ = −→v1+

−→v2 ,
−→v− = −→v1−

−→v2 , with {
−→v+,

−→v−} /∈ int (NFP)

FIGURE 7: There is always a pair of vectors (u,v) such
that u+v lies on the NFP.

Note that given one vector (v=OP) lying on the
boundary of the NFP, there is always at least one pair of
vectors v1 and v2 also on the boundary of the NFP, such
that their sum is v=v1+v2 (see figure 7).

2.5 Determination of the densest packing

If the dimensions of the polygon P are much smaller than
the dimensions of the container, the number of parts that
can be placed on that container will depend more on
maximizing the density of the packing than on minimiz-
ing the intersections with the container. In fact, the num-
ber of intersected parts will be broadly proportional to
the perimeter of the container, whereas the number of
non-intersected parts will be related to the ratio of the
areas of the polygon and the container.

The density of a packing generated by vectors v1 and
v2 is defined as the ratio of the area of the polygon to the
area of the lattice cell (area of a parallelogram with sides
v1 and v2); since the former is fixed, in order to maximize
the density we must find the minimum of the area for the
lattice cell (see Figure 8(a).

Stoyan and Patsuk [1] prove that for any given non-
dense packing, there exists always a dense packing (as
defined in previous section) with no-lesser density. That
means that we can restrict our search for the densest
packing to only the cases where the two vectors lie on
the NFP.

We present next an outline of the concepts behind the
approach proposed in [1].

We start by considering the area of a parallelogram C,
formed by two vectors v1 and v2, with origin in the cen-
ter of the NFP and endpoints on two edges, ei and ej (see
figure 3). The area of C is given by the magnitude of the
cross product of v1 and v2.

The sum v+ = v1+v2 for all combinations of positions
of both vectors define another parallelogram Tij, whose
sides are the edges ei and ej , translated by v2 and v1, re-
spectively. It can be defined also as the Minkowski sum
of the two edges. The area of C decreases monotonically
as each vector’s endpoint moves along each edge, so it
will have a minimum at a vertex of Tij, that is, when both
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vectors of the base are on a vertex of the correspond-
ing edge. If all four combinations of vertices for a pair
of edges are admissible, then the minimal area for bases
generated from that pair is among the values obtained for
each combination.

On the other hand, the region Tij also represents the
positions of v1 + v2. For a base (v1, v2) to be admissi-
ble, v1 + v2 must not be inside the NFP. Let ek be one
edge touched by v1 + v2, for some v1 on ei and v2 on ej .
It should be noted that, for a simple polygon, if vi + vj
touches the NFP, then vi − vj will always be outside the
NFP; thus, these configurations are always feasible (if P
is non-simple, this does not hold, and we would need to
consider both the intersection of v1 + v2 and v1− v2). So,
the admissible solutions involving edges ei and ej corre-
spond to a sub-region Eij of Tij, the boundary of which is
composed from whole or parts of edges of the NFP.

FIGURE 8: The possible lattices generated by vectors on a)
a pair of edges, or b) three edges, are in correspondence

with the set of points in T_ij or the intersection of e_k with
T_ij, respectively.

The position of v1 along ei uniquely determines the
positions of v2 along ej such that v1 + v2 touches ek. We
can thus easily find the position that minimizes the area
for each combination (ei, ej , ek). If some edge of Tij inter-
sects the NFP at some edges ek, an odd number of times,
then at least one vertex of Tij is not admissible. We can
find the set of edges ek that are partially or fully con-
tained in Tij. For each such edge, consider its supporting
line; we want to find the minimal parallelogram touching
three straight lines, at Pi, Pj , and Pk, with a fixed fourth

vertex. Let tk be the parametric coordinate of a point
along edge ek; the corresponding ti and tj are uniquely
determined by tk. If the parametric representations of Pi,
Pj , and Pk, respectively t∗k, t

∗

i and t∗j are all within [0, 1],
then t∗i and t∗j determine a local feasible minimum.

FIGURE 9: Geometric determination of the minimal
parallelogram touching three edges of the NFP. P ∗k is the

midpoint of segment IikIjk. If all of Pi, Pj and Pk are inside
the respective edges, the corresponding lattice generates a

dense packing with maximum density for those edges.

FIGURE 10: .The plot on the right shows the NFP for the
blue polygon on the left. On the NFP are plotted (+) the
possible positions along each edge maximizing the lattice

density. The maximal density lattice packing is also
represented on the left plot, and its base vectors correspond

to the green dots on the NFP.

