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Abstract —PhD Thesis 

The need for petroleum refineries to process different types of crude oil in order to 

maximise profit margin and to meet demand for products, calls for flexibility in the 

design and optimisation of crude oil distillation systems comprising distillation units 

and the heat recovery network. Crude oil distillation is a complex, capital- and energy-

intensive process. The large number of degrees of freedom (column structure and 

operating conditions) and complex interactions within the system make the design and 

optimisation of crude oil distillation system a highly challenging task. This work 

develops new methodologies for the design of crude oil distillation systems that 

process a single crude oil feedstock and multiple crude oil feedstocks. 

In this work, the crude oil distillation unit is modelled using a rigorous tray-by-tray 

model where the number of trays active in each section is also a design degree of 

freedom. The model is embedded in an optimisation framework, together with a heat 

recovery model (applying pinch analysis), for design of an energy-efficient and cost-

effective distillation system. The optimisation framework addresses both structural and 

operational degrees of freedom of the system, capturing the trade-off between capital 

and energy costs, and accounting for heat integration. The distillation model is built in 

Aspen HYSYS, while the optimisation is carried out in MatLab using a genetic 

algorithm, where data is exchanged during process simulation and optimisation.  

To overcome the shortcomings of the rigorous distillation model in the context of 

system optimisation, surrogate models based on artificial neural networks (ANN) and 

a support vector machine (SVM) are developed and applied in the optimisation 

framework. The ANN model simulates the crude oil distillation unit, while the SVM 

partitions the search space, increasing the likelihood that the optimised solution will 

converge when simulated using a rigorous model. The SVM helps to reduce 

computational effort by focusing the search on potentially feasible solutions. Both the 

ANN and SVM are fitted to results of multiple rigorous simulations of the distillation 

unit.  

The proposed surrogate modelling approach is extended to take into account multiple 

crude oil feedstocks in the design of the distillation unit. The distillation column 

models for multiple crude oils and heat recovery model are embedded in a two-stage 

optimisation framework, in which a hybrid stochastic-deterministic approach is 

applied to optimise structural variables and distillation column operating conditions. 

The overall objective is to maximise net profit while meeting product quality (and flow 

rate) constraints.  

The capabilities of the proposed methodologies are illustrated using industrially-

relevant case studies. Results indicate that the used of surrogate model instead of 

rigorous models reduces computational time without compromising solution accuracy 

and optimality. The design approach to account for flexible operation is shown to 

identify effectively design alternatives that are economically viable and operable over 

the range of crude oil feedstocks.  
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Chapter 1   Introduction 

1.1 Context and overview of research problem 

Petroleum refineries are faced with uncertainties in terms of future quality and 

quantity of feedstocks and products (Castelo et al., 2010). To cope with these 

uncertainties, refinery processes must be flexible enough to adapt to various operating 

scenarios arising from, for example, changes in crude oil feedstock and products, and 

changes in throughput. Flexibility is defined as the inherent ability of refinery process 

to establish feasible operation (e.g., meeting product specifications) over a wide range 

of operating scenarios. 

Process flexibility plays an important role in maximising refinery profit margins (i.e., 

the total amount by which revenue from the sales of refined petroleum products 

exceeds operating cost). Changes in market prices of crude oil and refined petroleum 

products can provide opportunities to improve profit margins if the refinery processes 

have the capability of processing various types of crude oil feedstocks to produce 

market-driven products. In general, flexible operation in a petroleum refinery starts in 

the crude oil distillation systems (Spangler et al., 2006). 

Crude oil distillation is one of the primary processes in a petroleum refinery. The crude 

oil distillation system consists of a crude oil distillation unit (also known as column) 

and a heat recovery network (also known as preheat train) where the crude oil 

feedstock is heated and partially vaporised (see Figure 1.1). The crude oil distillation 

unit, as shown in Figure 1.1, has a complicated configuration, comprising a main 

column equipped with pump-arounds and side-strippers, and a condenser. The pump-

arounds provide local reflux and create heat recovery opportunities, while the side-

strippers remove light components from side draws. 
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Figure 1.1 Typical refinery crude oil distillation system. 

Crude oil distillation is a complex, capital- and energy-intensive operation. The overall 

system configuration typically consists of a furnace which consumes fuel equivalent to 

1-2% of the entire crude oil being processed (Liebmann et al., 1998; Szklo and Schaeffer, 

2007). This fuel combustion is associated with high CO2 emissions and high operating 

costs. Due to the scale of the system, even a small energy savings can lead to significant 

economic and environmental benefits. Heat integration is implemented to enhance 

energy efficiency of the system by exchanging heat between hot streams that require 

cooling and cold streams that require heating.  

The main purpose of the crude oil distillation system is to perform the initial 

separation of crude oil feedstocks into fractions or ‘cuts,’ which are either blended into 

marketable products or sold as feedstocks for the petrochemical industries. Crude oil is 

a complex mixture of different classes of hydrocarbons (see Chapter 2). Each type of 

crude oil has unique physical and chemical properties, which primarily depends on the 

source of the crude oil (Jones, 1995). Figure 1.2 illustrates product yield obtainable from 

three varieties of crude oil feedstocks, namely, Maya, Azeri light, and Brent, with 
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different properties, e.g., the density of the three crude oils are 924.8 kg m–3, 850.9 kg 

m–3, and 833.3 kg m–3 respectively. 

 

 
 

Figure 1.2 Crude oil yield for heavy, medium and light crude (Cooper and Mackenzie, 

2013). 

In general, light crude oils (density less than 859 kg m-3) are less dense than medium 

(density between 859 kg m-3 and 921 kg m-3) and heavy crude oils (density greater than 

921 kg m-3), and contain a significant amount of low-boiling hydrocarbon compounds 

(Favennec, 2001). Each type of crude oil is a unique mixture of various hydrocarbon 

compounds (paraffin, naphthenes, and aromatics), and therefore the crude oil 

distillation column should be design (fired heating, stripping steam flow rate, number 

of trays in column sections etc.) to accommodate changes in feedstock properties.  

The variation in feedstock properties can have a significant impact on design and 

operation of crude oil distillation systems. For example, if a system is designed based 

on a specific type of crude oil, changes in feedstock properties can impact on the 

system performance, such as product qualities and flow rate, fired heating 

requirements, net profit and CO2 emissions. Thus, to avoid economic penalties 

resulting from products not meeting market requirements and failing to capitalise on 
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the cheapest crude oil in the market, the crude oil distillation unit and the associated 

heat recovery network should be designed to operate satisfactorily over a wide range 

of operating scenarios, while ensuring product quality and flow rates are within their 

set values. 

1.2 Grassroots design of heat-integrated crude oil distillation 

systems 

In general, the process of design can be broadly classified into two groups based on 

design objectives, namely, grassroots (also known as ‘greenfield design’) and retrofit 

design. In grassroots design, the aim is to design a new process at minimum cost 

and/or maximum profit, while retrofit design involves making structural (e.g. 

installing new equipment, replacing an existing equipment, repiping etc.) and/or 

operational (e.g. changes in temperature, pressure, throughput etc.) modifications to an 

existing process in order to achieve a desired objective, for example, increased 

throughputs, increased capacity, and reduction in energy consumption and emissions 

(Smith, 2005).  

Long and Lee (2017) estimated that 70-80% of capital investment project in the process 

industries is retrofit projects, while the remaining constitute grassroots projects. 

Retrofit design is more complicated than grassroots design as the retrofit design space 

is more restricted, and there are fewer degrees of freedom (Westerberg, 2004).  

Although many similarities exist between retrofit and grassroots design 

methodologies, there are still many fundamental differences between the two design 

approaches, for example, each approach requires a unique model (Grossmann et al., 

1987; Westerberg, 2004).  Moreover, some aspect of retrofit design requires the 

knowledge, understanding, skills and insights derived from grassroots design 

(Westerberg, 2004). This work focuses on grassroots design of a crude distillation 

system that can process multiple crude oil feedstocks. Heat integration is taken into 

account using pinch analysis (based on grand composite curve). The grand composite 

curve is an important tool for process heat integration. The curve is constructed using 

process stream data, consisting of stream supply and target temperatures and enthalpy 
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change. The grand composite curve is a useful tool for calculating energy targets 

(minimum hot and cold utilities) and for utility selection for lowest cost (Smith, 2005). 

The crude oil distillation unit is strongly interconnected with the associated heat 

recovery network through pump-around duties, condenser duty, and product coolers. 

Changes in the design and operation of the atmospheric distillation unit affect the 

design and operation of the heat recovery network and vice versa.   

Typically, grassroots design aims to select the structural (feed tray location, pump-

around and side-stripper location, number of trays in each section of the column) and 

operational variables (feed temperature, pump-around duties and temperature drops, 

stripping steam flow rates and reflux ratio) of the crude oil distillation unit, while 

simultaneously selecting the configuration of the associated heat recovery network and 

the area requirements of the heat exchangers. Through effective design strategies, the 

synergy between the two subsystems can be exploited to achieve an overall good 

design performance (e.g. total annualised cost, energy consumption and profit).  

The design of crude oil distillation systems involves selecting the structure and 

operating conditions of the distillation unit and the heat recovery network, and has the 

additional complexity that the overall system must be capable of processing multiple 

crude oil feedstocks and crude oil blends. That is, the crude oil distillation system 

should accommodate variations in crude oil feedstocks and operating conditions. A 

flexible crude oil distillation system must be capable of operating satisfactorily over a 

wide range of feedstocks.  

The complex nature of the crude oil distillation system, including the strong interaction 

between the unit and the heat recovery network poses a very challenging design and 

optimisation problem. In addition, there are many degrees of freedom in the system, 

namely, operating conditions and structural variables of the crude oil distillation unit 

and the heat recovery network. Furthermore, these degrees of freedom need to be 

selected while taking into account all the crude oil feedstocks and/or crude oil blends 

that need to be processed. 
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In the past, design of crude oil distillation unit and the associated heat recovery 

network (preheat train) were carried out in separate steps, i.e., the distillation column 

was designed first, followed by the heat recovery network (Nelson, 1958; Watkins, 

1979; Jones, 1995). These design approaches applied heuristic rules, empirical 

correlations, and experience to design the complex crude oil distillation unit. However, 

the design approaches proposed by Nelson (1958), Watkins (1979) and Jones (1995) 

require trial and error and do not account for interactions within the system.  

To overcome the above limitations, several researchers focused on design of integrated 

crude oil distillation systems, taking into account the interactions between the 

distillation column and the heat recovery network. This design strategy leads to an 

energy-efficient design compared to earlier methods. In this regard,  Liebmann and co-

workers (Liebmann, 1996; Liebmann et al., 1998) integrate rigorous column simulation 

and pinch analysis to design the complex column. Their approach evolves the design in 

a stepwise manner, taking into account maximum heat recovery calculated using the 

grand composite curve. Based on these heat recovery targets/minimum utility targets, 

design modifications that improve separation and reduce energy consumption are 

proposed and adopted. A limitation of this work is that it requires iteration, and the 

distillation column is not optimised.    

To avoid the use of rigorous model, Sharma et al. (1999) propose a stepwise design 

strategy that combines simple energy balance and column grand composite curve 

(Dhole and Buckingham, 1994). First, energy balance is carried out across several 

sections of the complex column to generate temperature-enthalpy data. The data are 

used to construct a column grand composite curve. Based on this curve, the maximum 

amount of energy that can be recovered without affecting separation is calculated. 

