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Abstract: 
Considering the fluctuating market demands with variable storage 
capacity and available production capacity, this study examines a 
number of workable techniques for modeling multiproduct 
aggregate production planning problems with fuzzy numbers. The 
suggested method makes use of factors including; inventory levels, 
labor levels, overtime, backordering levels, workforce capacity, 
machine capacity, and fuzzy warehouse capacity in an effort to 
reduce operating costs, reduce production waste, and increase 
capacity utilization rate. With the aid of this formulation and 

interpretation, a fuzzy multiproduct aggregate production planning model is developed. Finally, the 
study's conclusions were arrived at using information provided by Rich Pharmaceuticals Ltd. using Lingo 
version 18 software (RPL).and it uses parametric programming, best balancing, and interactive techniques 
to give solutions that can be adjusted to fit a variety of decision-making circumstances. 
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Introduction 
Effective production planning has become a key 
approach for firms to ensure efficient 
operations, satisfy consumer needs, and 
maximize resource usage in today's dynamic and 
competitive business environment. Aggregate 
Production Planning (APP), one of the many 
planning methods, stands out as a crucial 
strategy that enables companies to strike a 
careful balance between production levels and 
inventories while staying in line with market 
expectations. Aggregate production planning 
helps businesses deal with the difficulties of 
varying demand, unpredictability in the supply 
chain, and cost considerations by concentrating 
on the overall picture of production over a 
specific time horizon. 

For aggregate production planning, warehouse 
and storage facilities are crucial because they 

enable the company to adjust to changes in 
demand by building up seasonal stockpiles or 
scheduling backorders (Guillermo, 2001). They 
also have an impact on the price of 
transportation, labor, inventory, and production 
(Sunderesh, 2022). By taking into account the 
restrictions at the warehouse and other supply 
chain stages, a linear programming model can be 
used to optimize the aggregate production 
planning problem, (Madanhire & Mbohwa, 
2015; Sunderesh, 2022). 

In supply chain management and production 
planning, the following are the main roles of 
warehouse and storage facilities: Storage of 
products: Businesses can keep their supplies, 
inventory, equipment, and other materials here 
in a safe and secure setting. Facilitation of 
movement: The warehouse serves as the major 
center for receiving and sending out 
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commodities. It enables businesses to stay on 
time and continuously satisfy client demand. 
Risk reduction: Warehouses can shield 
commodities from theft, damage, spoilage, and 
other environmental conditions. Price 
stabilization: By balancing supply and demand, 
warehouses can stop market price volatility. 
They can also offer insurance protection for the 
items being stored. Value-added services: In 
order to increase the value of the products, 
warehouses might provide extra services like 
packaging, labeling, grading, sorting, and quality 
control. (Leon, 2023; Bradley, 2023).  

Storage facilities are crucial for companies to 
manage demand patterns effectively through 
inventory buffering. They provide a space to 
store excess inventory during low demand and 
replenish it during high demand, aligning 
production with market needs, Narasimhan and 
Talluri (2009) and Pishvaee et al. (2010). They 
also went further to state that this practice 
ensures consistent product supply and protects 
against supply chain disruptions. Inventory 
management balances production, distribution, 
and demand uncertainties, enhancing 
operational efficiency and coping with market 
uncertainties. Silver et al. (1998) and Nahmias 
(2009) emphasize the importance of storage 
facilities in shaping production scheduling 
decisions and cost efficiency. They argue that 
storage allows for strategic production timing, 
smoothing out production peaks and troughs, 
and optimizing resource utilization. Nahmias 
(2009) emphasizes the dynamic interaction 
between storage capacity, inventory levels, and 
production scheduling decisions, highlighting 
the strategic advantage of storage facilities in 
managing production activities. Ballou (2004) 
and Mangan et al. (2016) emphasize the 
importance of warehouse location in 
transportation and distribution strategies. They 
argue that strategic positioning of warehouses 
can optimize the flow of goods, reduce costs, 
and improve logistical efficiency. Mangan et al. 
(2016) argue that warehouse location decisions 
balance cost and service levels, enhancing a 
company's competitive edge by facilitating quick 
response to customer demands and efficient 
order fulfillment. 

Aggregate Production Planning (APP) oversees 
the best way to meet forecast demand in the 
intermediate future, often from 6 to 24 months 
ahead, by adjusting regular and overtime 
production rates, inventory levels, labor levels, 
subcontracting and backordering rates, and 
other controllable variables (Wang R. et al., 
2005). The primary inputs of APP are market 
demands and the manufacturing plan to meet 
those expectations. (Leung et al., 2003). 
Production planning does this in response to 
changes in demand. Changing a company's 
production schedule on a moment’s notice can 
be expensive and lead to insecurity. Planning for 
changes in demand months in advance 
guarantees that the change of production 
schedules can occur with little effort (Hossain et 
al., 2016). APP is a general style to altering a 
company's production schedule to respond to 
changes in demand. 

By employing integrated parametric 
programming, best balance, and interactive 
approaches, Fung et al. (2003) introduced a 
fuzzy multi-product aggregate production 
planning (FMAPP) model to cater to various 
situations under varied decision-making 
preferences. This model can also effectively 
improve the capability of an aggregate plan to 
deliver feasible disaggregate plans under varying 
circumstances with fuzzy demands and fuzzy 
capacities. In order to tackle multi-product APP 
choice problems in a fuzzy environment, Wang 
and Liang (2004) more recently created a fuzzy 
multi-objective linear programming model using 
the piecewise linear membership function. The 
model can yield an effective compromise 
solution and the decision maker’s overall levels 
of satisfaction. Additional research on fuzzy 
APP problem solving may be found in Wang and 
Fang (1997), Tang et al. (2000), Wang and Fang 
(2001), and Tang et al (2003). To optimize profit, 
minimize repair costs, and maximize machinery 
usage, Leung and Chan (2009) created a 
preemptive goal programming approach for the 
APP problem. Sakall et al. (2010) discussed a 
probabilistic APP model for the blending issue 
in a brass production. They came up with the 
best procedures for buying raw materials.  
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Many aggregate planning issues do not properly 
take into account productivity losses brought on 
by non-existent or unstable warehouse or 
storage facilities. The productivity losses linked 
to other capacity changes, such backorders, 
multiple shifts, and overtime, are also largely 
unmentioned in parts of the research. When 
productivity losses are taken into account, 
traditional methodologies impute corresponding 
costs but do not take lost due to cost and 
productivity into account.  

A gap in earlier works has been identified, 
according to the literature referenced above.  In 
this study, an APP problem with multiple 
objectives, multiple periods, and multiple 
products is suggested. The suggested solution to 
the problem is a FGP. Minimizing total 
manufacturing costs, maximizing sales revenue, 
and maximizing customer satisfaction are all 
crucial factors for the case concern in this 
instance. It is therefore more reasonable to 
describe them as three distinct objectives so that 
the APP model may identify a Pareto optimum 
that strikes a balance between these three goals. 
So, for the example study, the following three-
objective, multi-period, multi-product FGP-
APP model is developed. 

 

Method and Procedure 
Assumptions and Problem Definition 

Following the findings of a real-world case study, 
the following presumptions are made for the 
mathematical model of the suggested APP 
problem. 

• Production planning is done in a time 
horizon of T time periods (∀ 𝑡𝑡 = 1,2, … ,𝑇𝑇). 

• There is a Batch production system 
capable of producing all kinds of 𝑁𝑁 types of 
products. 

• Market demand can be fulfilled or 
backordered, however no backorder in the last 𝑡𝑡 
is allowed. 

