184 research outputs found

    A modified differential evolution based solution technique for economic dispatch problems

    Get PDF
    Economic dispatch (ED) plays one of the major roles in power generation systems. The objective of economic dispatch problem is to find the optimal combination of power dispatches from different power generating units in a given time period to minimize the total generation cost while satisfying the specified constraints. Due to valve-point loading effects the objective function becomes nondifferentiable and has many local minima in the solution space. Traditional methods may fail to reach the global solution of ED problems. Most of the existing stochastic methods try to make the solution feasible or penalize an infeasible solution with penalty function method. However, to find the appropriate penalty parameter is not an easy task. Differential evolution is a population-based heuristic approach that has been shown to be very efficient to solve global optimization problems with simple bounds. In this paper, we propose a modified differential evolution based solution technique along with a tournament selection that makes pair-wise comparison among feasible and infeasible solutions based on the degree of constraint violation for economic dispatch problems. We reformulate the nonsmooth objective function to a smooth one and add nonlinear inequality constraints to original ED problems. We consider five ED problems and compare the obtained results with existing standard deterministic NLP solvers as well as with other stochastic techniques available in literature.FundaĆ§Ć£o para a CiĆŖncia e a Tecnologia (FCT

    Outer Approximation Algorithms for DC Programs and Beyond

    Get PDF
    We consider the well-known Canonical DC (CDC) optimization problem, relying on an alternative equivalent formulation based on a polar characterization of the constraint, and a novel generalization of this problem, which we name Single Reverse Polar problem (SRP). We study the theoretical properties of the new class of (SRP) problems, and contrast them with those of (CDC)problems. We introduce of the concept of ``approximate oracle'' for the optimality conditions of (CDC) and (SRP), and make a thorough study of the impact of approximations in the optimality conditions onto the quality of the approximate optimal solutions, that is the feasible solutions which satisfy them. Afterwards, we develop very general hierarchies of convergence conditions, similar but not identical for (CDC) and (SRP), starting from very abstract ones and moving towards more readily implementable ones. Six and three different sets of conditions are proposed for (CDC) and (SRP), respectively. As a result, we propose very general algorithmic schemes, based on approximate oracles and the developed hierarchies, giving rise to many different implementable algorithms, which can be proven to generate an approximate optimal value in a finite number of steps, where the error can be managed and controlled. Among them, six different implementable algorithms for (CDC) problems, four of which are new and can't be reduced to the original cutting plane algorithm for (CDC) and its modifications; the connections of our results with the existing algorithms in the literature are outlined. Also, three cutting plane algorithms for solving (SRP) problems are proposed, which seem to be new and cannot be reduced to each other

    Superstructure optimisation of a water minimisation network with a embedded multicontaminant electrodialysis model

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering, 2016The water-energy nexus considers the relationship between water and energy resources. Increases in environmental degradation and social pressures in recent years have necessitated the development of manufacturing processes that are conservative with respect to both these resources, while maintaining financial viability. This can be achieved by process integration (PI); a holistic approach to design which emphasises the unity of processes. Within the realm of PI, water network synthesis (WNS) explores avenues for reuse, recycle and regeneration of effluent in order to minimise freshwater consumption and wastewater production. When regeneration is required, membrane-based treatment processes may be employed. These processes are energy intensive and result in a trade-off between water and energy minimisation, thus creating an avenue for optimisation. Previous work in WNS employed a black box approach to represent regenerators in water minimisation problems. However, this misrepresents the cost of regeneration and underestimates the energy requirements of a system. The aim of the research presented in this dissertation is to develop an integrated water regeneration network synthesis model to simultaneously minimise water and energy in a water network. A novel MINLP model for the design of an electrodialysis (ED) unit that is capable of treating a binary mixture of simple salts was developed from first principles. This ED model was embedded into a water network superstructure optimisation model, where the objective was to minimise freshwater and energy consumption, wastewater productions, and associated costs. The model was applied to a pulp and paper case study, considering several scenarios. Global optimisation of the integrated water network and ED design model, with variable contaminant removal ratios, was found to yield the best results. A total of 38% savings in freshwater, 68% reduction in wastewater production and 55% overall cost reduction were observed when compared with the original design. This model also led to a 80% reduction in regeneration (energy) cost.GS201

    An Algorithm for Integrated Subsystem Embodiment and System Synthesis

    Get PDF
    Consider the statement,'A system has two coupled subsystems, one of which dominates the design process. Each subsystem consists of discrete and continuous variables, and is solved using sequential analysis and solution.' To address this type of statement in the design of complex systems, three steps are required, namely, the embodiment of the statement in terms of entities on a computer, the mathematical formulation of subsystem models, and the resulting solution and system synthesis. In complex system decomposition, the subsystems are not isolated, self-supporting entities. Information such as constraints, goals, and design variables may be shared between entities. But many times in engineering problems, full communication and cooperation does not exist, information is incomplete, or one subsystem may dominate the design. Additionally, these engineering problems give rise to mathematical models involving nonlinear functions of both discrete and continuous design variables. In this dissertation an algorithm is developed to handle these types of scenarios for the domain-independent integration of subsystem embodiment, coordination, and system synthesis using constructs from Decision-Based Design, Game Theory, and Multidisciplinary Design Optimization. Implementation of the concept in this dissertation involves testing of the hypotheses using example problems and a motivating case study involving the design of a subsonic passenger aircraft

    Continuous Biochemical Processing: Investigating Novel Strategies to Produce Sustainable Fuels and Pharmaceuticals

    Get PDF
    Biochemical processing methods have been targeted as one of the potential renewable strategies for producing commodities currently dominated by the petrochemical industry. To design biochemical systems with the ability to compete with petrochemical facilities, inroads are needed to transition from traditional batch methods to continuous methods. Recent advancements in the areas of process systems and biochemical engineering have provided the tools necessary to study and design these continuous biochemical systems to maximize productivity and substrate utilization while reducing capital and operating costs. The first goal of this thesis is to propose a novel strategy for the continuous biochemical production of pharmaceuticals. The structural complexity of most pharmaceutical compounds makes chemical synthesis a difficult option, facilitating the need for their biological production. To this end, a continuous, multi-feed bioreactor system composed of multiple independently controlled feeds for substrate(s) and media is proposed to freely manipulate the bioreactor dilution rate and substrate concentrations. The optimal feed flow rates are determined through the solution to an optimal control problem where the kinetic models describing the time-variant system states are used as constraints. This new bioreactor paradigm is exemplified through the batch and continuous cultivation of Ī²-carotene, a representative product of the mevalonate pathway, using Saccharomyces cerevisiae strain mutant SM14. The second goal of this thesis is to design continuous, biochemical processes capable of economically producing alternative liquid fuels. The large-scale, continuous production of ethanol via consolidated bioprocessing (CBP) is examined. Optimal process topologies for the CBP technology selected from a superstructure considering multiple biomass feeds, chosen from those available across the United States, and multiple prospective pretreatment technologies. Similarly, the production of butanol via acetone-butanol-ethanol (ABE) fermentation is explored using process intensification to improve process productivity and profitability. To overcome the inhibitory nature of the butanol product, the multi-feed bioreactor paradigm developed for pharmaceutical production is utilized with in situ gas stripping to simultaneously provide dilution effects and selectively remove the volatile ABE components. Optimal control and process synthesis techniques are utilized to determine the benefits of gas stripping and design a butanol production process guaranteed to be profitable

    A nonlinear complementarity approach for the national energy modeling system

    Full text link
    • ā€¦
    corecore