Geometrically, this can be obtained by the follow-
ing construction: given an origin O and three edges
(ei, ej , ek), the point on edge k that gives the minimal
area kissing parallelogram – parallelogram with one ver-
tex on O and the other three on each given edge – is the
midpoint of the intersections of the supporting lines for
each of ei and ej with the supporting line of ek (See Fig-
ure 9). Note that this is only true for edges with proper
relative orientation; but it is always possible to take the
proper oriented edges by replacing ej by its symmetric
−ej , which also is part of the NFP, and generates the
same lattice. Note also that the same procedure can be
also applied to find the corresponding vertices in ei or ej ,
if we replace ej (respectively ei) by its symmetric; alter-
natively, if we take the midpoint M of OPk, since it is the
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center of symmetry of the parallelogram, the other two
intersections can be obtained by intersecting the reflec-
tion of rb about M with ra.

The points (P_i,P_j,P_k) may or may not be all con-
tained in the corresponding edges.

FIGURE 11: Optimal (a) and non-optimal (b,c) lattices.

The optimal solution can then be found by computing
the area for all pairs of vertices of the NFP, and checking
if each pair is admissible; computing the optimal position
(if it is admissible) for each triple of edges, and the cor-
responding area; and searching for the minimum of the
computed values.

2.6 The Containment Problem

Having determined a densest infinite packing of a poly-
gon, we still have to consider if it leads to a maximal
number of fully-contained copies for a given container
size. In general, we have three translational degrees of
freedom, plus the orientation, for the placement of the
lattice in the container. In our specific application, how-
ever, the vertical translation is fixed by the requirement

that the objects be supported by the work plane. Simi-
larly, the rotation of the lattice is restricted to the vertical
axis, so that the preferred orientation is maintained.

Although this is a very important application case,
there are very few published works on the packing prob-
lem which take into account the container.

If we are considering a bounded packing, we must
take into account that the packing distance is in general
smaller than the projection of the polygon perpendicular
to the packing direction – that is, the polygon will extend
beyond the ’unit’ of the packing lattice. This ’protruding’
part of the polygon can not however cross the bounds
of the container, thus reducing the ’effective’ container
length available for the lattice. This is illustrated for a
linear bounded packing in Figure 12.

FIGURE 12: Linear bounded packing.

Although we have no closed form expression for the
number of pieces contained in (or intersected by) a rect-
angular container as a function of the lattice position, we
can establish upper and lower bounds. The upper bound
is obtained by simply dividing the total area of the con-
tainer by the area of the polygon. A possible lower bound
reduces to the regular packing of spheres (or circles) that
circumscribe the polyhedron (or polygon). This observa-
tion is useful in restricting the search-space for the opti-
mal solution.

For a bounded packing, we will want to maximize the
number of parts fully contained. Several heuristics may
be applied. We may expect the densest unbounded pack-
ing to provide a near-optimal solution, and deal with both
problems separately – finding a densest packing, and then
finding the optimal placement of that packing relative to
the container. We could also look for the densest rect-
angular packing, based on the assumption that a rectan-
gular packing will be able to provide a better solution
for the containment problem. Or we could consider the
linear bounded packing, along one side of the container,
followed by the packing of the obtained strip along the
other direction.
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In order to quickly produce near-optimal layouts,
while retaining the ability to explore all of the problem
space, including the three-dimensional cases, we devel-
oped an interactive application. The main window of this
application is presented in Figure 13. After selecting an
arbitrary 3D-part (described as an STL file) or parame-
terizing a parametric model (extruded part, swept part),
the user can specify the vertical orientation and a mar-
gin around the part. The application then computes a
densest lattice packing in the horizontal plane, which the
user can freely modify to explore other dense or arbitrary
(non-dense) packing. For each lattice selected, an opti-
mal placement within the container is computed, which
can also be manually adjusted, and the resulting number
of parts is computed.

FIGURE 13: An interactive application for exploring
feasible solutions to the dense regular planar packing of a

polygon.

3 Conclusions

The published methods referenced above each have some
limitations. The method by Stoyan and Patsuk [1] pro-
vides only a partial solution – limited to the densest lat-
tice packing of a single polygon – but it gives an exact
solution. On the other hand, the method proposed by
Milenkovic [5] is very general, being able to deal with the
placement of multiple different polygons. This generality
comes at a cost: as he points out, his method only pro-
vides an approximation, albeit with a very tight bound,
to the optimal solution.

The solution presented in this paper was specially de-
signed for the particular case of maximizing the place-
ment of congruent polyhedra in a parallelepiped con-
tainer. It was obtained by the reduction, under suit-
able restrictions, to a two-dimensional case. The prob-
lem can then be solved by applying the method pre-

sented in [5]. Still, the performance and complexity of
that method raises some issues. As an alternative to a
fully automated solution, an interactive application was
developed in which near-optimal solutions for the prob-
lem can be found with little effort. By an extensive anal-
ysis of the sub-problems we were able to combine known
tools and heuristics allowing an efficient exploration in
the problem-space. These tools may prove useful in find-
ing solutions for related, less constrained, problems.
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