• There are two working shifts; Regular 
time production and Over time production 

• A warehouse is allowed for holding final 
products. 

• In advance, the holding cost of 
inventories are determined and well known. 

• The workforce accommodates various 
skill levels (𝑘𝑘 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙). 

• Workers salary is independent of unit 
production cost. 

• At each period T, Production quantity is 
considered more of the safety stock for finished 
products. 

• Hiring and firing of Manpower based on 
product demand is eligible and there is an 
allowable limit. 

• In each period T, the shortage of 
production is recovered by overtime production 
in each shift. 

• In each period T, the nominal and actual 
capacity of production machines is not the same 
due to unforeseen failures. So, the actual capacity 
of production is usually reduced by a fixed 
failure percentage. 

• If an unforeseen failure occurs during a 
shift the repair process is completed in the next. 
This may stop, reduce, or decrease the 
production rate during maintenance actions 

• The impreciseness and uncertainty of 
real-world problem and confliction of different 
objectives are modeled using fuzzy goals. 

• Linear membership functions are 
defined for fuzzy goals. 

• FGP used to solve the problem. 

 

Parameters, Indices, Decision 
Variables and Notations 
They are as stated in Tables 1 to 3. 

 
Table 1. Set of indices 

𝑡𝑡 Number of periods in the planning horizon;  𝑡𝑡 =
1,2, … ,𝑇𝑇          

𝑖𝑖 Number of product types; 𝑖𝑖 = 1,2, … , 𝐼𝐼 
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𝑚𝑚 Raw material type; 𝑚𝑚 = 1,2, … ,𝑀𝑀 
𝑞𝑞 Types of shifts; 𝑞𝑞 ∈ 1,2 
𝑤𝑤 Types of warehouse; 𝑤𝑤 = 1,2, … ,𝑊𝑊 
𝑘𝑘 Skill levels of workers; 𝑘𝑘 = 1,2, … ,𝐾𝐾 
𝑗𝑗 Number of objective Functions;  𝑗𝑗 = 1,2,3 

 

Table 2. Decision variable Notation 
Decision 
variable 

Definition 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  Number of product i produced in shift 
q of period t 

𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  Number batches of product i 
produced in shift q of period t 

𝐵𝐵𝑖𝑖𝑖𝑖 Backorder level of product i in period t 
𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 Number of available workers of level k 

in period t 
𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 Number of hired workers of level k in 

period t 
𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 Number of fired workers of level k in 

period t 
𝑋𝑋𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 Inventory level of raw material type m 

at the end of period t in warehouse w 
𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  Inventory level of finished-product i in 

period t in warehouse w 
 

Table 1. Notation for parameters 
Parameter                   Definition 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖  Cost of Production; for product 𝑖𝑖 in 

shift 𝑞𝑞 
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖  Demand of product 𝑖𝑖 in period 𝑡𝑡 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 Cost of Backordering; for product 𝑖𝑖 in 

period 𝑡𝑡 
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 Sales Revenue for product 𝑖𝑖 (₦/unit) 
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  Process time of product 𝑖𝑖 in period 𝑡𝑡 
𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 The Budget upper limit in period 𝑡𝑡 
AsP𝑖𝑖𝑖𝑖 Allowable shortage of product 𝑖𝑖 in 

period 𝑡𝑡 
𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 Available Maximum workforce in period 

𝑡𝑡 
𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡  Available Minimum workforce in period 

𝑡𝑡 

𝑊𝑊𝑊𝑊𝑊𝑊 workforce that are available for 
overtime (in percentage) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 Cost of workforce of level k in period 𝑡𝑡 
𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 Cost of Hiring workforce of level k in 

period 𝑡𝑡 
𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 Cost of firing workforce of level k in 

period 𝑡𝑡 
𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Holding cost for raw material type 𝑚𝑚 in 

period 𝑡𝑡 in warehouse 𝑤𝑤 
𝐶𝐶𝐶𝐶ℎ𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖  Holding cost of unit of product 𝑖𝑖 in 

period 𝑡𝑡 
𝐸𝐸𝑡𝑡 cumulative investment in tools and 

equipment in period t (currency unit) 
𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡  fraction of the workforce variation in 

period 𝑡𝑡 
𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 Machine hours needed to produce unit 

of product 𝑖𝑖 in period 𝑡𝑡 
𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 Machine capacity that is lost due to 

interruption in period 𝑡𝑡 (in percentage) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡  Machine capacity that is lost due to 

repairs in period 𝑡𝑡 (in percentage) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑞𝑞𝑞𝑞 The maximum of machine capacity that 

is available in shift 𝑞𝑞 in period 𝑡𝑡 
𝑀𝑀𝑀𝑀𝑀𝑀 The machine capacity that is available 

for overtime (in percentage) 
𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 Available Regular time in both shifts in 

period 𝑡𝑡 
𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 The units of type 𝑚𝑚 raw material 

required to produce unit of product 𝑖𝑖 
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 product 𝑖𝑖 safety stock 
𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚 Raw material type 𝑚𝑚 safety stock 
𝑀𝑀𝑆𝑆𝑆𝑆𝑚𝑚 The maximum available space of 

warehouse w 
𝑊𝑊ℎ𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤 The capacity of warehouse 𝑤𝑤 for 

storage of raw-material type 𝑚𝑚 in period 
𝑡𝑡 

𝑊𝑊ℎ𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤 The capacity of warehouse 𝑤𝑤 for 
storage of finished-product 𝑖𝑖 in period 𝑡𝑡 

𝒟𝒟𝒟𝒟𝑖𝑖 The Due date of product 𝑖𝑖 
ℬ𝑖𝑖 Batch size of product 𝑖𝑖 
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 Finished product 𝑖𝑖 Defect rate 

 

 

Model Formulation 
Minimize Total Cost 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍1 = � � �𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇

𝑡𝑡=1

 

𝑞𝑞∈{1,2}

𝐼𝐼

𝑖𝑖=1

+ ��𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘

𝑇𝑇

𝑡𝑡=1

𝐾𝐾 

𝑘𝑘=1

+��𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘

𝑇𝑇

𝑡𝑡=1

𝐾𝐾 

𝑘𝑘=1

+��𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘

𝑇𝑇

𝑡𝑡=1

𝐾𝐾 

𝑘𝑘=1

+���𝐶𝐶𝐶𝐶ℎ𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇

𝑡𝑡=1

𝑊𝑊 

𝑤𝑤=1

𝐼𝐼

𝑖𝑖=1

+ � ��𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑋𝑋𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇

𝑡𝑡=1

𝑊𝑊 

𝑤𝑤=1

𝑀𝑀

𝑚𝑚=1

+��𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙𝐵𝐵𝑙𝑙𝑙𝑙

𝑇𝑇

𝑡𝑡=1

𝐼𝐼 

𝑖𝑖=1

(𝟏𝟏) 
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The above Minimization of Total Cost function 
(TFC) involves the following seven terms; the 
per unit Production Cost, Cost of salary of the 
workforce, Cost of hiring, Cost of firing, Cost of 

holding of products, Cost of holding of raw 
materials, and Cost of Backordering. 

Maximize Customer Satisfaction Level 

 

    𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍2 = �� � �𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇

𝑡𝑡=1

− 𝐷𝐷𝐷𝐷𝑖𝑖

 

𝑞𝑞∈{1,2}

�
𝐼𝐼

𝑖𝑖=1

                                                                                        (2) 

 

Function (2) is for achieving the customer 
satisfaction, this is by minimizing the difference 
between the delivery date (𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) of all products 
and the due date (𝐷𝐷𝐷𝐷𝑖𝑖) of all products, this in 
turn maximizes the customer satisfaction level. 
Worthy of note that delivering the product 
earlier to 𝐷𝐷𝐷𝐷𝑖𝑖 is not to the benefit of the 
producer and delivering later to 𝐷𝐷𝐷𝐷𝑖𝑖 is also not 

to the benefit of the customer, thus (2) 
minimizes the imbalance concurrently. 