However, the number of trays in column section is fixed. Also, the design procedure is 

based on some rules of thumb and optimisation is not attempted. 

To develop an optimisation-based design approach, Suphanit (1999) proposed 

simplified (based on Fenske–Underwood–Gilliland) models for crude oil distillation 

columns and apply pinch analysis in an optimisation framework to identify the crude 



27 
 

oil distillation column structure and operating conditions that minimise the total 

annualised cost. Rastogi (2006) improved the simplified model of Suphanit (1999) in 

order to account for pump-around locations and pressure drop. A non-linear 

optimisation technique (successive quadratic programming) is applied to optimise the 

column structure and operating conditions. Chen (2008) further modifies the model of 

Rastogi (2006) to allow for alternative pump-around locations (e.g., above the top side 

draw). The model is implemented in an optimisation framework, together with a heat 

exchanger network model, to simultaneously design the column and the heat 

exchanger network. In addition, Chen (2008) accounts for temperature-dependent 

properties of crude oil and product streams undergoing phase change. Despite being 

easier to handle numerically, simplified column models have the limitation that they 

tend to lead to less accurate results compared with rigorous models. Furthermore, they 

are not versatile with respect to the column configuration.  

The methodologies presented so far focused on the design of crude oil distillation 

systems that separates a specific type of crude oil feedstock to produce intermediate 

products of specified quality. However, a significant change from the design 

conditions (e.g. change in crude oil feedstock) can impact on the overall system 

performance (energy consumption, profit, etc.) or even lead to infeasible operation (i.e. 

failure of the design to satisfy separation requirements, such as product quality). For 

example, ‘’light’’ crude oil contains a large amount of low-boiling hydrocarbon 

compounds compared with “medium” and “heavy” crude oils; thus it is expected that 

the feed inlet temperature for the light crude oil will be lower than that of medium and 

heavy crude oils, which implies that the light crude oil will require less preheating than 

the medium and heavy crude oils. 

To design a flexible crude oil distillation system that can process multiple crude oil 

feedstocks and/or blend of crude oils, it is crucial to determine the structural and 

operational variables of the system that can operate over different crude oil feedstock. 

For example, Bagajewicz and Ji (2001) propose a design approach that combines 

rigorous simulation and pinch anlysis based on heat demand-supply diagram. Their 

approach applies heuristic rules to determine feasible operating conditions for light, 
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medium and heavy crude oils using a fixed crude oil distillation column structure. 

Nonetheless, the trade-offs between capital and energy cost are not considered.  

Furthermore, the resulting crude oil distillation system is not optimised.  

To optimise the system, More et al. (2010) develop an optimisation-based approach for 

the design of crude oil distillation system that processes multiple crude oils and blend 

of crude oils. Their methodology consist of two stages. In stage 1, the crude oil 

distillation system is modelled rigorously in Aspen Plus. In stage 2, an optimisation 

framework is formulated, with a profit related objective function and constraints on 

product quality. The variables optimised include feed flow rate, steam flow rates, and 

product flow rates. The nonlinear optimisation tool embedded in the commercial 

process simulator is used to optimise the system. Although the standard optimisation 

tool used in this work can facilitate the search for better solutions compared to the 

approach presented by Bagajewicz and Ji (2001), the method of More et al. (2010) also 

has some drawbacks; for example, structural variables such as number of trays in each 

column section and the locations of feed tray, pump-arounds and side-strippers are not 

optimised. Furthermore, heat integration is not taken into account during the 

optimisation, although the heat duties are used to calculate operating cost. 

Overall, early approaches (Nelson, 1958; Watkins, 1979; Jones, 1995) for the design of 

crude oil distillation system have not taken into account heat integration. Integrated 

design methods (Liebmann et al., 1998; Sharma et al., 1999) do consider heat 

integration, but the distillation column is not optimised. The optimisation-based 

approach integrates simplified column model and pinch analysis (Suphanit, 1999) / 

heat exchanger network (Rastogi, 2006; Chen, 2008) to design an optimised system. 

However, simplified models may lead to an unrealistic estimate of the distillation 

column performance. Again, the approaches above focused on the design of crude oil 

distillation system that processes one type of crude oil feedstock. While methodologies 

(Bagajewicz and Ji, 2001; More et al., 2010) for the design of flexible crude oil 

distillation system that process multiple crude oils and blends of crude oil are 

available, they are subject to many limitations such as lack of consideration of relevant 

design variables as well as trade-offs between capital and energy cost. 
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To develop a systematic approach for optimisation-based design of crude oil 

distillation system, there is a need for computationally efficient and accurate 

distillation column models that can be used to simulate alternative designs. The 

models should be capable of representing the complex behavior of the system and the 

relevant degrees of freedom (structural and operational variables). Rigorous and 

surrogate models are available for simulating crude oil distillation systems. If properly 

modelled, rigorous models can produce an accurate estimate of the distillation column 

performance as compared with surrogate models. However, rigorous models can be 

computationally demanding. On the other hand, surrogate models are relatively 

simple and are less computationally demanding. This feature makes surrogate models 

more suitable for implementation in an optimisation framework to design the crude oil 

distillation system.    

Methodologies for modelling of crude oil distillation unit based on rigorous models 

(Bagajewicz and Ji, 2001; Basak et al., 2002; More et al., 2010) and surrogate models 

(López C. et al., 2013; Ochoa-Estopier and Jobson, 2015a; Osuolale and Zhang, 2017) 

have been developed and presented in literature. However, none of the methods have 

incorporate structural decisions (e.g. number of trays in column sections) as a design 

variable. Thus, the resulting column model cannot be applicable for optimisation-based 

design of crude oil distillation system. While structural variables have been 

implemented in modelling of simple column using rigorous models (Caballero et al., 

2005), this approach can not be directly applied to design a heat-integrated crude oil 

distillation systems, due to the complicated nature of the unit configuration and large 

number of degrees of freedom. 

1.3 Aims and objectives of this work 

As discussed in Sections 1.1 and 1.2, there is a lack of systematic methodologies for the 

design of flexible heat-integrated crude oil distillation systems that process multiple 

crude oil feedstocks.  
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This research work aims to develop a new systematic approach for the design of 

flexible crude oil distillation systems, to address the limitations of existing design 

methods. The method applies an optimisation-based approach to design the crude oil 

distillation unit, while simultaneously considering heat recovery using pinch analysis, 

in a unified framework. The optimisation framework aims to select both column 

structural and operating degrees of freedom while taking into account multiple crude 

oil feedstocks, product quality constraints, capital investment and operating costs. The 

objectives to achieve these aims are to: 

1. Develop an appropriate modelling approach for crude oil distillation units that 

takes into account both structural and operational degrees of freedom of the 

distillation column. The approach explores the use of both rigorous and 

surrogate models.  

2. Propose a design methodology that incorporates rigorous simulation model 

and pinch analysis in a unified framework to facilitate the design of crude oil 

distillation systems.  

3. Adapt the design methodology of Objective 2 to apply surrogate distillation 

column models, considering both column performance and definition of region 

of appropriate operating conditions.  

4. Develop an optimisation framework that incorporates suitable distillation 

column models and pinch analysis to support the design of flexible crude oil 

distillation systems. 

5. Propose an effective solution strategy to facilitate the search for flexible, cost-

effective, and energy-efficient design option. 

6. Demonstrate the capabilities of the proposed frameworks using industrially-

relevant case studies. 

1.4 Contributions of this work 

The following outlines the contributions of the work presented in this thesis: 

1. Design of crude oil distillation units using rigorous simulation model. 
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i. A new approach for representing crude oil distillation column 

(superstructure) using rigorous simulation model is introduced. The 

proposed distillation column superstructure takes into account both 

structural and operational degrees of freedom of the crude oil 

distillation unit. When the distillation column superstructure is 

implemented in an optimisation framework, it is possible to optimise 

both structural (number of trays in column sections) and operational 

(pump-around duty and temperature drops, feed inlet temperature, 

stripping steam flow rate, and reflux ratio) degrees of freedom of the 

system, thus allowing the inherent trade-offs between capital and 

energy cost to be fully captured, leading to an economically viable 

design alternative. 

 

2. Design of crude oil distillation units using surrogate distillation column model. 

i. A surrogate model of the crude oil distillation unit is developed using 

artificial neural networks, taking into account both structural and 

operational degrees of freedom. 

ii. A feasibility constraint based on support vector machine is proposed in 

this work. The constraint is applied to rule out infeasible design 

alternatives from the solution space, thus improving computational 

efforts and increasing the likelihood that an optimal design would be 

feasible when simulated on a rigorous model. 

iii. Methodology that allows the optimisation of structural and operational 

degrees of freedom of crude oil distillation unit using surrogate model is 

proposed, considering feasibility constraint, heat integration and 

economic model. 

 

3. Design of flexible crude oil distillation unit that process multiple feedstocks. 

i. Data sampling and surrogate modelling approaches for crude oil 

distillation unit that processes multiple crude oil feedstocks are 

proposed. 
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ii. A two-stage optimisation framework is proposed to facilitate the design 

of flexible crude oil distillation unit. The framework incorporates the 

surrogate column models, heat recovery models, feasibility constraints 

and economic model.  

iii. A hybrid stochastic-deterministic strategy is introduced to aid the 

search for flexible and cost-effective design alternatives within the 

solution space.  

 

4. Scenario-based design of flexible chemical processes. 

i. A scenario-based approach for the design of chemical processes in 

which some parameters and/or input variables are subject to variability 

is proposed. Compared to the strategy presented in Contribution 3, this 

approach is capable of handling, effectively, large number of operating 

scenarios (e.g. many crude oil feedstocks to be processed). 

ii. A decomposition strategy that breaks the complex multi-scenario design 

problem into sub-problems is introduced. The sub-problems include: (i) 

defining and characterizing process parameters that are subject to 

variability, (ii) design for each scenario, (iii) evaluating each design 

within the parameter space, and (iv) selecting the most economic and 

flexible design option. 

iii. Multi-criteria decision-making tool is introduced for selection of optimal 

design among many alternatives, taking into account both quantitative 

and qualitative judgement.  

1.5 Overview of this Thesis 

The remainder of this thesis is organised in six chapters, following the “Journal 

Format” style of the University of Manchester. Chapter 2 presents an overview of the 

crude oil distillation system, followed by a review of relevant work on modelling of 

these systems. Previous work on the design and optimisation of heat-integrated crude 

oil distillation systems, methodologies for process design for flexibility, and 

optimisation methods are critically discussed. 
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Chapter 3 presents Publication 1: Ibrahim, D., Jobson, M., Guillén-Gosálbez, G., 2017. 

Optimization-based Design of Crude Oil Distillation Units using Rigorous Simulation 

Models. Ind. Eng. Chem. Res., 2017, 56 (23), pp 6728–6740, DOI: 10.1021/acs.iecr.7b01014. 

In this work, a new approach for the design of crude oil distillation systems using 

rigorous simulation models is proposed. The strategy for modelling the crude oil 

distillation unit is presented, followed by the optimisation problem and its solution 

procedure. Two examples are presented to demonstrate the application of this 

approach. 

