10 research outputs found

    Possibilistic Aggregate Production Planning Considering Dynamic Workforce with Fuzzy Demand

    Get PDF
    This Aggregate Production Planning (APP) is a combination of Possibilistic Linear Programming (PLP), Fuzzy Goal Programming (FGP), and the Perfume Accounting System (PAS) to maximize profit. APP involves strategic decisions on Production levels, Inventory management, and Resource allocation to meet client demand while maximizing profit. Traditional planning models face significant challenges due to the uncertainties and complexities inherent in real world production environments. In this paper, there is an integration of PLP, Fuzzy Goal Programing, and throughput accounting system to overcome these challenges. At the very end of the paper, based on the data received from the company, the derived findings were by using Lingo Version 18 software. The model includes possibility distributions of the input parameters. Decision-makers can take into account the uncertainty and imprecision in demand forecasts and dynamic workforce in maximizing profit while taking into account risk tolerance

    Imprecise WareHouse Space in Aggregate Production Planning Using Fuzzy Goal Programming

    Get PDF
    Considering the fluctuating market demands with variable storage capacity and available production capacity, this study examines a number of workable techniques for modeling multiproduct aggregate production planning problems with fuzzy numbers. The suggested method makes use of factors including; inventory levels, labor levels, overtime, backordering levels, workforce capacity, machine capacity, and fuzzy warehouse capacity in an effort to reduce operating costs, reduce production waste, and increase capacity utilization rate. With the aid of this formulation and interpretation, a fuzzy multiproduct aggregate production planning model is developed. Finally, the study's conclusions were arrived at using information provided by Rich Pharmaceuticals Ltd. using Lingo version 18 software (RPL).and it uses parametric programming, best balancing, and interactive techniques to give solutions that can be adjusted to fit a variety of decision-making circumstances

    Extension of Portfolio Selection Problem with Fuzzy Goal Programming: A Fuzzy Allocated Portfolio Approach

    Get PDF
    Recently, the economic crisis has resulted in instability in stock exchange market and this has caused high volatilities in stock value of exchanged firms. Under these conditions, considering uncertainty for a favorite investment is more serious than before. Multi-objective Portfolio selection (Return, Liquidity, Risk and Initial cost of Investment objectives) using MINMAX fuzzy goal programming for a Fuzzy Allocated Portfolio is considered in this research and all the main sectors of investment are assumed under uncertainty. A numerical example on stock exchange is presented to demonstrate the validity and strengths of the proposed approach.</p

    Solving a Fully Fuzzy Linear Programming Problem through Compromise Programming

    Get PDF
    In the current literatures, there are several models of fully fuzzy linear programming (FFLP) problems where all the parameters and variables were fuzzy numbers but the constraints were crisp equality or inequality. In this paper, an FFLP problem with fuzzy equality constraints is discussed, and a method for solving this FFLP problem is also proposed. We first transform the fuzzy equality constraints into the crisp inequality ones using the measure of the similarity, which is interpreted as the feasibility degree of constrains, and then transform the fuzzy objective into two crisp objectives by considering expected value and uncertainty of fuzzy objective. Since the feasibility degree of constrains is in conflict with the optimal value of objective function, we finally construct an auxiliary three-objective linear programming problem, which is solved through a compromise programming approach, to solve the initial FFLP problem. To illustrate the proposed method, two numerical examples are solved

    Multi-objective decision-making for dietary assessment and advice

    Get PDF
    Unhealthy diets contribute substantially to the worldwide burden of non-communicable diseases, such as cardiovascular diseases, cancers, and diabetes. Globally, non-communicable diseases are the leading cause of death, and numbers are still rising, which makes healthy diets a global priority. In Nutrition Research, two fields are particularly relevant for formulating healthier diets: dietary assessment, which assesses food and nutrient intake in order to investigate the relation between diet and disease, and dietary advice, which translates food and nutrient recommendations into realistic food choices. Both fields face complex decision problems: which foods to include in dietary assessment or advice in order to pursue the multiple objectives of the researcher or fulfil the requirements of the consumer. This thesis connects the disciplines of Nutrition Research and Operations Research in order to contribute to formulating healthier diets. In the context of dietary assessment, the thesis proposes a MILP model for the selection of food items for food frequency questionnaires (a crucial tool in dietary assessment) that speeds up the selection process and increases standardisation, transparency, and reproducibility. An extension of this model gives rise to a 0-1 fractional programming problem with more than 200 fractional terms, of which in every feasible solution only a subset is actually defined. The thesis shows how this problem can be reformulated in order to eliminate the undefined fractional terms. The resulting MILP model can solved with standard software. In the context of dietary advice, the thesis proposes a diet model in which food and nutrient requirements are formulated via fuzzy sets. With this model, the impact of various achievement functions is demonstrated. The preference structures modelled via these achievement functions represent various ways in which multiple nutritional characteristics of a diet can be aggregated into an overall indicator for diet quality. Furthermore, for Operations Research the thesis provides new insights into a novel preference structure from literature, that combines equity and utilitarianism in a single model. Finally, the thesis presents conclusions of the research and a general discussion, which discusses, amongst others, the main modelling choices encountered when using MODM methods for optimising diet quality. Summarising, this thesis explores the use of MODM approaches to improve decision-making for dietary assessment and advice. It provides opportunities for better decision-making in research on dietary assessment and advice, and it contributes to model building and solving in Operations Research. Considering the added value for Nutrition Research and the new models and solutions generated, we conclude that the combination of both fields has resulted in synergy between Nutrition Research and Operations Research.</p