Maximize Sales Revenue 

This last objective function is to realize the 
highest possible return from the quantities 
produced by regular production and overtime 
production including inventories and back 
orders. 

 

   𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍3 = � � �𝑆𝑆𝑆𝑆𝑆𝑆 × �𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖−1 − 𝐵𝐵𝑙𝑙𝑙𝑙−1 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑙𝑙𝑙𝑙�
𝑇𝑇

𝑡𝑡=1

 

𝑞𝑞∈{1,2}

𝐼𝐼

𝑖𝑖=1

                               (3) 

 

Constraints 

The Labor-force Constraints are considered as 
follows: 

 

      �𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘

𝐾𝐾

𝑘𝑘=1

≤ 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡  ,          ∀𝑡𝑡                                                                                                                 (4) 

      �𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘

𝐾𝐾

𝑘𝑘=1

≥ 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡  ,          ∀𝑡𝑡                                                                                                                 (5) 

𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 = 𝑋𝑋𝑋𝑋𝑘𝑘(𝑡𝑡−1) + 𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 − 𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘  ,      ∀𝑘𝑘,∀𝑡𝑡, 𝑡𝑡 > 1                                                                           (6) 

𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 − 𝑋𝑋𝑋𝑋𝑘𝑘(𝑡𝑡−1) ≤ 𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 ∗ 𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘  ,      ∀𝑘𝑘,∀𝑡𝑡, 𝑡𝑡 > 1                                                                         (7) 

 

Constraints (4) attests that the total labor utilized 
during period t does not exceed the total 
workforce that is available. In a similar vein, (5) 
guarantees that in period t, the employed 
workforce exceeds the available minimum 
workforce. Set of Constraints (6) is a workforce 
level balance equation that assures that the 
workforce with skill level k available during a 
given period is equal to the workforce with the 

same skill level k during the previous period plus 
the change in workforce level during the current 
period. The change in workforce level in each 
planning period cannot be greater than a 
benchmark number of workers in the present 
period, according to constraint number seven. 
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Time Constraints 

   �𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 ∗  𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖=1

≤�𝐴𝐴𝐴𝐴𝐴𝐴𝑞𝑞𝑞𝑞 ∗  𝑋𝑋𝑋𝑋𝐾𝐾𝐾𝐾

𝐾𝐾

𝑘𝑘=1

 ,                       ∀𝑡𝑡,   𝑞𝑞 = 1                                                     (8) 

   �𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 ∗  𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖=1

≤�𝐴𝐴𝐴𝐴𝐴𝐴𝑞𝑞𝑞𝑞 ∗𝑊𝑊𝑊𝑊𝑊𝑊 ∗  𝑋𝑋𝑋𝑋𝐾𝐾𝑡𝑡

𝐾𝐾

𝑘𝑘=1

 ,          ∀𝑡𝑡,   𝑞𝑞 = 2                                                     (9) 

 

The relationships mentioned above make sure 
that each working shift's necessary production 

time is less than or equal to the available regular 
production time and overtime. 

Inventory Constraints 

𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖(𝑡𝑡−1) + � 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

 

𝑞𝑞∈{1,2}

− 𝐵𝐵𝑖𝑖𝑖𝑖 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖  ,      ∀𝑖𝑖,∀𝑤𝑤,    𝑡𝑡 > 1                                                 (10) 

𝑋𝑋𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑋𝑋𝑋𝑋𝑚𝑚𝑚𝑚(𝑡𝑡−1) + � 𝑋𝑋𝑖𝑖𝑖𝑖(𝑡𝑡−1)

 

𝑞𝑞∈{1,2}

− 𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 ,      ∀𝑖𝑖,∀𝑤𝑤,    𝑡𝑡 > 1                                                 (11) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚 ≤ � 𝑋𝑋𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

 

𝑤𝑤∈𝑊𝑊

,      ∀𝑚𝑚,∀𝑡𝑡,                                                                                    (12) 

 

Constraints (10) ensures that the amount of 
finished product type 𝐼𝐼 in period 𝑡𝑡 in warehouse 
𝑤𝑤 is equal to the amount of finished product 
type 𝐼𝐼 in period 𝑡𝑡 − 1 in warehouse w plus the 
quantity of produced finished goods type I in 
period t in both working shifts, less the amount 
of product type 𝐼𝐼 in period 𝑡𝑡 that is on backorder 

and the quantity of produced finished goods 
type I in period t in both working shifts. A set of 
limitations (11) assures that there is a balance 
between raw materials, and (12) guarantees that 
the safety stock of raw materials in warehouses 
is satisfied. 

 

Production Constraint 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ≤ � 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

 

𝑞𝑞∈{1,2}

,      ∀𝑖𝑖,∀𝑡𝑡,                                                                                                  (13) 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 ≤ �1−
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖
𝛽𝛽𝑖𝑖

� ∗ � 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

 

𝑞𝑞∈{1,2}

+ 𝑋𝑋𝑋𝑋𝑖𝑖(𝑡𝑡−1),      ∀𝑖𝑖,∀𝑡𝑡,    𝑡𝑡 > 1                                                       (14) 

 

Set of constraints (13), which is written for all 
product types and all periods of planning, 
guarantee the satisfaction of safety stock of 
finished-products in working shifts. Set of 
constraints (14) represents the total production 

of non-defected final products plus the 
inventory of finished-product in previous period 
should be greater than or equal to demand of the 
finished-product in current period. 
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Machine capacity Constraints 

          �𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∗  𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖=1

≤ 𝑀𝑀𝑚𝑚𝑚𝑚𝑞𝑞𝑞𝑞 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 ∗ 𝑀𝑀𝑚𝑚𝑚𝑚𝑞𝑞𝑞𝑞 ,          ∀𝑡𝑡,   𝑞𝑞 = 1                                            (15) 

        �𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∗  𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖=1

≤ 𝑀𝑀𝑀𝑀𝑀𝑀 ∗𝑀𝑀𝑚𝑚𝑚𝑚𝑞𝑞𝑞𝑞 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀 ∗𝑀𝑀𝑚𝑚𝑚𝑚𝑞𝑞𝑞𝑞 ,          ∀𝑡𝑡,   𝑞𝑞 = 2                  (16) 

Constraints (15) and (16) pledge that in regular time and overtime, the machine capacity is assured. 

Warehouse Capacity Constraint 

�𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

𝑊𝑊

𝑤𝑤=1

≤ �𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤

𝑊𝑊

𝑤𝑤=1

,   ∀𝑖𝑖,∀𝑡𝑡,                                                                                                   (17) 

� �𝑋𝑋𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

𝑊𝑊

𝑤𝑤=1

𝑀𝑀

𝑚𝑚=1.

≤ � �𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀

𝑚𝑚=1

𝑊𝑊

𝑤𝑤=1

,    ∀𝑡𝑡,                                                                                    (18) 

�𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤

𝑊𝑊

𝑤𝑤=1

+ �𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝑊𝑊

𝑤𝑤=1

≤ 𝑀𝑀𝑆𝑆𝑆𝑆ℎ𝑚𝑚 ,   ∀𝑖𝑖,∀𝑡𝑡,                                                                      (19) 

 

The first two constraints (17) and (18) gives the 
restrictions of actual inventories of finished 
products and raw materials. While (19) 
guarantees that each warehouse at each period 
will not be able to allow storage capacity of 

products and raw materials beyond its maximum 
warehouse available space.  