Chapter 4 presents Publication 2: Ibrahim, D., Jobson, M., Li, J., Guillén-Gosálbez, G., 

2018. Optimization-based Design of Crude Oil Distillation Units using Surrogate 

Models and a Support Vector Machine. Chem. Eng. Res. Des., 2018,  DOI: 

doi.org/10.1016/j.cherd.2018.03.006. In this work, a new approach for the design of 

crude oil distillation systems based on surrogate models is proposed. The distillation 

column modelling method is presented first, followed by a framework for optimisation 

of the column structure and operating conditions. The application of the approach is 

illustrated using an example. 

Chapter 5 presents Publication 3 and 4: Ibrahim, D., Jobson, M., Lie J., Guillén-

Gosálbez, G., 2017. Optimal Design of Flexible Heat-Integrated Crude Oil Distillation 

Units using Surrogate Models. Chem. Eng. Res. Des. [To be submitted] and Ibrahim, D., 

Jobson, M., Guillén-Gosálbez, G., 2017. Design of Chemical Processes under 

Uncertainty Combining the Sample Average Approximation and the Analytic 

Hierarchy Process. Comput. Chem. Eng. [Submitted], respectively. In Publication 3, a 

new approach for the design of flexible crude oil distillation systems that process 

multiple crude oil feedstocks is proposed. The capabilities of the proposed method are 

illustrated using a case study. Publication 4 extends the approach proposed in 

Publication 3 to address design problems with a large number of operating scenarios 

that may be encountered during plant operation.  

Chapter 6 highlights the contribution of the research work, discusses the limitations of 

the research and recommends some future work. 

https://doi.org/10.1016/j.cherd.2018.03.006
https://doi.org/10.1016/j.cherd.2018.03.006
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Chapter 2   Literature review 

In the petroleum refining industry, crude oil distillation plays a key role in the overall 

production process due to its economic and environmental importance. As discussed 

in Chapter 1, the need for refineries to process different types of crude oil feedstocks 

and/or blend of crude oils in order to meet market demand for products and to 

maximise their profit margins, calls for greater flexibility in the design and operation of 

crude oil distillation systems. To achieve this, there is a need for systematic tools that 

can facilitate the design and optimisation of the crude oil distillation systems. 

To develop such systematic tools, three major challenges need to be addressed. Firstly, 

a simulation model that can represent the complex behaviour of the crude oil 

distillation system is required. Such a model should not only be computationally 

efficient but should also be accurate and robust enough to guarantee convergence. 

Secondly, to account for heat integration during design and optimisation, a heat 

recovery model is required. Heat recovery can be accounted for using either pinch 

analysis or heat exchanger networks (Smith, 2005). Finally, an efficient optimisation 

framework that incorporates the distillation column model and heat recovery model is 

required, in order to facilitate the search for energy-efficient and cost-effective design 

alternatives within the design space.   

Several works have been carried out on crude oil distillation system, for example, to 

develop new modelling strategies and to improve established design and optimisation 

methodologies. This chapter reviews the relevant work on modelling, design, and 

optimisation of crude oil distillation systems. First, a technical overview of the crude 

oil distillation system is presented. Second, existing modelling strategies for crude oil 

distillation units are presented in Section 2.2. Third, previous work on the design and 

optimisation of heat-integrated crude oil distillation systems is presented in Section 2.3. 

Sections 2.2 and 2.3 complements the literature reviews of the papers presented in 
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Chapters 3, 4 and 5. Lastly, methodologies for process design for flexibility and 

optimisation methods are presented in Sections 2.4 and 2.5 respectively.  

2.1 Technology background – crude oil distillation 

2.1.1 Crude oil and its properties   

Crude oil mixture 

Crude oil or petroleum is a complex mixture of 100 000s of hydrocarbons ranging from 

compounds with one carbon atom (methane) to those with more than twenty. These 

compounds include paraffinic hydrocarbons, naphthenic hydrocarbons and aromatic 

hydrocarbons (Jones, 1995). Paraffinic hydrocarbons are saturated compounds, such as 

ethane, propane, butane and other members of the homologues series. Naphthenic 

hydrocarbons are saturated cyclic compounds, such as cyclo-pentane, cyclo-hexane 

and so on. Lastly, aromatic hydrocarbons are unsaturated cyclic compounds such as 

benzene. In addition, crude oil contains small number of inorganic compounds 

(impurities) such as sulphur, oxygen, nitrogen and metals.  

Although all varieties of crude oil contain similar compositions, the proportion of 

individual components in the crude oil mixtures differs, depending on the origin of the 

crude oil (Jones, 1995). In its original state, crude oil is highly viscous and has low flash 

point and therefore has limited values and application; refining is usually required to 

transform the limited value crude oil into a more valuable high-quality product that 

meets the specifications of the energy market.  

Properties of crude oil mixture 

The value of crude oil in the market is determined by two relevant properties, namely, 

sulphur content and API (American Institute of Petroleum) gravity (density). The 

amount of sulphur in crude oil is of paramount importance to a refinery, as it 

determines the cost of treatment that will be required during refining, which has a 

considerable impact on the refinery economics. Crude oil with less than 0.5 wt% 

sulphur content is termed ‘sweet,’ while that with higher values are termed sour (Gary 
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et al., 2007). The higher the sulphur content, the lower the value of the crude oil and 

vice versa. Figure 2.1 illustrates the sulphur content and API gravity of selected crude 

oils around the world.  

The API gravity expresses the density of the crude oil at 60 ℉  ( °𝐴𝑃𝐼 = [141.5/

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦] − 131.5). The majority of crude oils have API gravity in the range of 

20 to 45 (Gary et al., 2007). In general, heavy crude oils are less valuable than lighter 

ones, as they produce less high value products, and require considerable processing 

cost. 

 

 

Figure 2.1 Density and sulphur content of selected crude oil (EIA, 2012) 
 

Boiling range 

Another important property of crude oil is the boiling range. Unlike sulphur content 

and API gravity, the boiling range of a crude oil reveals the amount of valuable 

products that can be recovered from the whole crude oil. The boiling range of a crude 

oil is typically determined experimentally using one of the following tests: true boiling 

point (TBP), ASTM D86 (American Society for Testing and Materials), and equilibrium 

flash vaporisation (EFV) (Watkins, 1979; Jones, 1995; Gary et al., 2007; Fahim et al., 
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2009). Various correlations are available for inter-conversion between the distillation 

curves; the details of these correlations and their application are presented by Riazi 

(1989). 

Other important properties of crude oil include salt content, pour point, carbon 

residue, nitrogen content, metal content, flash point, etc. This list is inexhaustible, as 

there are many properties used to characterise crude oil mixtures in the petroleum and 

refining industries. 

Characterisation of crude oil mixture 

The whole crude oil boiling point curve can be divided into several distinct segments. 

For example, during TBP distillation, the volume percent distilled can be collected over 

a narrow temperature range, as the temperature is increased gradually, several distinct 

fractions can be defined. Thus the whole crude oil is split into fractions. Each fraction 

still contains many unknown components. Nonetheless, the components have similar 

boiling point, which will be useful for calculating other properties and for the design of 

the separation system. For calculation convenience, each fraction can be treated as a 

pure component, which are commonly termed ‘pseudo-components’ (Fahim et al., 

2009). 

In engineering practice, it is not necessary to apply experimental procedures to 

generate the pseudo-components. Once the true boiling point curve for the whole 

crude oil is available, simple numerical calculations can be applied to divide the whole 

crude oil TBP curve into pseudo-components. There is no standard rule for selecting 

the number of pseudo-components to be used for a specific type of crude oil mixture, 

although a few sources suggested 30, 10 and 8 pseudo-components for boiling point 

ranges of 38–427 ℃, 427–649 ℃ and 649–899 ℃ respectively (Chang et al., 2012). In 

general, the higher the number of pseudo-components, the better the accuracy of the 

calculations, and the larger the computational effort required. 
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Over the years, industrial practitioners and petroleum engineers have developed 

several correlations that can be employed to divide the whole crude oil into pseudo-

components, and subsequently determine the physical properties (density and 

volume), transport properties (viscosity, thermal conductivity, diffusivity, etc.) and 

thermodynamic properties (enthalpy, heat capacity, K-values, etc.) of each pseudo-

component that can be used in design calculations (Fahim et al., 2009). Most of these 

correlations are embedded in commercial process simulation packages, e.g., Aspen 

HYSYS, Aspen Plus, UNISIM, and Pro II, and have been used to facilitate simulation, 

design, and optimisation of petroleum refining processes, including crude oil 

distillation systems.  

2.1.2 Crude oil distillation products and separation specifications 

As discussed in Chapter 1, crude oil distillation is required to perform the initial 

separation of crude oil into various intermediate products that are either blended into 

final products (e.g., gasoline, diesel, and kerosene) or sold as feedstocks to the chemical 

and petrochemical industries. Table 2.1 presents typical crude oil distillation 

intermediate products and their boiling range (specification).  

Table 2.1 Recommended ASTM boiling ranges (in ℃ ) for products of atmospheric 

tower#  

Product         A        B       C 

Light naphtha   121 — 135* 121 — 135* 121 — 135* 

Heavy naphtha  204* 163* 163* 

Light distillate   191 — 316* 149 — 316* 149 — 288* 

Heavy distillate  302 — 357* 302 — 357* 274 — 357* 

Atmospheric gas oil Determined by allowable oil temperature 

* End point i.e., the boiling temperature to vaporise the entire product 

# Watkins (1979) 

A: Maximum naphtha operation 

B: Maximum light distillate operation 

C: Maximum heavy distillate operation 
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The amount of each distillation product can be estimated from the whole boiling point 

curve.  To achieve this, the boiling point curve needs to be split into several segments 

that correspond to the boiling point range of the products. The temperature on the 

boiling point curve that represents the limit for each product is called the ‘cut point,’ 

and the volume percent corresponding to the cut point represents the amount of the 

product (see Figure 2.2). 

For each cut (product), the temperature (T0%) at which the first component vaporises 

is called the ‘initial boiling point,’ while the vaporisation temperature (T100%) of the 

final component is called the ‘endpoint.’ These concepts are illustrated in Figure 2.2 

 

 

Figure 2.2 Cut point temperature between distillation products and 5-95 Gap (adapted 

from Watkins (1979)) 

Unlike conventional distillation in which almost pure products can be produced, in 

crude oil distillation, there is no sharp separation between adjacent products; thus, 
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components with boiling points lower than the cut point temperature, and components 

with boiling point higher than the cut point temperature are present in the product. 

This overlap has significant implications on the quality and boiling range of products. 

For example, the presence of components with boiling point below the cut point 

temperature, lowers the boiling point of the cut to below the required specification. To 

maintain the overlap within acceptable limits, product quality specifications are 

needed. 

In crude oil distillation, two important terms are commonly used to specify the product 

quality and degree of separation, namely, ASTM boiling temperature and 5-95 gap 

(Watkins, 1979). ASTM boiling temperature is a key specification for most distillate 

products, and it defines the quality of the distillation product. The specification is 

commonly defined at T5% and T95% boiling points of the product, indicating the 

temperature at which 5% and 95% of the product will vaporise in the ASTM test. The 5-

95 gap defines the degree of separation between two adjacent products. Quantitatively, 

it is the difference between T5% ASTM boiling temperature of a heavy product and 

T95% ASTM boiling temperature of an adjacent lighter product (see Figure 2.2). A 

positive difference indicates a gap, which is an indication of a good separation, while a 

negative difference indicates an overlap, which is an indication of a sloppy separation. 