    Multi-objective optimisation under deep uncertainty

    Get PDF
    Most of the decisions in real-life problems need to be made in the absence of complete knowledge about the consequences of the decision. Furthermore, in some of these problems, the probability and/or the number of different outcomes are also unknown (named deep uncertainty). Therefore, all the probability-based approaches (such as stochastic programming) are unable to address these problems. On the other hand, involving various stakeholders with different (possibly conflicting) criteria in the problems brings additional complexity. The main aim and primary motivation for writing this thesis have been to deal with deep uncertainty in Multi-Criteria Decision-Making (MCDM) problems, especially with long-term decision-making processes such as strategic planning problems. To achieve these aims, we first introduced a two-stage scenario-based structure for dealing with deep uncertainty in Multi-Objective Optimisation (MOO)/MCDM problems. The proposed method extends the concept of two-stage stochastic programming with recourse to address the capability of dealing with deep uncertainty through the use of scenario planning rather than statistical expectation. In this research, scenarios are used as a dimension of preference (a component of what we term the meta-criteria) to avoid problems relating to the assessment and use of probabilities under deep uncertainty. Such scenario-based thinking involved a multi-objective representation of performance under different future conditions as an alternative to expectation, which fitted naturally into the broader multi-objective problem context. To aggregate these objectives of the problem, the Generalised Goal Programming (GGP) approach is used. Due to the capability of this approach to handle large numbers of objective functions/criteria, the GGP is significantly useful in the proposed framework. Identifying the goals for each criterion is the only action that the Decision Maker (DM) needs to take without needing to investigate the trade-offs between different criteria. Moreover, the proposed two-stage framework has been expanded to a three-stage structure and a moving horizon concept to handle the existing deep uncertainty in more complex problems, such as strategic planning. As strategic planning problems will deal with more than two stages and real processes are continuous, it follows that more scenarios will continuously be unfolded that may or may not be periodic. "Stages", in this study, are artificial constructs to structure thinking of an indefinite future. A suitable length of the planning window and stages in the proposed methodology are also investigated. Philosophically, the proposed two-stage structure always plans and looks one step ahead while the three-stage structure considers the conditions and consequences of two upcoming steps in advance, which fits well with our primary objective. Ignoring long-term consequences of decisions as well as likely conditions could not be a robust strategic approach. Therefore, generally, by utilising the three-stage structure, we may expect a more robust decision than with a two-stage representation. Modelling time preferences in multi-stage problems have also been introduced to solve the fundamental problem of comparability of the two proposed methodologies because of the different time horizon, as the two-stage model is ignorant of the third stage. This concept has been applied by a differential weighting in models. Importance weights, then, are primarily used to make the two- and three-stage models more directly comparable, and only secondarily as a measure of risk preference. Differential weighting can help us apply further preferences in the model and lead it to generate more preferred solutions. Expanding the proposed structure to the problems with more than three stages which usually have too many meta-scenarios may lead us to a computationally expensive model that cannot easily be solved, if it all. Moreover, extension to a planning horizon that too long will not result in an exact plan, as nothing in nature is predictable to this level of detail, and we are always surprised by new events. Therefore, beyond the expensive computation in a multi-stage structure for more than three stages, defining plausible scenarios for far stages is not logical and even impossible. Therefore, the moving horizon models in a T-stage planning window has been introduced. To be able to run and evaluate the proposed two- and three-stage moving horizon frameworks in longer planning horizons, we need to identify all plausible meta-scenarios. However, with the assumption of deep uncertainty, this identification is almost impossible. On the other hand, even with a finite set of plausible meta-scenarios, comparing and computing the results in all plausible meta-scenarios are hardly possible, because the size of the model grows exponentially by raising the length of the planning horizon. Furthermore, analysis of the solutions requires hundreds or thousands of multi-objective comparisons that are not easily conceivable, if it all. These issues motivated us to perform a Simulation-Optimisation study to simulate the reasonable number of