Backorder, Budget limit and Non-negativity 
Constraints 

There is backorder obeying the following; 

�𝐵𝐵𝑖𝑖𝑖𝑖

𝑊𝑊

𝑤𝑤=1

≤ � 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖

𝑊𝑊

𝑤𝑤=1

∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖    ∀𝑖𝑖,    𝑡𝑡 ≠ 𝑇𝑇                                                                           (20) 

𝐵𝐵𝑖𝑖𝑖𝑖 = 0,                  ∀𝑖𝑖                                                                                                               (21) 

  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≤�𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡

𝑇𝑇

𝑡𝑡=1

                                                                                                                (22) 

        𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐵𝐵𝑖𝑖𝑖𝑖 ,𝑋𝑋𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0,        ∀𝑖𝑖,∀𝑞𝑞,∀𝑡𝑡,∀𝑚𝑚,∀𝑤𝑤                                       (23) 

            𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 ,𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘,𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘    ≥ 0,         ∀𝑡𝑡,∀𝑘𝑘,∀𝑙𝑙                                                                   (24) 

 

Constraints (20) represent the backorder level at 
the end of period t cannot exceed the certain 
percent-age of the demand which determines the 
upper limit of shortage. While (21) assure that 
there is no possibility for backordering at the end 
of time horizon or last period. 

A restriction on the available budget for each 
planning period is shown using (22), which 
ensures that the Total Cost (i.e., Eq. (1)) cannot 
go beyond the predetermined budget for the 
time horizon. 

(23) and (24) both present non-negativity 
requirements on decision variables. 

 

Fuzzy Set Theory - Definitions and 
Notations 
For the sake of completeness, the following 
basic definitions and concepts related to fuzzy 
sets theory are provided in this section: 

Definition 1 (Bellman and Zadeh 1970) 
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A fuzzy set 𝐴̃𝐴 in 𝑋𝑋 is a set of ordered pairs: 

𝐴̃𝐴 = �𝑥𝑥,𝜇𝜇𝐴𝐴�
 (𝑥𝑥)/𝑥𝑥 ∈ 𝑋𝑋� 

𝜇𝜇𝐴𝐴�
 (𝑥𝑥) is called the membership function of 𝑥𝑥 in 
𝐴̃𝐴 which maps 𝑋𝑋 into [0,1]. If 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥  𝜇𝜇𝐴𝐴�

 (𝑥𝑥) = 1, 
the fuzzy set 𝐴̃𝐴 is called normal. 

In the real line ℝ, a fuzzy number is a fuzzy set 
with the membership function illustrated as: 

𝑢𝑢 = 𝜇𝜇𝑎𝑎�(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 0
𝑓𝑓𝑎𝑎(𝑥𝑥)

1 
𝑔𝑔𝑎𝑎(𝑥𝑥)

0

        

∀𝑥𝑥 ∈ (−∞,𝑎𝑎1]
increasing ∀𝑥𝑥 ∈ [𝑎𝑎1,𝑎𝑎2]

 ∀𝑥𝑥 ∈  [𝑎𝑎2,𝑎𝑎3]
decreasing ∀𝑥𝑥 ∈  [𝑎𝑎3,𝑎𝑎4]

Otherwise

                                         (25) 

 

in which 𝑎𝑎� = (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,𝑎𝑎4). 

Definition 2 (Bellman and Zadeh 1970) 

The support of a fuzzy set  𝐴̃𝐴 in 𝑋𝑋 is the crisp set 
of all 𝑥𝑥 ∈ 𝑋𝑋, such that 𝜇𝜇𝐴𝐴�

 (𝑥𝑥) > 0. 

Definition 3 (Bellman and Zadeh 1970) 

The set of elements that belong to the fuzzy set  
𝐴̃𝐴 on 𝑋𝑋 at least to the degree 𝛼𝛼 is called the 
𝛼𝛼-cut set: 

𝐴̃𝐴 = �𝑥𝑥 ∈ ℝ, 𝜇𝜇𝐴𝐴�
 (𝑥𝑥) ≥ 𝛼𝛼,𝛼𝛼 ∈ [0,1]�. 

An 𝛼𝛼-cut is a slice through the fuzzy number 𝑎𝑎� 
which produces a nonfuzzy set. Based on this 
definition, it can be written as 𝑎𝑎𝛼𝛼 =
[𝑓𝑓𝑎𝑎−1(𝑢𝑢),𝑔𝑔𝑎𝑎−1(𝑢𝑢)]. In such cases when 
𝑓𝑓𝑎𝑎  and 𝑔𝑔𝑎𝑎 are linear functions, the membership 
function (25) is the membership function of a 
trapezoidal fuzzy number denoted by  𝑎𝑎� =
(𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4). If 𝑎𝑎2 = 𝑎𝑎3, then a triangular 
fuzzy number(TFN) is obtained. 

Definition 4 (Bellman and Zadeh 1970) 

A fuzzy set 𝐴̃𝐴 in 𝑋𝑋 is called convex if: 

𝜇𝜇𝐴𝐴�
 (𝜆𝜆𝜆𝜆 + (1− 𝜆𝜆)𝑦𝑦) ≥
𝑚𝑚𝑚𝑚𝑚𝑚�𝜇𝜇𝐴𝐴�

 (𝑥𝑥),𝜇𝜇𝐴𝐴�
 (𝑦𝑦)�;  𝑥𝑥,𝑦𝑦 ∈ ℝ 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆 ∈ [0,1]. 

You should be aware that a fuzzy set is convex 
if all of its 𝛼𝛼-cuts are convex. 

Definition 5 (Bellman and Zadeh 1970) 

On the real line ℝ, a fuzzy number 𝑎𝑎� is a convex 
normalised fuzzy set such that: 

1. There is at least one 𝑥𝑥0 ∈ ℝ with 
𝜇𝜇𝑎𝑎� (𝑥𝑥0) = 1. 

2. 𝜇𝜇𝑎𝑎� (𝑥𝑥) is piecewise continuous.  

Following Heilpern (1992) and considering (25) 
the Expected Interval of a fuzzy number 𝑎𝑎� , 
denoted by 𝐸𝐸𝐸𝐸(𝑎𝑎�) is defined as 𝐸𝐸𝐸𝐸(𝑎𝑎�) =
[𝐸𝐸1𝑎𝑎𝐸𝐸2𝑎𝑎] = �∫ 𝑓𝑓𝑎𝑎−1(𝑢𝑢)𝑑𝑑𝑑𝑑, ∫ 𝑔𝑔𝑎𝑎−1(𝑢𝑢)𝑑𝑑𝑑𝑑1

0
1
0 �. 