Table 2.2 presents a typical ASTM 5-95 gaps between the indicated products. 

Table 2.2 Separation criteria for atmospheric distillation products (Watkins, 1979) 

Separation 5-95 Gap, ℃ 

Light naphtha — heavy naphtha -6.67 to -1.11 

Heavy naphtha — light distillate -3.89 to 10 

Light distillate — heavy distillate -17.8 to -12.2 

Heavy distillate — atmospheric gas oil -17.8 to -12.2 
 

2.1.3 Crude oil distillation system 

Crude oil distillation is the first process in any petroleum refinery. Figure 2.3 shows a 

diagram of a typical crude oil distillation system. The system comprises a preheat train, 

a fired heater, and a crude oil distillation unit (consisting of a distillation column 
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equipped with side-strippers and pump-around loops). This section presents a detailed 

description of the individual components of the crude oil distillation unit. 

 

  

Figure 2.3 Conventional crude oil distillation system. 

2.1.3.1 Pre-separation: preheat train, desalter and fired heater   

Figure 2.3 shows the configuration of a typical refinery crude oil distillation system. 

Raw crude oil, usually at ambient temperature is pumped from storage tanks and 

preheated in two stages.  Firstly, the crude oil is partially heated in the first part of the 

Preheat Train and fed to a desalter which removes dissolved or suspended salts from 

the crude oil feed (Gary et al., 2007). The inlet temperature of the desalter is 

approximately 160 ℃. The desalted crude oil is further heated in the second part of the 

Preheat Train. The heat used in the Preheat Train is mainly heat recovered from the 

product coolers, pump-around loops, and column condenser. The outlet temperature 

of the Preheat Train depends on the degree of heat recovery. The outlet temperature is 

typically between 270 ℃ and 290 ℃ (Gary et al., 2007). 
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Before the crude oil is fed to the crude oil distillation column, it undergoes further 

heating in a fired heater, also known as furnace.  The outlet temperature of the furnace 

ranges between 350℃ and 370℃. The temperature is set by the maximum allowable 

temperature of the crude oil mixture; and the temperature should be sufficient to 

vaporise the entire distillate products to be recovered in the column, plus an extra 2 to 

5 % vaporisation, called ‘over flash’ (Watkins, 1979); outlet temperatures that would 

cause thermal cracking of the crude oil mixture should be avoided.   

2.1.3.2 The main distillation column  

The heated, partially vaporised crude oil is fed to the flash zone of the atmospheric 

fractionation column a few trays above the bottom stage. Stripping steam is also 

supplied to the column at the bottom stage, which partly suppresses the boiling point 

of the crude oil and also, causes further vaporisation. The crude oil mixture is then 

recovered into various fractions, in this case, light naphtha (LN), heavy naphtha (HN), 

light distillate (LD) and heavy distillate (HD). The residue from the atmospheric 

column contains valuable hydrocarbons that are recovered under reduced pressure in 

a vacuum distillation column (not shown in Figure 2.3). 

Typically, the atmospheric distillation column contains between 30 to 50 trays, 

depending on the type of product produced and the degree of separation required 

(Gary et al., 2007). Apart from the distillation top product, all products other than the 

residue are withdrawn from the column at intermediate trays (side-draws).  

2.1.3.3 The side-strippers 

To maintain satisfactory boiling range of products, side strippers are employed to 

recover light components from side-draws. Heat is supplied to the side-stripper in two 

ways: direct heating using live steam and indirect heating via a reboiler. In both cases, 

the stripped light material vapour is returned to the main column. In most column 

arrangements, side-strippers contain between 3 and 8 trays (Gary et al., 2007). 
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2.1.3.4 The pump-around loops 

In a pump-around loop, hot liquid is drawn from the column, cooled in a heat 

exchanger by exchanging heat with a colder stream, and returned to the column two to 

three trays above the draw point. Pump-arounds are attached to the atmospheric 

distillation column for three main reasons: (i) to enhance separation efficiency by 

providing internal reflux; (ii) to increase the energy efficiency of the separation system 

by creating heat recovery opportunities; (iii) to reduce the diameter at the top of 

column by controlling the vapour and liquid traffic at various sections of the complex 

column. Heat recovered from the pump-around loops, together with other available 

heat sources (column condenser and product coolers) is used to preheat the raw crude 

oil, thus reducing fuel consumption in the furnace and most importantly the operating 

cost. 

To summarise, crude oil, as well as distillation products, are complex mixtures of 

hydrocarbons, containing a small amount of non-hydrocarbon molecules. Both crude 

oil and distillation products are mainly described using boiling point curves. To 

facilitate modelling, design and optimisation of crude oil distillation systems, several 

useful correlations have been developed to aid characterisation of crude oil mixtures 

into pseudo-components. 

Crude oil distillation system separates the complex crude oil mixture into valuable 

products. The system has a highly sophisticated configuration, consisting of side-

strippers, pump-arounds, a fired heater and a column condenser. Accurate, robust and 

computationally efficient models are required for the design and optimisation of the 

system. These models are discussed in Section 2.2; Section 2.3 presents available 

methods for the design of crude oil distillation systems. 

2.2 Crude oil distillation column models 

In general, crude oil distillation column models can be broadly classified into three 

categories, namely, simplified, rigorous and surrogate models. In this thesis, simplified 

models are those models based on modified Fenske–Underwood–Gilliland (shortcut 
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models) design equations; rigorous models refer to models based on first principles 

(material and energy balance, equilibrium equations etc.), and surrogate models are 

data-driven models such as artificial neural network, polynomials etc. These models 

can be used in various applications including grassroots design, retrofit and 

operational optimisation (involve modifications to only operating conditions). The 

model used in each application requires a unique set of degrees of freedom. For 

example, models used for operational optimisation include only the continuous 

variables (i.e., operating conditions) of the crude oil distillation unit, such as feed inlet 

temperature, pump-around duties, and temperature drops, stripping steam flow rates 

and reflux ratio. Conversely, for a grassroots or retrofit design problem, the model 

should include discrete variables (representing column structure) in addition to 

continuous variables, since the model is required to simulate alternative distillation 

column structures and their operating conditions during optimisation. The discrete 

variables can include the locations of the feed tray and of pump-around and side-

stripper draw streams, and the number of trays in each section of the column. This 

section discusses the three categories of models available for simulating crude oil 

distillation units, their limitations, and scope of application.   

2.2.1 Simplified models 

Simplified models constitute another alternative for the modelling of distillation units. 

In the context of crude oil distillation, these models are based on the column 

decomposition strategy of Liebmann and co-workers (Liebmann, 1996; Liebmann et al., 

1998), in which the crude distillation unit is treated as a sequence of thermally coupled 

columns. Modified Fenske–Underwood–Gilliland design equations for simple columns 

are then applied for each column section, while the separation is specified in terms of 

purity or recovery of light key and heavy key components. These models can predict 

the minimum reflux ratios and number of trays in each column section corresponding 

to specified reflux ratios. Nevertheless, the predictions from simplified models are 

rather poor compared with rigorous model. Consequently, simplified models are not 

commonly applied in practice.  
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2.2.2 Rigorous models 

Rigorous distillation models are based on the so-called MESH (Material–Equilibrium–

Summation–Heat) equations which represent relevant phenomena for each stage 

within the column. These models can be reasonably accurate, as they are based on the 

first principles governing the separation process (i.e., stage-by-stage material and 

energy balance), although they assume phase equilibrium is achieved on each stage, no 

chemical reactions occur, and no entrainment of liquid drops in vapour and vapour 

bubbles in liquid (Seader et al., 2010). With these models, it is possible to estimate the 

temperature and pressure profiles within the column, in addition to stream flow rates 

and compositions. Figure 2.4 illustrate a simple equilibrium stage. 

 

Figure 2.4 General equilibrium stage (adapted from Seader et al. (2010)) 

Stage 𝑗 

𝑦𝑖,𝑗+1 

ℎ𝑉𝑗+1 

𝑇𝑗+1 

𝑃𝑗+1 

𝑉𝑗+1 

𝑦𝑖,𝑗 

ℎ𝑉𝑗  

𝑇𝑗 

𝑃𝑗 

𝑥𝑖,𝑗−1 

ℎ𝐿𝑗−1 

𝑇𝑗−1 

𝑃𝑗−1 

𝑥𝑖,𝑗 

ℎ𝐿𝑗  

𝑇𝑗 

𝑃𝑗 

𝑧𝑖,𝑗 

ℎ𝐹𝑗  

𝑇𝐹𝑗  

𝑃𝐹𝑗  

𝐹𝑗 
𝑄𝑗  

𝐿𝑗−1 

𝐿𝑗 

𝑈𝑗 

𝑊𝑗 

𝑉𝑗 

Feed 

Vapour 

Side stream 

Heat transfer 

Liquid 

Side stream 

Liquid from 

stage above 

Vapour from 

stage above 



47 
 

For the simple equilibrium stage in Figure 2.4, the MESH equations representing 

Material balance, Equilibrium equations, Summation equations and Heat balance can 

be written as follows (Seader et al., 2010): 

Material balance for each component 

𝐿𝑗−1𝑥𝑖,𝑗−1 + 𝑉𝑗+1𝑦𝑖,𝑗+1 + 𝐹𝑗𝑧𝑖,𝑗 − (𝐿𝑗 + 𝑈𝑗)𝑥𝑖,𝑗 − (𝑉𝑗 + 𝑊𝑗)𝑦𝑖,𝑗

= 0 

                      (2.1) 

 

Phase-Equilibrium relation for each component  

 

𝑦𝑖,𝑗 − 𝐾𝑖,𝑗𝑥𝑖,𝑗 = 0                        (2.2) 

 

Mole-fraction Summations (one per stage) 

 

∑ 𝑦𝑖,𝑗 − 1.0 = 0

𝐶

𝑖=1

 
                       (2.3) 

 

∑ 𝑥𝑖,𝑗 − 1.0 = 0

𝐶

𝑖=1

 
                       (2.4) 

 

H equation, denoting energy balance (one per stage) 

𝐿𝑗−1ℎ𝐿𝑗−1 + 𝑉𝑗+1ℎ𝑉𝑗+1 + 𝐹𝑗ℎ𝐹𝑗 − (𝐿𝑗 + 𝑈𝑗)ℎ𝐿𝑗 − (𝑉𝑗 + 𝑊𝑗)ℎ𝑉𝑗 − 𝑄𝑗 = 0        (2.5) 

where indices 𝑖 and 𝑗 denote component and stage number respectively. 𝐹 is the feed 

molar flow rate; 𝑉 and 𝐿 are vapour and liquid molar flow rates; 𝑈 and 𝑊 are liquid 

and vapour side streams; 𝑄 represent heat transfer to or from stage 𝑗; 𝑧 denotes the 

component molar fraction in the feed stream; 𝑥  and 𝑦  are the liquid and vapour 
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component mole fractions; ℎ  and 𝐾  denotes enthalpy and equilibrium constant 

respectively.  