meta-scenarios and enable evaluation, comparison and analysis of the proposed methods for the problems with a T-stage planning horizon. In this Simulation-Optimisation study, we started by setting the current scenario, the scenario that we were facing it at the beginning of the period. Then, the optimisation model was run to get the first-stage decisions which can implement immediately. Thereafter, the next scenario was randomly generated by using Monte Carlo simulation methods. In deep uncertainty, we do not have enough knowledge about the likelihood of plausible scenarios nor the probability space; therefore, to simulate the deep uncertainty we shall not use anything of scenario likelihoods in the decision models. The two- and three-stage Simulation-Optimisation algorithms were also proposed. A comparison of these algorithms showed that the solutions to the two-stage moving horizon model are feasible to the other pattern (three-stage). Also, the optimal solution to the three-stage moving horizon model is not dominated by any solutions of the other model. So, with no doubt, it must find better, or at least the same, goal achievement compared to the two-stage moving horizon model. Accordingly, the three-stage moving horizon model evaluates and compares the optimal solution of the corresponding two-stage moving horizon model to the other feasible solutions, then, if it selects anything else it must either be better in goal achievement or be robust in some future scenarios or a combination of both. However, the cost of these supremacies must be considered (as it may lead us to a computationally expensive problem), and the efficiency of applying this structure needs to be approved. Obviously, using the three-stage structure in comparison with the two-stage approach brings more complexity and calculations to the models. It is also shown that the solutions to the three-stage model would be preferred to the solutions provided by the two-stage model under most circumstances. However, by the "efficiency" of the three-stage framework in our context, we want to know that whether utilising this approach and its solutions is worth the expense of the additional complexity and computation. The experiments in this study showed that the three-stage model has advantages under most circumstances(meta-scenarios), but that the gains are quite modest. This issue is frequently observed when comparing these methods in problems with a short-term (say less than five stages) planning window. Nevertheless, analysis of the length of the planning horizon and its effects on the solutions to the proposed frameworks indicate that utilising the three-stage models is more efficient for longer periods because the differences between the solutions of the two proposed structures increase by any iteration of the algorithms in moving horizon models. Moreover, during the long-term calculations, we noticed that the two-stage algorithm failed to find the optimal solutions for some iterations while the three-stage algorithm found the optimal value in all cases. Thus, it seems that for the planning horizons with more than ten stages, the efficiency of the three-stage model be may worth the expenses of the complexity and computation. Nevertheless, if the DM prefers to not use the three-stage structure because of the complexity and/or calculations, the two-stage moving horizon model can provide us with some reasonable solutions, although they might not be as good as the solutions generated by a three-stage framework. Finally, to examine the power of the proposed methodology in real cases, the proposed two-stage structure was applied in the sugarcane industry to analyse the whole infrastructure of the sugar and bioethanol Supply Chain (SC) in such a way that all economics (Max profit), environmental (Min COâ‚‚), and social benefits (Max job-creations) were optimised under six key uncertainties, namely sugarcane yield, ethanol and refined sugar demands and prices, and the exchange rate. Moreover, one of the critical design questions - that is, to design the optimal number and technologies as well as the best place(s) for setting up the ethanol plant(s) - was also addressed in this study. The general model for the strategic planning of sugar- bioethanol supply chains (SC) under deep uncertainty was formulated and also examined in a case study based on the South African Sugar Industry. This problem is formulated as a Scenario-Based Mixed-Integer Two-Stage Multi-Objective Optimisation problem and solved by utilising the Generalised Goal Programming Approach. To sum up, the proposed methodology is, to the best of our knowledge, a novel approach that can successfully handle the deep uncertainty in MCDM/MOO problems with both short- and long-term planning horizons. It is generic enough to use in all MCDM problems under deep uncertainty. However, in this thesis, the proposed structure only applied in Linear Problems (LP). Non-linear problems would be an important direction for future research. Different solution methods may also need to be examined to solve the non-linear problems. Moreover, many other real-world optimisation and decision-making applications can be considered to examine the proposed method in the future
    corecore