Similarly given a fuzzy number 𝑎𝑎� , the expected 
value denoted by 𝐸𝐸𝐸𝐸(𝑎𝑎�), is the half point of the 
expected interval, which is given as: 

𝐸𝐸𝐸𝐸(𝑎𝑎�) =
𝐸𝐸1𝑎𝑎 + 𝐸𝐸2𝑎𝑎

2  

Thus, if a fuzzy number 𝑎𝑎� is trapezoidal or 
triangular, its expected interval and expected 
value can be easily calculated as follows: 

𝐸𝐸𝐸𝐸(𝑎𝑎�) = �
1
2

(𝑎𝑎1 + 𝑎𝑎2),
1
2

(𝑎𝑎2

+ 𝑎𝑎3) � ;             𝐸𝐸𝐸𝐸(𝑎𝑎�)

=
1
4

(𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4) 

𝐸𝐸𝐸𝐸�𝛽𝛽𝑎𝑎� + 𝛾𝛾𝑏𝑏�� = 𝛽𝛽𝛽𝛽𝛽𝛽(𝑎𝑎�) + 𝛾𝛾𝛾𝛾𝛾𝛾�𝑏𝑏�� 

𝐸𝐸𝐸𝐸�𝛽𝛽𝑎𝑎� + 𝛾𝛾𝑏𝑏�� = 𝛽𝛽𝛽𝛽𝛽𝛽(𝑎𝑎�) + 𝛾𝛾𝛾𝛾𝛾𝛾�𝑏𝑏�� 

Definition 6 (Jime´nez, M. 1996) 

The extent to which 𝑎𝑎� is larger than 𝑏𝑏� for any 
pair of fuzzy numbers, 𝑎𝑎� and 𝑏𝑏� , may be 
expressed as follows: 
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𝜇𝜇𝑀𝑀�𝑎𝑎�,𝑏𝑏�� =

⎩
⎪
⎨

⎪
⎧ 0     

𝐸𝐸2𝑎𝑎 − 𝐸𝐸1𝑏𝑏

𝐸𝐸2𝑎𝑎 − 𝐸𝐸1𝑏𝑏 − (𝐸𝐸1𝑎𝑎 − 𝐸𝐸2𝑏𝑏)
1

            

if 𝐸𝐸2𝑎𝑎 − 𝐸𝐸1𝑏𝑏 < 0
𝑖𝑖𝑖𝑖 0 ∈  [𝐸𝐸1𝑎𝑎 − 𝐸𝐸2𝑏𝑏 ,𝐸𝐸2𝑎𝑎 − 𝐸𝐸1𝑏𝑏]

 
if 𝐸𝐸1𝑎𝑎 − 𝐸𝐸2𝑏𝑏 > 0

                                         (26) 

 

Where [𝐸𝐸1𝑎𝑎 ,𝐸𝐸2𝑎𝑎] and [𝐸𝐸1𝑏𝑏,𝐸𝐸2𝑏𝑏] are the expected 
interval of 𝑎𝑎� and 𝑏𝑏� . 

If 𝜇𝜇𝑀𝑀�𝑎𝑎� ,𝑏𝑏�� = 0.5, its said that 𝑎𝑎� and 𝑏𝑏� are 
different and if 𝜇𝜇𝑀𝑀�𝑎𝑎� ,𝑏𝑏�� ≥ 𝛼𝛼 it is said that 𝑎𝑎� is 

bigger than or equal to  𝑏𝑏� at least in degree 𝛼𝛼 and 
its indicated by 𝑎𝑎�  ≥ 𝑏𝑏�𝛼𝛼  

 

Formation of Fuzzy Warehouse Space  

 

Figure 1. A Triangular Distribution of the Fuzzy Available Space for Finished Products 

 

Fuzzy numbers like triangular and trapezoidal 
fuzzy numbers, can be used to represent the 
available space of warehouse for finished 
products (𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤) in order to reflect this 
informational ambiguity. TFNs are used in this 
study to represent warehouse space-related 
fuzzy data. Assuming the TFN of  𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤 is 
𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤� = (𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤1 ,𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤2 ,𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤3 ), 
in which 𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤2  is the most possible available 
space that certainly belongs to the set of available 
values (with a membership value of 1 after it is 
normalized). The lower bound value 𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤1  is 
the most pessimistic available space that has a 
small likelihood to belong to the set of available 

values (with a membership value of zero if 
normalized) and the upper bound value 
𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤3  is the most optimistic available space 
with a small likelihood to belong to the set of 
available values (with a membership value of 
zero if normalized). Let 𝜇𝜇(𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤� ) represent 
the arbitrary measurement of fuzzy available 
space in view of the Decision-maker, i.e. 
membership function, that defines the degree of 
𝑥𝑥 in the fuzzy space 𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤�  and figure 1 
depicts the relationships of this function.  

As seen in Figure 1 the membership function of 
fuzzy demand may be expressed as follows: 
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𝜇𝜇�𝑀𝑀𝑆𝑆𝑆𝑆ℎ𝑚𝑚� =

⎩
⎪
⎨

⎪
⎧ 0

(𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤1 ) (𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤2 −𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤1 )⁄
 

(𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤2 − 𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤) (𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤3 −𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤2 )⁄
1

   

𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤 ≤ 𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤1

𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤1 ≤ 𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤 ≤ 𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤2

 
𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤2 ≤ 𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤 ≤ 𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤3

𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  (27) 

 

Supposing the decision-maker desires that APP 
meets the available warehouse space for product 
𝑖𝑖 in period 𝑡𝑡 with a possibility level. Using the 

fuzzy available warehouse space information, 
the constraint equation (17)-(19) will be replaced 
with the following equations (28)-(30): 

 

�𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

𝑊𝑊

𝑤𝑤=1

≤ �𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤�
𝑊𝑊

𝑤𝑤=1

,   ∀𝑖𝑖,∀𝑡𝑡,                                                                                                   (28) 

� �𝑋𝑋𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

𝑊𝑊

𝑤𝑤=1

𝑀𝑀

𝑚𝑚=1.

≤ � �𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚�
𝑀𝑀

𝑚𝑚=1

𝑊𝑊

𝑤𝑤=1

,    ∀𝑡𝑡,                                                                                    (29) 

�𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤

𝑊𝑊

𝑤𝑤=1

+ �𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝑊𝑊

𝑤𝑤=1

≤ 𝑀𝑀𝑆𝑆𝑆𝑆ℎ𝑚𝑚
� ,   ∀𝑖𝑖,∀𝑡𝑡,                                                                      (30) 

 

Based on the ranking method developed by 
Jim'enez(1996), all fuzzy (imprecise) available 
warehouse space constraints in the model are 

translated to their corresponding crisp 
constraints as follows: 

�𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

𝑊𝑊

𝑤𝑤=1

≤ � �𝛼𝛼
𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤1 +𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤2

2 + (1− 𝛼𝛼)
𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤2 + 𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤3

2 �
𝑊𝑊

𝑤𝑤=1

,   ∀𝑖𝑖,∀𝑡𝑡,                 (31) 

� �𝑋𝑋𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

𝑊𝑊

𝑤𝑤=1

𝑀𝑀

𝑚𝑚=1.

≤ � � �𝛼𝛼
𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚1 +𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚2

2 + (1 − 𝛼𝛼)
𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚2 +𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚3

2 �
𝑀𝑀

𝑚𝑚=1

𝑊𝑊

𝑤𝑤=1

,    ∀𝑡𝑡,        (32) 

�𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤

𝑊𝑊

𝑤𝑤=1

+ �𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝑊𝑊

𝑤𝑤=1

≤ �𝛼𝛼
𝑀𝑀𝑆𝑆𝑆𝑆ℎ𝑚𝑚1 + 𝑀𝑀𝑆𝑆𝑆𝑆ℎ𝑚𝑚2

2 + (1 − 𝛼𝛼)
𝑀𝑀𝑆𝑆𝑆𝑆ℎ𝑚𝑚2 +𝑀𝑀𝑆𝑆𝑆𝑆ℎ𝑚𝑚3

2 � ,∀𝑖𝑖,𝑤𝑤 (33) 

 