The outlined MESH equations are typically defined for each equilibrium stage. In a 

distillation column comprising C components and N number of stages, the number of 

MESH equations to be solved is equal to N(2C + 3) (Seader et al., 2010). Due to the 

strong interactions and highly non-linearity of these equations, specially-tailored 

algorithms are required to generate feasible solutions. The solution algorithms include 

bubble point (BP) method for systems with narrow boiling point components, sum-rate 

(SR) method for systems with wide boiling point components and Newton-Raphson 

for systems with intermediate boiling case (Seader et al., 2010). Due to the iterative 

nature of the solution methods, the column simulation is computationally demanding. 

The MESH equations and their corresponding solution methods are implemented in 

several commercial process simulators (such as Aspen HYSYS, Aspen Plus, UNISIM 

and PRO/II), and have been used by several researchers and industrial practitioners to 

design (Liebmann, 1996; Liebmann et al., 1998; Bagajewicz and Ji, 2001), analysis 

(Errico et al., 2009; Benali et al., 2012; Waheed et al., 2014) and optimise (Basak et al., 

2002; Al-Mayyahi et al., 2011; Gu et al., 2015) the crude oil distillation columns.  

Liebmann (1996) presents a stepwise procedure for the design of crude oil distillation 

column that combines rigorous column simulation and pinch analysis. In each step, a 

grand composite curve is constructed using stream data generated from a rigorous 

simulation. The grand composite curve is used to facilitate the search for column 

structure and operating conditions that lead to significant savings in energy 

consumption.  

Bagajewicz and Ji (2001) extends the work of Liebmann (1996) and also introduces the 

concept of heat demand-supply diagram. Firstly, a rigorous simulation of a column 

with no pump-arounds is setup. Then, a heat demand-supply diagram is applied to 

identify suitable location of the pump-arounds while taking into account the effect of 

stripping steam on the maximum heat recovery of a crude oil distillation system.   
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Rigorous model have been implemented in frameworks to facilitate optimisation of an 

existing crude oil distillation unit. For example, Bagajewicz (1998) combined pinch 

analysis and a rigorous column model into a framework to aid the search for column 

operating conditions that minimise utility requirements. The rigorous column model 

predicts the product quality and flow rate, column temperature profile and stream 

enthalpy change. Operating variables optimised include pump-around duties and 

return temperatures, over–flash ratio and stripping steam flow rates.  

Basak et al. (2002) develop an approach for online optimisation of crude oil distillation 

units using a rigorous model. The model parameters, such as stage efficiencies are 

tuned to minimise the discrepancy between the measured plant data and model 

prediction. A gradient-based optimisation method is applied to search for the best 

combination of operating variables (steam and pump-around flow rates, reflux ratio 

and feed temperature) that maximise profit.   

Inamdar et al. (2004) and Al-Mayyahi et al. (2011) develop frameworks for 

optimisation of crude oil distillation unit, taking into account multiple objectives. Both 

works applied the elitist non-dominated sorting genetic algorithm (NSGA-II). Inamdar 

et al. (2004) focused on maximising profit and minimising the cost of energy by 

varying product flow rates, pump-around flow rate, reflux ratio, and feed temperature, 

while Al-Mayyahi et al. (2011) focused on maximising profit and minimising CO2 

emissions. The optimisation variables considered in the work of Al-Mayyahi et al. 

(2011) include steam flow rate, feed temperature and flow rate, pump-around duty and 

reflux ratio. 

Ali et al. (2013) applied rigorous models to optimise the net profit of an existing crude 

oil distillation unit. First, the crude oil distillation unit is modelled in Aspen HYSYS 

software. Then, the NLP solver embedded in the commercial software is used to select 

the operating variables (pump-around flow rates, feed temperature, bottom steam flow 

rate and product flow rates) that lead to maximum profit.   
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Rigorous models consist of complex nonlinear equations derived based on first 

principles. These models are reasonably accurate, although their solution methods are 

computationally demanding. Several works have applied rigorous models, for 

example, to design (Liebmann, 1996; Bagajewicz and Ji, 2001) and to optimise (Basak et 

al., 2002; Inamdar et al., 2004; Ali et al., 2013) the crude oil distillation unit. Only the 

work of Liebmann (1996) and Bagajewicz and Ji (2001) have accounted for heat 

recovery. None of the methodologies presented have incorporated column structural 

degrees of freedom (e.g., number of trays in column sections, feed tray location, pump-

around, and side-stripper locations) as a design variable. Thus, these methodologies 

cannot be directly applied to perform optimisation-based design of the crude oil 

distillation unit. 

2.2.3 Surrogate models 

Surrogate models, also known as data-driven models, statistical models or meta-

models are compact, scalable mathematical models that describe the relationship 

between specific inputs (e.g., feed temperature) and outputs (e.g., product quality) of 

complex systems. Surrogate models are less computationally demanding than rigorous 

simulation models. Thus they are suitable for implementation in an optimisation 

framework, and for sensitivity analysis. Various forms of surrogate models (e.g., linear, 

polynomial, artificial neural network, etc.) may require different sample size during 

training (fitting/ regression) in order to achieve a desired accuracy (Nuchitprasittichai 

and Cremaschi, 2012; Quirante et al., 2015). In general, a large sample can improve the 

accuracy of the model. However, the sampling and model fitting time may be 

increased significantly (Nuchitprasittichai and Cremaschi, 2012).   

Surrogate modelling of chemical processes comprises three main steps, namely, 

sampling (also known as data generation), model selection, and model fitting (Biegler 

et al., 2014).  

Prior to sampling, it is necessary to select the desired inputs and outputs of the system 

of interest. The inputs and outputs to be used depend on the scope of the model; for 
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example, a model used for design purposes should take into account structural and 

operational variables of the system. Typically, the input and output variables are 

selected based on experience and knowledge of the system. In most cases, it is 

desirable to select variables that have a significant impact on the system performance. 

Such variables can be identified via a sensitivity analysis. 

Once the variables are selected, a data set can be generated. The data set is typically 

created in two ways: real plant measurements and/or experimental data, and multiple 

rigorous simulations. In multiple rigorous simulations, statistical technique is applied 

to generate data points from models (Henao and Maravelias, 2010; Gueddar and Dua, 

2011; Nuchitprasittichai and Cremaschi, 2013; Biegler et al., 2014; Boukouvala et al., 

2015; Quirante and Caballero, 2016), while plant measurements are often used to build 

surrogate models of an existing process. These models are mostly used to facilitate 

operational optimisation (Ochoa-Estopier and Jobson, 2015a; Osuolale and Zhang, 

2017), process troubleshooting (Mouli et al., 2016; Yang and Hou, 2016), and process 

control (Osuolale and Zhang, 2015; Xie et al., 2015)  

In the next step, the form of the model to represent the data is selected. Different forms 

of model can be used for data fitting, for example, polynomial (Heiberger and 

Neuwirth, 2009), artificial neural networks (Beale et al., 2015), support vector 

regressions (Vapnik, 1995), etc. The form of model to be used for regression is crucial 

and should be carefully selected. For example, linear models are suitable for input–

output data set with strong linear relationship. Lastly, an optimisation algorithm 

(Floudas, 1995; Biegler et al., 1997; Edgar et al., 2001) is applied to fit the model to the 

data set by minimising the error between the model predictions and the original data. 

After the model is built, several statistical tests need to be performed on the model to 

test its validity. Among the surrogate modelling techniques, artificial neural network 

leads to accurate and robust models that are easier to implement in an optimisation 

framework (Henao and Maravelias, 2010; Nuchitprasittichai and Cremaschi, 2012); 

thus this work makes use of artificial neural network to model the complex crude oil 

distillation unit. 
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2.2.3.1 Artificial neural networks 

Artificial neural networks are computational modelling tools applied to approximate 

complex non-linear systems and to classify data set. Artificial neural network have 

been successfully applied in various field of research, including system identification 

(Prasad and Bequette, 2003; Aguado et al., 2009), models reduction (Gueddar and Dua, 

2011; Xie et al., 2015), fault detection (Kankar et al., 2011; Ben Ali et al., 2015; Yang and 

Hou, 2016), process troubleshooting (Mouli et al., 2016; Yang and Hou, 2016), 

operational optimisation (Liau et al., 2004; Ochoa-Estopier et al., 2012), system design 

(Henao and Maravelias, 2010; Fahmi and Cremaschi, 2012), and property prediction 

(Hussain, 1999; Gharagheizi et al., 2011; Afrand et al., 2016). The wide application of 

artificial neural network is attributed to their ability to capture complex non-linear 

relationships between input-output data, especially when the relation among the 

system variables is unknown (Dua, 2010).  

Artificial neural network architecture can be broadly classify into feedforward, 

recurrent or feedback, and mesh (Silva et al., 2017). Feedforward network is the most 

widely acceptable architecture due to its mathematical simplicity and ease of 

implementation within an optimisation algorithms (Nuchitprasittichai and Cremaschi, 

2012). In a feedforward network, information is processed in the forward direction 

only. Figure 2.5b shows a typical multi-layer feedforward network with three layers: 

input, hidden and output layers, connected via neurons. 

 

(a) 
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(b) 

Figure 2.5 Artificial neural network (a) network neuron; (b) multi-layer feedforward 

neural network (Adapted from (Beale et al., 2015)). 

In general, neurons are the fundamental building block of any artificial neural 

network. A neuron, as shown in Figure 2.5a, consists of two main components: the 

summation point, ∑  , and the transfer function, f, (Basheer and Hajmeer, 2000; 

Himmelblau, 2008; Beale et al., 2015). The summation point adds the product of all 

inputs, p, and their corresponding weights, W, and bias, b, to produce a net scalar 

input, n, while the transfer function, f, takes the net input and produce a scalar output, 

a.  

Various forms of transfer function used in building artificial neural network are 

available, such as linear, log-sigmoid, tan-sigmoid etc. Figure 2.6 shows the schematic 

of the most commonly used transfer function. 
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(a)                                                    (b)                                                     (c) 

Figure 2.6 Transfer functions applied in artificial neural network architecture (a) linear, 

(b) log-sigmoid, and (c) tan-sigmoid (Adapted from (Beale et al., 2015)). 

Linear transfer function takes a weighted input and transform, linearly, to an output 

between − ∞ and + ∞; log-sigmoid and tan-sigmoid transform weighted input to a 

range of 0 to 1, and –  1  to + 1 , respectively. Log-sigmoid and tan-sigmoid are 

commonly used in the hidden layer, while linear transfer function is applied in output 

layer. In this work, log-sigmoid and linear functions are used in the hidden and output 

layers respectively. 

Before applying the neural network, the weights and biases of the network (see Figure 

2.5b) needs to be tuned such that the artificial neural network mimicked the behaviour 

of the input-out data. The process is called ‘training’ and it is carried out using 

optimisation method such as Levenberg-Marquardt, Bayesian regularization, BFGS 

Quasi-Newton, scaled conjugate gradient etc. (Beale et al., 2015). The fastest training 

algorithm is Levenberg-Marquardt, and it is the one used in this work. The objective of 

‘training’ is to minimise a cost function, in this case the mean square error (see Eq. 2.6) 

between the network predictions and the input-output data by adjusting the weights 

and biases. To facilitate training and also enhance the performance of the built 

network, the input-output data set should be scaled between −1 and + 1 (Beale et al., 

2015). 
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𝑁

𝑖=1

 
                                                        (2.6) 

where mse is the mean square error, t and a denote the target and predicted output 

respectively, N is the total number of sample. Section 2.2.3.2 presents the application of 

surrogate models in crude oil distillation, including the use of artificial neural 

networks. 