Fuzzy Multi-objective Goal 
Programing Development 
In classic models of GP, the decision maker has 
to specify a precise aspiration level (goal) for 
each of the objectives. In general, especially in 
large-scale problems, this is a very difficult task, 
and the use of the Fuzzy Set theory in GP 
models can overcome such problem, allowing 
decision makers to work with imprecise 
aspiration levels (Yaghoobi and Tamiz, 2007). In 
multiobjective programming, In fuzzifying the 
inequality signs; “ = ”  “ ≤ ” and “ ≥ ”, 
Zimmermann (1978) used the symbol “~”, they 

are to be understood as “essentially greater than 
or equal to” and “essentially less than or equal 
to”. if an imprecise aspiration level is introduced 
to each of the objective functions then these 
fuzzy objectives are termed as fuzzy goals. Let 
𝑔𝑔𝑘𝑘 be the aspiration level assigned to the kth 
objective 𝑍𝑍𝑘𝑘(𝑥𝑥). Then the fuzzy goals are:  

𝑍𝑍𝑘𝑘(𝑥𝑥) ≥� 𝑔𝑔𝑘𝑘  [for maximizing 𝑍𝑍𝑘𝑘(𝑥𝑥)] and 

𝑍𝑍𝑘𝑘(𝑥𝑥) ≤� 𝑔𝑔𝑘𝑘   [for minimizing 𝑍𝑍𝑘𝑘(𝑥𝑥)] 
In solving the problem, a general form of FGP 
model is considered: 
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find      𝑥𝑥
to satisfy;

subjet to

𝑍𝑍𝑘𝑘(𝑥𝑥) ≥� 𝑔𝑔𝑘𝑘
𝑍𝑍𝑘𝑘(𝑥𝑥) ≤� 𝑔𝑔𝑘𝑘

𝐴𝐴𝐴𝐴�
≤
=
≥
�𝑏𝑏

𝑋𝑋 ≥ 0

𝑘𝑘 = 1 …𝑛𝑛                                                           
𝑘𝑘 = 𝑛𝑛 + 1 … 𝐽𝐽                                                  (34)    

 

FGP is employed in solving the APP system (1) 
– (24). Being able to use FGP approach with 
fuzzy goals, the aspiration levels should be 
calculated. Payoff table is used when the decision 
maker has no enough view point to determine 
the aspiration levels. Zimmermann (1978) used 
a Payoff table to develop an upper and lower 
limit that was used to formulate the membership 
functions of the fuzzy goals. 

In the general form (34), the purpose of FGP is 
to find compromise solution 𝑋𝑋 such that all 
fuzzy goals are satisfied.  𝑔𝑔𝑘𝑘 is the aspiration 
level for kth goal, 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏 are system constraints 
in vector notation. 𝑍𝑍𝑘𝑘(𝑥𝑥) ≤� 𝑔𝑔𝑘𝑘 Means that the 

kth fuzzy goal is approximately less than or equal 
to the aspiration level 𝑔𝑔𝑘𝑘, and 𝑍𝑍𝑘𝑘(𝑥𝑥) ≥� 𝑔𝑔𝑘𝑘  gives 
the reverse, (Hannan, 1981). 

The fuzzy decision-making concept of Bellman 
and Zadeh (1970) can be used to solve the 
planned multi-objective APP problem (1)–(24).  
Linear membership functions as proposed by 
Zimmermann (1978) are used to represent the 
fuzzy goals of decision makers. 

Now, the membership function 𝜇𝜇𝑘𝑘  for the kth 
fuzzy goal 𝑍𝑍𝑘𝑘(𝑥𝑥) ≤� 𝑔𝑔𝑘𝑘  can be expressed as 
follows: 

 

 𝜇𝜇(𝑍𝑍𝑘𝑘(𝑥𝑥)) =

⎩
⎪
⎨

⎪
⎧

 

1                                                                                   𝑍𝑍𝑘𝑘(𝑥𝑥) ≤ 𝑔𝑔𝑘𝑘                                  
 

𝑢𝑢𝑘𝑘 − 𝑍𝑍𝑘𝑘(𝑥𝑥)
𝑢𝑢𝑘𝑘 − 𝑔𝑔𝑘𝑘

                                                            𝑔𝑔𝑘𝑘 ≤ 𝑍𝑍𝑘𝑘(𝑥𝑥) ≤ 𝑢𝑢𝑘𝑘                           (35) 
 

  0                                                                               𝑍𝑍𝑘𝑘(𝑥𝑥) ≥ 𝑢𝑢𝑘𝑘                                   

 

 

where 𝑢𝑢𝑘𝑘 is the upper tolerance limit for the kth 
fuzzy goal and 𝑢𝑢𝑘𝑘 − 𝑔𝑔𝑘𝑘 is the tolerance 𝑝𝑝𝑘𝑘  
which is subjectively chosen and the function is 
as depicted in Figure 2a. 

Again, the membership function 𝜇𝜇𝑘𝑘  for the kth 
fuzzy goal 𝑍𝑍𝑘𝑘(𝑥𝑥) ≥� 𝑔𝑔𝑘𝑘  can be expressed as 
follows: 

 

𝜇𝜇(𝑍𝑍𝑘𝑘(𝑥𝑥)) =

⎩
⎪
⎨

⎪
⎧

 

1                                                                                   𝑍𝑍𝑘𝑘(𝑥𝑥) ≥ 𝑔𝑔𝑘𝑘                            
 

𝑍𝑍𝑘𝑘(𝑥𝑥) − 𝑙𝑙𝑘𝑘
𝑔𝑔𝑘𝑘 − 𝑙𝑙𝑘𝑘

                                                    𝑙𝑙𝑘𝑘 ≤ 𝑍𝑍𝑘𝑘(𝑥𝑥) ≤ 𝑔𝑔𝑘𝑘                  (36) 
 

     0                                                                                   𝑍𝑍𝑘𝑘(𝑥𝑥) ≤ 𝑙𝑙𝑘𝑘                              
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Figure 2. Linear Membership Form  

 

where 𝑙𝑙𝑘𝑘 is the lower tolerance limit for the kth 
fuzzy goal and 𝑔𝑔𝑘𝑘 − 𝑙𝑙𝑘𝑘 is the tolerance 𝑝𝑝𝑘𝑘  which 
is subjectively chosen and the function is as 
depicted in Figure 2b. 

Hence, the associated FGP model for the 
multiobjective APP problem (1)-(32) is 
formulate as follows: 

 
find      𝑥𝑥

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   𝜆𝜆
to satisfy;

𝜆𝜆 ≤ 𝜇𝜇(𝑍𝑍1(𝑥𝑥)) =
𝑢𝑢𝑘𝑘 − 𝑍𝑍𝑘𝑘(𝑥𝑥)
𝑢𝑢𝑘𝑘 − 𝑔𝑔𝑘𝑘

𝜆𝜆 ≤ 𝜇𝜇(𝑍𝑍2(𝑥𝑥)) =
𝑢𝑢𝑘𝑘 − 𝑍𝑍𝑘𝑘(𝑥𝑥)
𝑢𝑢𝑘𝑘 − 𝑔𝑔𝑘𝑘

𝜆𝜆 ≤ 𝜇𝜇(𝑍𝑍3(𝑥𝑥)) =
𝑍𝑍𝑘𝑘(𝑥𝑥)− 𝑙𝑙𝑘𝑘
𝑔𝑔𝑘𝑘 − 𝑙𝑙𝑘𝑘

𝜇𝜇�𝑍𝑍𝑗𝑗(𝑥𝑥)� ∈ [0,1],   𝑗𝑗 = 1,2,3
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (4)− (16), (20) − (24), (31) − (33)  

𝑥𝑥𝑖𝑖 ≥ 0, 𝑖𝑖 = 1 … . . 𝑛𝑛

 

 

This suggested approach states that goal weights 
are decided by DM, and goal aspiration levels are 
derived using a payout table. The positive ideal 
solutions (PIS) and negative ideal solutions 
(NIS) of the objective functions can be 
respectively specified as follows, (Hwang & 
Yoon,1981; Lai & Hwang, 1992); 

 

𝑍𝑍1𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑍𝑍1; 𝑍𝑍1𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑀𝑀𝑀𝑀𝑀𝑀{𝑍𝑍1�𝑣𝑣𝑗𝑗∗�} 

𝑍𝑍2𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑍𝑍2; 𝑍𝑍2𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑀𝑀𝑀𝑀𝑀𝑀{𝑍𝑍2�𝑣𝑣𝑗𝑗∗�} 

𝑍𝑍3𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑍𝑍3; 𝑍𝑍3𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑀𝑀𝑀𝑀𝑀𝑀{𝑍𝑍3�𝑣𝑣𝑗𝑗∗�} 

 

Where 𝑣𝑣𝑗𝑗∗ is the positive ideal solution of 
objective function 𝑍𝑍𝑘𝑘. 

 

Implementation 
An industrial case study. 

Data description 

The case study of Rich Pharmaceuticals 
Limited(RPL) was utilized to show how useful 
the suggested methodology is. RPL is one of the 
leading producers of pharmaceuticals in Nigeria. 
RPL's goods are mostly sold in Southern and 
Middle belt of Nigeria, some parts of West and 
East Africa, they have recently experienced 
fluctuations in demand. RPL's business APP 
approach is to keep a stable labor force level over 
the planning horizon, allowing for the flexible 
meeting of demand through the use of 
inventories, overtime, and backorders.  

Alternately, the DM can use a mathematical 
programming technique to create an aggregate 
production schedule for RPL factory. Based on 
company reports, the planning horizon spans for 
six months, May to October. The model includes 
two types of standard products. Each period, the 
standard payroll is ₦64. The expenses for hiring 
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and firing employees are ₦30 and ₦40 per 
employee every day, respectively. Production 
expenses for overtime are capped at 30% of 
production expenses for regular hours. 

Additionally, it is assumed that each product has 
no beginning inventory and no backorders at the 
last period. Table 4 gives the forecasted monthly 
available warehouses spaces for production 

 

Table 4. Available Space Forecasting 𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝒘𝒘𝒘𝒘𝒘𝒘� = (𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝒘𝒘𝒘𝒘𝒘𝒘𝟏𝟏 ,𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝒘𝒘𝒘𝒘𝒘𝒘𝟐𝟐 ,𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝒘𝒘𝒘𝒘𝒘𝒘𝟑𝟑 ) 
(𝒎𝒎𝟑𝟑/month) 

 Period 𝑡𝑡  

Space 1 2 3 4 5 𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤  

𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 (3900, 2800, 4000) (3100, 2800, 3100) (4100, 4200, 3440) (2350, 3260, 4280) (3380, 3300, 2300) (1320, 1270, 1290) 

𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 (3000, 4100, 3200) (3050, 3300, 3500) (4050, 3001, 4500) (3300, 3260, 4305) (3410, 4300, 3320) (1030, 1270, 1260) 

 

 

In a day, there are two working shifts. 8 hours 
are allotted for regular production per shift, 
while 3 hours allotted for overtime production. 
To produce these products, 10 types of raw 
materials are required and the Selling price for 
finished products is ₦470. Repairs are done just 
in shift 2 (i.e., overtime). When demand for a 
certain period exceeds production capacity 
during regular hours and inventory levels are 
likewise insufficient to meet this demand, 
production is continued during overtime. 

The APP decision problem for the industrial 
case that is discussed here focuses on the 
creation of a multiple fuzzy goal programming 
model for figuring out the best way to meet 
forecasted demand by modifying output rates, 
hiring and firing, inventory levels, overtime and 

backorders. The anticipated outcomes of this 
APP decision include minimizing total 
production cost, production waste minimization 
and maximization of the capacity utilization rate. 

Findings and Outcomes 

From the Triangular Fuzzy warehouse Space 
𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤�  the crispy number 𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤 needs to 
be found. Taking 𝑊𝑊ℎ𝑐𝑐𝑐𝑐111�  which is warehouse 
space for product 1 in period 1 as stated in Table 
4 and depicted in Fig. 3, the crispy warehouse 
space 𝑊𝑊ℎ𝑐𝑐𝑐𝑐111 = 0.8 ∗ �3900+2800

2
�+ (1 −

0.8) ∗ �2800+4000
2

� = 3360.  

The membership function of the fuzzy demand 
may be expressed as follows: 

 

 

𝜇𝜇(𝑊𝑊ℎ𝑐𝑐𝑐𝑐111) =

⎩
⎪
⎨

⎪
⎧

0

(𝑊𝑊ℎ𝑐𝑐𝑐𝑐111 − 3900) (2800 − 3900)⁄
 

(2800 −𝑊𝑊ℎ𝑐𝑐𝑐𝑐111) (4000 − 2800)⁄

1

        

𝑊𝑊ℎ𝑐𝑐𝑐𝑐111 ≤ 3900

3900 ≤𝑊𝑊ℎ𝑐𝑐𝑐𝑐111 ≤ 2800
 

2800 ≤𝑊𝑊ℎ𝑐𝑐𝑐𝑐111 ≤ 4000

𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
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Figure 3. Triangular Distribution of the Fuzzy Warehouse Space for 𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝟏𝟏𝟏𝟏𝟏𝟏 

 

Other data on demand are also interpreted 
similarly. 

The recommended APP is programmed and 
executed with LINGO 18 solution. The 
minimum and maximum values for objectives 

are determined by the payout matrix and are 
shown in Table 5. Thus, the goals and 
aspirational levels have been determined to be 
𝑔𝑔1 = 1368835; 𝑔𝑔2 = 10344.02; 𝑔𝑔3 =
1760481. 

 
Table 5. Payoff Matrix 

  𝑍𝑍𝑘𝑘�𝑣𝑣𝑗𝑗∗�  

Objectives PIS   NIS 

Min 𝑍𝑍1(𝑥𝑥) 1368835 1613872 1589018 1613872 

Min 𝑍𝑍2(𝑥𝑥) 10344.02 10344.06 11835.14 11835.14 

Max 𝑍𝑍3(𝑥𝑥) 1760481 1650640 1650640 1650640 

 

The linear membership function of each 
objective function is determined with its PIS and 
NIS as the interval of the objective values, and 
also to specify the equivalence of these objective 
values as a membership value in the interval [0, 
1]. The fuzzy aspiration levels can be quantified 
using the linear and continuous membership 
function. According to Eq. 35 and 36, the 
relevant linear membership functions can be 
defined as shown below. 