2.2.3.2 Modelling of crude oil distillation unit based on surrogate models 

Surrogate models have been used by several authors to simulate the crude oil 

distillation system. Liau et al. (2004) and Motlaghi et al. (2008) develop an artificial 

neural network (ANN) model of a crude oil distillation column using data from 

existing plants. In the work of Liau et al. (2004), the distillation model inputs include 

crude oil properties, feed temperature, product flow rates while the outputs include 

product quality. The model is optimised using successive quadratic programming to 

determine the operating conditions that improve product yield. Although the built 

model is accurate, several operating variables such as stripping steam and pump-

around duties and temperature drops are not considered. Similarly, the artificial neural 

network model develop by Motlaghi et al. (2008) include crude oil properties and 

operating variables as inputs, while the outputs are product quality and their flow 

rates. A genetic algorithm is used to optimise the flow rate of products according to 

their market values.   

Yao and Chu (2012) developed a surrogate model of the crude oil distillation using the 

concept of support vector regressions. The model is regressed using data generated via 

multiple rigorous simulations (in Aspen Plus).  The surrogate model is implemented in 

a framework to optimise profit by varying operating variables. The variables optimised 

include feed temperature, reflux ratio, product flow rates, pump-around temperature 

drops and flow rates, and steam flow rates.   
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López C. et al. (2013) formulate a framework to optimise the operational variables of 

crude oil distillation system that processes crude oil blends. The distillation system 

comprises of three atmospheric columns and two vacuum columns and preheats trains. 

Meta-models based on second order polynomial functions are used to model the crude 

oil distillation units. The models are regressed using samples obtained from multiple 

rigorous simulations. The built models together with an energy balance representing 

the heat exchanger network are implemented in a framework to maximise net profit.  

Ochoa-Estopier and Jobson (2015a) formulate an approach for operational optimisation 

of crude oil distillation systems using surrogate models. Several artificial neural 

networks are regressed against data generated via multiple rigorous simulations (in 

Aspen HYSYS). The heat exchanger network model of Rodriguez (2005) is adopted to 

represent the crude oil preheat train. The dependence of thermal properties on 

temperature in process streams is modelled using a combination of linear (for sensible 

heat) and third order polynomial (for phase change) correlations. A stochastic 

optimisation method based on simulated annealing is applied to optimise net profit. 

The variables considered for optimisation include operating conditions such as pump-

around temperature drops and duties, feed inlet temperature, steam flow rate and 

product flow rates.  

Recently, Osuolale and Zhang (2017) modelled a crude oil distillation system, 

comprising a prefractionator, atmospheric column, and vacuum column, using 

bootstrap aggregate artificial neural networks. In this strategy, several artificial neural 

networks are constructed for each distillation unit. The predictions (i.e., outputs) from 

all the artificial neural networks are aggregated and used as the network output. In this 

way, the accuracy and reliability of the artificial neural networks could be improved.  

The models are combined with an optimisation algorithm (successive quadratic 

programming) to optimise profit objective. Decision variables include flow rates of 

products and steam, pump-around temperature drop and duties, while constraints are 

imposed on product quality (in terms of T5% and T95% boiling temperatures).  
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Various regression techniques have been applied to construct surrogate models for 

crude oil distillation units. A few modelling approaches (Liau et al., 2004; Motlaghi et 

al., 2008) have applied real plant data to regress the parameters of the surrogate model. 

Therefore, the valid range of application for these models is restricted to previously 

known scenarios. Again, since sampling of real plant data is usually associated with 

measurement error, the accuracy of the built model could be compromised. Other 

approaches (Yao and Chu, 2012; López C. et al., 2013; Ochoa-Estopier and Jobson, 

2015a; Osuolale and Zhang, 2017) applied data generated via multiple rigorous 

simulations to regress the parameters of the surrogate model. Thus the model can 

explore scenarios other than those encountered during previous operation. In this way, 

the chances of obtaining a better solution could be enhanced. Among the optimisation 

approaches, only the work of López C. et al. (2013) and Ochoa-Estopier and Jobson 

(2015a, 2015b) have adequately accounted for heat integration within the system, thus 

increasing the likelihood that the solution obtained can be valid in practice, and also 

the energy efficiency of the system is improved. Furthermore, Osuolale and Zhang 

(2017) have also improved the energy efficiency of the system by minimising exergy 

losses. None of the surrogate modelling approaches presented here have incorporated 

structural degrees of freedom (e.g., number of trays in column sections, feed tray 

location, pump-around, and side-stripper locations) as a design variable, hence the 

methodologies cannot be applied to perform optimisation-based design of the crude oil 

distillation unit. 

2.3 Design of heat-integrated crude oil distillation systems 

2.3.1 Design for single crude oil feedstock 

Various methods are available for the design of conventional crude oil distillation 

systems. Some of these methods are carried out based on heuristic rules, experience, 

empirical correlations and simple calculations. For example, Nelson (1958) describes a 

design method for crude oil distillation columns. In this approach, the number of trays 

in each section of the column and stripping steam required are estimated based on 

empirical correlations that are constructed from previously established designs. Later, 
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Watkins (1979) describes a procedure for the design of atmospheric and vacuum 

distillation columns. The design procedure is guided by heuristic rules. In the 

approach of Watkins (1979), the required number of trays in each section of a column is 

selected from a predetermined range, and stripping steam required is estimated based 

on product flow rates.  

The methods presented by Nelson (1958) and Watkins (1979) formed the basis for 

subsequent design methodologies of crude oil distillation columns. However, the 

design methodologies of Nelson (1958) and Watkins (1979) require trial and error in 

their calculations. Furthermore, the heat exchanger network is designed after the 

design of the crude oil distillation column is completed. Thus, the interactions between 

the distillation columns and the associated heat recovery systems are not taken into 

account.  

To design an energy-efficient distillation column, the interactions between the column 

and the heat recovery network need to be taken into account. Several researchers have 

focused on developing an integrated design of the crude oil distillation column and the 

associated heat recovery network. For example, Liebmann (1996) develops a 

methodology for the design of crude oil distillation columns using rigorous column 

models and pinch analysis. In this design method, an indirect sequence of simple 

columns with no thermal coupling is first initialised by decomposing the conventional 

atmospheric distillation column. The advantage of the decomposed columns is that it 

allows the evaluation of feed tray location and number of trays in each section of the 

column to be carried out based on product specification and feed composition. The 

decomposed column is simulated in Aspen Plus, and a grand composite curve is 

constructed using the process stream data of the crude atmospheric distillation 

column. The grand composite curve is used to suggest column modifications that 

enhance separation and improve the potential for energy savings. The main strength of 

the method of Liebmann (1996) is that the interactions between the atmospheric 

distillation column and heat recovery network are taken into account. However, the 

heat exchanger network design is not considered by Liebmann (1996), and the 

distillation column is not optimised.   
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In a related work, Sharma et al. (1999) develop a design approach for crude oil 

distillation unit that uses the concept of a column grand composite curve (Dhole and 

Buckingham, 1994). First, the column grand composite curve is constructed using 

temperature–enthalpy data obtained from simple energy balance across several 

sections of the complex column. The column grand composite curve is then used to 

identify the maximum amount of energy that can be recovered without affecting the 

separation. This approach neglects the effect of stripping steam on separation and heat 

recovery network design has not been taken into account. Furthermore, the number of 

trays in each column section is fixed, and the distillation column is not optimised.  

To optimise the system, simplified models have been implemented in an optimisation 

framework together with heat recovery models in order to design the crude oil 

distillation unit (see Chapter 1). The work of Suphanit (1999) accounts for heat 

recovery using pinch analysis, while Rastogi (2006) and Chen (2008) applied heat 

exchanger network. The simplified model allows optimisation of structural and 

operational degrees of freedom. Even though simplified models are relatively easy to 

handle numerically, their inability to produce an accurate estimate of the distillation 

column performance makes them less useful in real application as compared with 

other models (e.g., rigorous models and shortcut models). 

Overall, the discussion presented above focused on the design of crude oil distillation 

systems that process one type of crude oil feedstock. In general, these design 

methodologies may lead to a crude oil distillation column that performs well for a 

particular crude oil feedstocks or operating scenario, and perform poorly for other 

crude oil feedstock and/or operating scenarios, particularly in future scenarios where 

the column is to be used to process crude oil types other than the one considered 

during the column design.  

2.3.2 Design for multiple crude oil feedstocks 

To accommodate changes of crude oil feedstock doing operation, the crude oil 

distillation system should be designed to work well over a range of crude oil 
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feedstocks. Along this line, Bagajewicz and Ji (2001) extended the design approach of 

Liebmann (1996) to propose a new method for the design of crude oil distillation units 

that process light, medium and heavy crude oil feedstocks. The heat demand-supply 

diagram is used instead of the grand composite curve. The design procedure begins 

with an initial column design with no pump-around loops constructed based on the 

design approach of Watkins (1979). The column is then simulated with the lightest 

crude oil to be processed and the process stream data of the column are used to 

construct the heat demand-supply diagram. Based on the heat demand-supply 

diagram constructed for the column, heat load is transferred from the column 

condenser to the top pump-around. A similar step is carried out to distribute 

condenser heat load to subsequent pump-arounds located between product draws. In 

each step, the product specifications are maintained by adjusting the flow rate of 

stripping steam in side-strippers. The stripping steam flowrate is increased if the 

boiling temperature gap between adjacent fractions becomes smaller than the 

appropriate value. The transfer of heat load continues as long as the cost of energy 

saved can offset the cost of steam added. The operating conditions of the medium and 

heavy crudes are also determined based on the outlined procedure. Although the 

methodology determines the operating conditions of the different types of crude oils 

(light, medium and heavy) to be processed, the trade-off between capital and energy 

cost is not taken into account; pump-around location is selected based on heuristic 

rules; number of trays in column sections are fixed and the distillation column is not 

optimised.  

To optimise the distillation column, More et al. (2010) set up a framework to study the 

effect of binary feed selection on grassroots design of crude oil distillation system. 

First, the crude distillation systems, i.e., pre-flash unit, atmospheric column and 

vacuum column, are modelled in a process simulator (Aspen Plus). Then, light, 

medium and heavy crudes and their binary mixtures (ratio of 10:90) are used to set up 

different operating scenarios. The optimisation tool embedded in the commercial 

simulator is used to optimise the distillation column operating variables (feed flow rate 

stripping steam, and product flow rate) for each operating scenario. One major 
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drawback of this analysis is that heat integration is not considered. Also, the approach 

neglects essential design variables such as number of trays in each column section, and 

other operating variables such as pump-around temperature drops and duties, and 

feed inlet temperature.  

A critical observation of the research literature presented in this section indicates that a 

systematic methodology for the design of flexible heat-integrated crude oil distillation 

system is lacking. A systematic design approach should simultaneously consider the 

selection of the distillation column structural and operating variables, heat integration 

and various crude oils to be processed in a unified framework; this can be carried out 

using sophisticated optimisation techniques for process design for flexibility. 