The information in Table 5 can be used to draw 
the conclusion that the suggested FGP is capable 
of locating a high-quality compromise solution 
even in the face of numerous competing 
objective functions and constraints. As is 
obvious, there is a high level of satisfaction for 
all objective functions, and this is seen as a good 
Compromising solution for the problem. 
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𝜇𝜇(𝑍𝑍1(𝑥𝑥)) =

⎩
⎪
⎨

⎪
⎧

 

1                                    𝑍𝑍1(𝑥𝑥) ≤ 1368835
 

1613872 − 𝑍𝑍1(𝑥𝑥)
1613872− 1368835       1368835 ≤ 𝑍𝑍1(𝑥𝑥) ≤ 1613872

 
     0                                        𝑍𝑍1(𝑥𝑥) ≥ 1613872

 

 

 

𝜇𝜇(𝑍𝑍2(𝑥𝑥)) =

⎩
⎪
⎨

⎪
⎧

 

1                                𝑍𝑍2(𝑥𝑥) ≤ 10344.02            
 

11835.14− 𝑍𝑍2(𝑥𝑥)
11835.14− 10344.02        10344.02 ≤ 𝑍𝑍2(𝑥𝑥) ≤ 11835.1

 
0                                     𝑍𝑍2(𝑥𝑥) ≥ 11835.14

 

 

 

𝜇𝜇(𝑍𝑍3(𝑥𝑥)) =

⎩
⎪
⎨

⎪
⎧

 

1                                         𝑍𝑍𝑘𝑘(𝑥𝑥) ≥ 1650640
 

𝑍𝑍3(𝑥𝑥) − 1650640
1760481− 1650640

        1650640 ≤ 𝑍𝑍𝑘𝑘(𝑥𝑥) ≤ 1760481
 

     0                                        𝑍𝑍𝑘𝑘(𝑥𝑥) ≤ 1760481           

 

 
 

 

Table 6. The fuzzy goal programming 
Satisfaction Level Objective values  

     𝜇𝜇1                      𝜇𝜇2                      𝜇𝜇3 𝑍𝑍1              𝑍𝑍2              𝑍𝑍3 𝜆𝜆 

0.8735213     0.6856462     0.6856462 1399827   10812.72     1725952 0.6856462 

 

Considering the various fuzzy goal values (𝑍𝑍1,
𝑍𝑍2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑍𝑍3), the suggested model gives the 
overall levels of DM satisfaction (𝜆𝜆 value). Each 
goal is fully satisfied if the answer is 𝜆𝜆 =  1. If 
 𝜆𝜆 =  0, none of the goals are satisfied. If  0 <
𝜆𝜆 <  1, all of the goals are satisfied at some level. 
For instance, the initial calculation of the overall 
DM satisfaction (𝜆𝜆) with the goal values (𝑍𝑍1 =
1399827   ,𝑍𝑍2 = 10812.72, and 𝑍𝑍3 =
1725952) was 0.6856462. The 𝜆𝜆 value can be 
adjusted to look for a set of superior 
compromise options if the DM did not accept 
the initial overall degree of this satisfaction value. 

Additional Breakdown 

A significant influence on production costs is 
held by the allocation of variable warehouse 
space within the framework of aggregate 

production planning. This dynamic relationship 
incorporates a number of important elements, 
such as the price of keeping inventory, the 
timing of production, the responsiveness of the 
market to demand, and the cost of 
transportation. Greater storage capacity is made 
possible by larger warehouse areas; however, this 
may come at a cost in terms of higher costs for 
insurance, storage fees, and probable 
obsolescence, see Table 7 below. The cost of 
ordering may increase as a result of smaller 
warehouses needing more regular 
replenishments with reference to changes in 𝛼𝛼-
value, see equations (31) to (33) where 𝛼𝛼-
value is 0.8. In addition, the ability to adjust to 
fluctuations in demand can be lost due to a lack 
of warehouse space, resulting in oversupply 
during peak demand periods and lost sales 

 1368835     1613872 

1 

𝜇𝜇(𝑍𝑍1(𝑥𝑥)) 

0 

𝑍𝑍1(𝑥𝑥) 

   10344.02   11835.14    
 

1 

𝜇𝜇(𝑍𝑍2(𝑥𝑥)) 

0 

𝑍𝑍2(𝑥𝑥) 

𝑍𝑍3(𝑥𝑥) 

0    1650640    1760481 

1 

𝜇𝜇(𝑍𝑍3(𝑥𝑥)) 
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opportunities. Lastly, transportation costs can 
also be negatively impacted. Larger warehouses 
allow bulk shipments, which may result in cost 
savings as economies of scale are realized. On 
the other hand, smaller warehouses are more 
likely to have more frequent and smaller 

shipments, which can result in higher 
transportation costs. So, to sum up, optimizing 
your warehouse space allocation requires 
complex tradeoffs to balance these factors, 
allowing you to optimize your overall production 
planning and operate cost-effectively. 

 

Table 7. The MultiObjective goal Values 
(Abridged Table) 

𝜆𝜆 𝜇𝜇1 𝜇𝜇2 𝜇𝜇3 Prod. 
Cost 

Process 
Time 

Sells  WH 
Space for 

Prod 1 

WH 
Space for 

Prod 1 

WH Space 
for Raw 
Mat 1 

WH Space 
for Raw 
Mat 2 

0 0.9899 0.9999 0 1371317 10344.06 1650640 1292 1173 3360 2950 

0.1 0.9888 0.9610 0.1 1371588 10402.11 1661624 1292 1173 3360 2950 

0.2 0.9859 0.9140 0.2 1372270 10472.22 1672608 1292 1173 3360 2950 

0.3 0.9752 0.8669 0.3 1374918 10542.33 1683592 1292 1173 3360 2950 

0.4 0.9571 0.8199 0.4 1379344 10612.45 1694576 1292 1173 3360 2950 

0.5 0.9275 0.7729 0.5 1386590 10682.56 1705560 1292 1173 3360 2950 

0.6 0.9005 0.7259 0.6 1393209 10752.67 1716545 1292 1173 3360 2950 

0.7 0.7 0.7 0.6551 1442346 10791.31 1722599 1292 1173 3360 2950 

0.8 0.8 0.8 0.4425 1417842 10642.22 1699241 1292 1173 3360 2950 

0.9 0.9 0.9 0.2298 1393339 10493.12 1675882 1292 1173 3360 2950 

1 1 0.8902 0.2507 1368835 10507.8 1678182 1292 1173 3360 2950 

 

The balance between production capacity, 
inventory management and cost effectiveness is 
achieved through aggregate production 
planning, where variable warehouse space is a 
key factor in the planning process. To sum up, 
variable warehouse space is a key parameter in 
APP. The APP system choses the appropriate 
cost effective warehouse space (see the last four 
columns of Table 7) based on stated demand, 
raw material and the calculated output. By 
understanding how space variability affects 
inventory, production planning, cost reduction, 
and supply chain performance, companies make 
better decisions that lead to cost-efficient 
production, better customer support, and better 
space management. 

 

Conclusion and Recommendations 
Incorporating imprecise warehouse space into 
aggregate production planning using fuzzy goal 

programming presents a robust approach to 
addressing the ambiguity of space allocation 
within a dynamic manufacturing environment. 
This methodology recognizes the uncertainties 
and vagueness associated with warehouse space 
availability and integrates them into the decision-
making process. By employing fuzzy goal 
programming, companies can systematically 
balance conflicting objectives, such as 
production efficiency, inventory holding costs, 
and demand changes, while accounting for 
imprecision in space limitations. The fuzzy goal 
programming approach provides a flexible 
framework that helps decision-makers quantify 
and manage uncertainty, allowing them to make 
more informed and adaptable production 
planning decisions. 

Organizations can navigate the complexities of 
production planning while accommodating the 
uncertainties inherent in warehouse space 
allocation by adopting imprecise warehouse 
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space in aggregate production planning using 
fuzzy goal programming and adhering to these 
recommendations. This will ultimately improve 
decision-making and increase operational 
efficiency by; adopting and accepting the 
effectiveness of the model, using the stated 
reliable guide for data which enhances the 
model's ability to generate realistic and effective 
production plans under fuzzy constraints, the 
iterative process will ensure that the model 
remains aligned with the evolving production 
environment, improving the accuracy of the 
decision-making process. 

This work is capable in providing training and 
instruction to the team in charge of putting the 
fuzzy goal programming technique into practice. 
Effective implementation and interpretation of 
the results will need a complete grasp of the 
approach and its consequences. Future work will 
be to investigate effective incorporation of 
renewable and green house effects in building 
new APP models.  
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