2.4 Optimisation methods 

Optimisation is a quantitative mathematical tool that facilitates best selection from a set 

of many alternatives. To identify the best alternative, a quantitative measure of 

goodness called the objective function is required (Biegler et al., 1997). In process 

synthesis and design, common objectives include maximising net profit, product yield, 

and net present value, or minimising total annualised cost, energy cost, utility 

consumption and CO2 emissions. 

The value of the objective function is calculated from the problem variables. The 

variables are classified into dependent and independent variables. Independent 

variables, also known as decision variables, manipulated variables or degrees of 

freedom, refer to those system variables that can be adjusted to improve the objective 

function value. In a chemical process, the independent variables can include 

temperatures, pressure, feed flow rate, etc. Dependent variables, also known as process 

outputs are variables that determine the system performance. Examples of dependent 

variables include column diameter, reactor volume, product flow rates, etc. To ensure 

the solution from an optimisation is valid, constraints are generally imposed to define 

the design space. Process constraints comprise inequality constraints (e.g., product 
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purity, column hydraulic limit) and equality constraints that define the physical system 

(e.g., material and energy balance, phase equilibrium) 

The objective function, problem variables, and process constraints together form the 

optimisation problem. Optimisation problem encountered in process synthesis and 

design can be classified as linear programming (LP), mixed integer linear 

programming (MILP), nonlinear programming (NLP) and mixed integer nonlinear 

programming (MINLP) (Floudas, 1995; Biegler et al., 1997; Edgar et al., 2000). The 

primary methods for solving these problems can be group into deterministic and 

stochastic search methods. 

2.5.1 Deterministic optimisation methods 

Deterministic methods, also known as rigorous optimisation, are gradient-based 

approaches that rely on derivatives of the functions (objective function and constraints) 

to guide the search for the best solution. Several optimisation techniques (such as 

successive linear programming, successive quadratic programming, generalized 

reduced gradient, etc.) that apply deterministic method are implemented in 

commercial software such as GAMS, MatLab, and Excel , and can be employed to 

optimise different type systems.  

One advantage of these methods lies in their ability to guarantee local optimality 

(Floudas, 1995; Edgar et al., 2001). These methods are versatile and may require few 

function evaluations to converge to the optimal solution. Deterministic methods that 

guarantee global optimality are available, e.g. BARON (Tawarmalani and Sahinidis, 

2005) and ANTIGONE (Misener and Floudas, 2014), although they may require large 

storage capacity and considerable computational time. 

Deterministic optimisation method have been applied extensively in many fields of 

research, including process system engineering. For example in biorefining (Corbetta et 

al., 2016; Pérez Rivero et al., 2016), thermally coupled distillation columns (Caballero 

and Grossmann, 2001; Caballero, 2015), heat exchanger networks (Papalexandri and 
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Pistikopoulos, 1994; Li et al., 2015; Isafiade and Short, 2016). A comprehensive review 

of various application of deterministic optimisation techniques in process system 

engineering can be found in the work by Grossmann et al. (2000). In the context of 

crude oil distillation, Bagajewicz (1998) formulated a nonlinear programming problem 

to improve the energy efficiency of crude oil distillation unit. Successive quadratic 

programming is applied to search for an optimal set of operating conditions that 

improves the objective function value. Basak et al. (2002) and More et al. (2010) applied 

successive quadratic programming to select the best combination of operating 

variables (such as steam and pump-around flow rates, reflux ratio and feed 

temperature), to improve net profit of the system. López C. et al. (2013) and Osuolale 

and Zhang (2017) set up frameworks to optimise the crude oil distillation system using 

surrogate models. López C. et al. (2013) applied a generalised reduced gradient to 

search for operating conditions that lead to maximum profit, while successive 

quadratic programming is applied in the work of Osuolale and Zhang (2017).  

Deterministic methods are suitable for problems that are continuously differentiable 

(Floudas, 1995; Edgar et al., 2001). However, many real-life optimisation problems are 

highly nonlinear, non-convex and non-differentiable. Thus there is a need for 

alternative method, for example methods based on stochastic optimisation. 

2.5.2 Stochastic optimisation methods 

Unlike deterministic methods, stochastic optimisation methods do not rely on 

derivative information of the objective function and constraints while searching for the 

best solution; thus stochastic optimisation is more suitable for problems in which the 

calculation of the function derivatives are complex and for large-scale problems 

defined using black box models. Stochastic optimisation methods apply random choice 

to guide the search process.   

Stochastic search methods can be used to solve various forms of optimisation 

problems, including LP, MILP, NLP, and MINLP. The use of random choice rather 

than numerical calculation to search for optimal solution help stochastic search 
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methods to be less susceptible to converge to locally optimal solutions. Stochastic 

approaches require many function evaluations before finding the best solution. Thus 

stochastic search methods are computationally demanding. Examples of stochastic 

methods include genetic or evolutionary algorithms (Mitchell, 1998), simulated 

annealing (Du and Swamy, 2016), pattern search (Wen et al., 2013), particle swarm 

(Marini and Walczak, 2015), and scatter search (Martí et al., 2006).  

Despite the fact that stochastic methods are computationally demanding, many 

research work have applied these methods, for example in kinetic modelling (Pérez 

Rivero et al., 2016), regression analysis (Rogina et al., 2011), robust control of 

distillation column (Ghoreishi et al., 2011), synthesis of heat exchanger networks 

(Ravagnani et al., 2005; Ghanizadeh et al., 2013; Ochoa-Estopier et al., 2015), design of 

intensified distillation column (Vazquez-Castillo et al., 2009), process synthesis and 

design (Yuan et al., 2009; Odjo et al., 2011; Javaloyes-Antón et al., 2013; Skiborowski et 

al., 2015), scheduling of multiproduct batch chemical plant (Arbiza et al., 2008), process 

troubleshooting (Mouli et al., 2016), and supply chain management (Copado-Méndez 

et al., 2013). 

In crude oil distillation, Motlaghi et al. (2008) develop a methodology to optimise 

product yields according to their market values, that is a genetic algorithm selects the 

optimal decision variables such as operating conditions that improve market-driven 

products. Similarly, Yao and Chu (2012) apply particle swarm optimisation to facilitate 

the search for operating conditions (feed temperature, reflux ratio, product flow rates, 

pump-around temperature drop and flow rates, and steam flow rates) that maximise 

net profit. Ochoa-Estopier and Jobson (2015a) develop an operational optimisation 

framework to improve the profitability of a crude oil distillation system. Decision 

variables include pump-around temperature drop and duties, steam flow rates and 

feed temperature. Simulated annealing is applied to optimise the system. 

Deterministic and stochastic search methods have been applied by several researchers 

to optimise the crude oil distillation system using different types of objective function 

and constraints. The methodologies have reported an appreciable improvement in the 
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objective function of the optimal solution relative to the base case. However, 

simultaneous optimisation of structural and operational variables of the crude oil 

distillation unit have not been considered.  

To take advantage of the benefits of the deterministic and stochastic search methods, 

the two optimisation methods can be integrated to form a hybrid approach (see 

Chapter 5) and can be used to facilitate the design and optimisation of the crude oil 

distillation systems. 

2.5 Process design for flexibility 

The traditional design approach for chemical processes considers one set of operating 

conditions (nominal conditions) at the design stage, thus ignoring deviations from the 

nominal conditions. This approach may result to a design that has good performance 

in one operating scenario but exhibits poor performance in other operating scenarios 

(Grossmann and Guillén-Gosálbez, 2010). Instead, ‘’flexible design’’ of a chemical 

process considers deviations from the nominal conditions with the aim of identifying a 

flexible process. A flexible process is capable of establishing feasible steady-state 

operation for a wide range of variation in operating conditions that may be 

experienced during operation (Biegler et al. 1997). In process design, flexibility is 

defined as the inherent characteristic of a design to tolerate variations in process 

conditions (Biegler et al. 1997). 

The design of a flexible chemical process that can handle variability in process 

conditions is a broad area of research within chemical engineering (Pistikopoulos and 

Ierapetritou, 1995; Sahinidis, 2004; Wang and Rong, 2010; Kostin et al., 2012; Rogers 

and Ierapetritou, 2015; Amaran et al., 2016; Wang et al., 2016). The main optimisation 

methods to address this category of problem are stochastic programming and so-called 

robust optimisation (Grossmann and Guillén-Gosálbez, 2010).  

In stochastic programming, the process variability is described using random points 

generated from a probability distribution. Here it is assumed that the distribution of 
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the process variability is known or estimated (Gorissen et al., 2015). This type of 

problem is typically solved in two stages, i.e., the design and operating stage 

(Grossmann and Guillén-Gosálbez, 2010; Pistikopoulos and Ierapetritou, 1995). In the 

first (design) stage, the optimal vector of design variables that represents process 

structure and equipment size are selected and remains fixed during the operating 

stage. At the second (operating) stage, the adjustable operating variables are 

manipulated to determine the optimal vector of operating variables that satisfies the 

process constraints. The objective here is to minimise or maximise an expected value.  

Unlike in stochastic programming in which the distribution of the process variability is 

assumed to be known, in the robust optimisation the process variability is assume to 

reside within a given set of scenarios, also known as “uncertain set”  (Bertsimas et al., 

2010; Gorissen et al., 2015). Robust optimisation aims to find decision variables (e.g. 

number of trays in a distillation column) that are optimal for the “worst–case” 

(Bertsimas et al., 2010; Gorissen et al., 2015). A unique feature of robust optimisation is 

that the optimal solution must satisfy all the problem constraints; no constraint 

violation is tolerated. The constraints are associated with each operating scenario. 

Robust optimisation is particularly important if the decision maker is very risk-averse 

(Gorissen et al., 2015).  

In stochastic programming and robust optimisation, a discrete set of operating 

scenarios is pre-specified, then a process is designed to accommodate the entire 

scenarios. The flexibility level of the design is not optimised. To determine the 

optimum degree of flexibility of a design, a trade-off between an economic objective 

(e.g., total annualised cost and net profit) and design flexibility is required 

(Pistikopoulos and Ierapetritou, 1995; Biegler et al., 1997). The higher the degree of 

flexibility, the wider the range of operation and the less the chance of encountering 

infeasible operation (e.g., failure to meet product specifications). Therefore, the total 

annualised cost of the design increases with flexibility. 

The design methodology for a process with an optimal degree of flexibility is 

formulated as a multi-objective optimisation problem, i.e., to maximise degree of 



67 
 

flexibility and minimise total annualised cost (Biegler et al., 1997; Pistikopoulos and 

Ierapetritou, 1995). The multi-objective problem explores the trade-offs between 

flexibility and total annualised cost within the feasible region of operation.  

In general, multi-objective optimisation applies mathematical programming techniques 

to find optimal solution to a problem involving multiple assessment criteria that are 

often conflicting. A key characteristic of multi-objective optimisation methods is that 

no unique solutions exist; instead, a set of mathematically equally good solutions can 

be identified within the feasible design space (Miettinen, 2008). The set of solution is 

known as Pareto optimal solution (non-dominated or non-inferior solutions) 

(Miettinen, 2008). For a problem involving two conflicting performance criteria, the 

multi-objective optimisation problem can be represented as follows: 

               P1                            min   𝑓1(𝑥, 𝑦)                      

                                                max 𝑓2(𝑥, 𝑦)                          

                  (2.7) 

  

                                               𝑠. 𝑡.     ℎ(𝑥, 𝑦) = 0                

                                                         𝑔(𝑥, 𝑦) ≤ 0     

                                                  𝑥 ∈ ℝ, 𝑦 ∈ {0,1} 

                  (2.8) 

where f1 and f2 are the scalar objectives to be minimised and maximised respectively; h 

and g denote the equality and inequality constraints that the solution should satisfy, 

respectively; x and y are continuous and binary variables respectively; In this case, f1 

and f2 are total annualised cost and flexibility level respectively. 

To solve Problem P1, a quantitative measure of flexibility is required. Swaney and 

Grossmann (1985) developed a flexibility index that can be used to quantify the 

maximum deviation a design can accept without violating process constraints, e.g., 

product specification and distillation column hydraulic limits. 

Problem P1 has been used by several authors to design flexible chemical processes 

other than the crude oil distillation system. For example, Problem P1 has been applied 

to design a process consisting of a reactor, a flash drum, a purge and two pumps, with 
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variability in component fraction and kinetic parameters (Pistikopoulos and 

Grossmann, 1988); a simple distillation column with variability in feed flow rate, 

condenser and reboiler heat transfer coefficients, and cooling water inlet temperature 

(Hoch et al., 1995); a simple chemical process comprising of a reactor and a heat 

exchanger, with variability in process parameters such as temperature, flow rate, 

reaction kinetics and heat transfer coefficient (Chacon-Mondragon and Himmelblau, 

1996); and heat exchanger networks with variability in supply and target temperatures 

and heat capacity flow rates (Chen and Hung, 2004). For problems with a large number 

of constraints, the methods for evaluation of flexibility index (Swaney and Grossmann, 

1985) can be computationally expensive to implement. Furthermore, methods based on 

flexibility analysis require the explicit form of equations representing the chemical 

process, in order to facilitate calculation of flexibility metric, and problem objective 

function and constraints. Thus, these methodologies cannot be directly applied to 

optimisation problems that are described using black box models, which is the case in 

this work.  

2.6 Concluding remarks 

This chapter presents an overview of the crude oil distillation system, methodologies 

for the design and optimisation of heat-integrated crude oil distillation systems, and 

techniques available for process design for flexibility as well as optimisation methods.  

Various methodologies have been developed to facilitate the design and optimisation 

of heat-integrated crude oil distillation systems. However, there are still many 

important design issues that have not been addressed. 

Simplified models are simple and relatively easy to handle numerically, although they 

produce less accurate estimate of the crude oil distillation unit performance (e.g. capital 

cost) compared to rigorous models. Therefore, simplified models are less frequently 

used in practice. Rigorous and surrogate models have been used to optimise the crude 

oil distillation system. Rigorous models are accurate and produce realistic results; 

however, they are very complicated and, computationally demanding. These features 
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make rigorous models less suitable for optimisation purposes, especially for large-scale 

industrial problems. While surrogate models are relatively simple, robust and less 

computationally demanding compared to their rigorous counterpart, their accuracy 

typically depends on the form of the models selected and the data used to fit the 

model.  

The rigorous and surrogate modelling approaches presented in this chapter takes into 

account only the operating conditions (feed inlet temperature, pump-around duties, 

and temperature drops, stripping steam flow rates and reflux ratio) of the crude oil 

distillation system as variables. For grassroots design purposes, the distillation column 

model should take into account not only operating conditions but also the structural 

variables (e.g., number of trays in column sections) of the crude oil distillation system. 

Therefore the rigorous and surrogate models presented cannot be applied for 

optimisation-based design of crude oil distillation units. 

Various methodologies have been presented in the literature for the design and 

optimisation of heat-integrated crude oil distillation systems. Early (‘Traditional’) 

design methodologies (Jones, 1995; Nelson, 1958; Watkins, 1979) apply heuristic rules, 

empirical correlations, and simple calculations to design the distillation column, 

without taking into account heat integration within the system. Integrated design 

methods (Liebmann, 1996; Sharma et al., 1999; Bagajewicz and Ji, 2001) account for heat 

integration between the distillation column and the heat recovery network, however, 

the distillation column is not optimised. While simplified models have been used to 

perform optimisation-based design of the system, their inability to produce accurate 

predictions may result to an unrealistic design. Most of these methodologies focused 

on the design of crude oil distillation system that processes only one type of crude oil 

feedstock. Therefore, change in crude oil feedstocks can affect the system performance, 

e.g., not meeting separation requirements (product quality specifications). Design 

methodologies (Bagajewicz and Ji, 2001; More et al., 2010) for crude oil distillation unit 

that processes multiple crude oil feedstocks are available. Based on a fixed column 

structure, these approaches identify suitable operating conditions for different varieties 

of crude oil to be processed. However, the approach propose by Bagajewicz and Ji 
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(2001) have not considered the trade-off between capital and energy cost, and the 

column structural and operational degrees of freedom are not optimised. Therefore, the 

approach may lead to a suboptimal design solution. Although More et al. (2010) 

presents an approach that optimises some operating variables of the system, many 

other degrees of freedom are not optimised, and heat integration is not considered. 

Therefore, the approach may lead to a design that is not energy efficient. 

Mathematical programming techniques, such as stochastic programming, robust 

optimisation, and methods based on flexibility index analysis, have been employed to 

design chemical processes containing variables that are subject to variability. However, 

these methodologies cannot be directly applied to a very complicated heat-integrated 

chemical process such as the crude oil distillation system.  

Various works have applied deterministic optimisation (Basak et al., 2002; López C. et 

al., 2013; Osuolale and Zhang, 2017) and stochastic optimisation (Motlaghi et al., 2008; 

Yao and Chu, 2012; Ochoa-Estopier and Jobson, 2015a) to search for a new set of 

decision variables that improve a specific objective relative to a base case. None of the 

approaches presented has integrated the deterministic and stochastic methods to 

rigorously explore the search space of the optimisation problem. Furthermore, 

simultaneous optimisation of structural and operational variables of the crude oil 

distillation system has not been considered. 

This research work aims to develop a systematic methodology for the design of flexible 

heat-integrated crude oil distillation systems that processes multiple crude oil 

feedstocks. Chapter 3 presents a new approach for the design of crude oil distillation 

unit using rigorous model. The methodology incorporates both structural and 

operational degrees of freedom as design variables in order to facilitate the design of 

the complex system. Chapter 4 develops a new optimisation-based approach for the 

design of crude oil distillation units using surrogate models. Both structural and 

operational degrees of freedom are optimised. Chapter 5 presents a new approach for 

the design of flexible crude oil distillation unit that processes multiple crude oil 

feedstocks. The approach is optimisation-based; therefore, the final design is optimal. 
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The proposed method takes into account relevant operational and structural degrees of 

freedom and product quality constraints. A hybrid stochastic-deterministic approach is 

proposed to search for design alternative that is flexible and economically viable. 

Chapter 5 also presents a new scenario-based design method that handles a large 

number of operating scenarios. The approach takes into account multiple objectives 

and can be applied to design problems formulated using equation oriented models and 

black box models. 
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Chapter 3   Design of heat-integrated crude 

…………... .oil distillation systems using 

…………... .  rigorous simulation models  

As discussed in Chapter 2, there are two classes of distillation column models used in 

practice to represent crude oil distillation units, namely, rigorous models and surrogate 

models. These simulation models take into account only the operational variables (feed 

inlet temperature, stripping steam flow rate, pump-around temperature drop and 

duty, reflux ratio) of the crude oil distillation unit, thus limiting their scope of 

application. For design purposes, the distillation column model needs to incorporate 

both structural and operational degrees of freedom as variables in order to enable 

optimisation-based design of the unit. 

This Chapter addresses the first and second objectives of this research work (see 

Section 1.3), that is, (i) develop an appropriate modelling approach for crude oil 

distillation units that take into account both structural and operational degrees of 

freedom of the distillation column. The approach explores the use of both rigorous and 

surrogate models; (ii) propose a design methodology that incorporates rigorous 

simulation model and pinch analysis in a unified framework to facilitate the design of 

crude oil distillation systems. Chapter 4 explores the use of surrogate models.  

3.1 Introduction to Publication 1 

This paper presents a new approach for the design of crude oil distillation unit using 

rigorous models. The modelling approach presented in this paper builds a 

superstructure of the distillation column, taking into account both structural (number 

of trays in column section) and operational (pump-around duty and temperature 

drops, feed inlet temperature, stripping steam flow rate, and reflux ratio) degrees of 

freedom. The superstructure embeds several alternative designs, and it is developed 
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using rigorous simulation model available in commercial process simulator (in this 

case Aspen HYSYS). The use of the rigorous tray-by-tray column model in Aspen 

HYSYS allows the proposed approach to take advantage of the physical, transport, and 

thermodynamic property models in the process simulator to generate accurate and 

reliable results. 

The accuracy of rigorous distillation column model in Aspen HYSYS depends on the 

type of equation of state and/ or activity model (property models) applied. Examples of 

equation of state in Aspen HYSYS include Peng-Robinson (Peng and Robinson, 1980), 

Soave-Redlich-Kwong (Soave, 1980), Kabadi Danner (Kabadi and Danner, 1985), Lee 

Kesler Plocker (Plöcker et al., 1978), Zudkevitch-Joffee (Zudkevitch and Joffe, 1970), etc. 

On the other hand, activity models include Non-Random-Two-Liquids (Austgen et al., 

1989), universal quasi-chemical (Maurer and Prausnitz, 1978), and Margules, van Laar, 

Wilson models (Perry and Green, 2008). These models have been previously tested and 

validated over a range of conditions (temperature and pressure), components, and 

component mixtures (AspenTech, 2011). The type of property model to be used 

depends on the components of the system under consideration and the operating 

conditions. For a crude oil distillation system containing complex hydrocarbon mixture 

and water, the recommended property model is Peng Robinson (Fahim et al., 2009; 

Chang et al., 2012), and it is the model used in this work. 

In building the column superstructure, Murphree tray efficiency (Seader et al., 2010) 

related to each tray within the column is treated as a binary variable, i.e. an efficiency 

of one is specified if a tray is taking part in the separation (‘active tray’), and zero 

otherwise (‘inactive tray’). In this way, the total number of trays in column sections can 

be optimised. This is the first attempt to incorporate number of trays as a design 

variable in modelling complex crude oil distillation unit using rigorous simulation 

models. 

To design the crude oil distillation system, an approach is proposed that incorporates 

the rigorous tray-by-tray distillation unit model (superstructure representation), pinch 

analysis, hydraulic model and cost model in an optimisation framework to facilitate 
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the design of the distillation system. A genetic algorithm is used to select the best 

column structure and operating conditions that minimises total annualised cost. As 

will be seen in the paper presented in this chapter, heat integration and hydraulic 

calculations are carried out in each iteration to enable the estimation of operating cost 

and capital cost respectively. This approach enables the inherent trade-offs between 

capital and energy cost to be exploited during optimisation, and thus guide the 

optimisation algorithm towards a cost-effective solution. 

The proposed methodology is applied to a case study that concerns the design of a 

refinery crude oil distillation unit that separates Tia Juana light crude oil (Watkins, 

1979) into intermediate products, such as light naphtha, heavy naphtha, light distillate, 

heavy distillate and residue. Numerical results show that energy efficient and cost-

effective design alternative can be identified within the solution space. The supporting 

information for this paper is presented in Appendix A.1. 
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1 Centre for Process Integration, School of Chemical Engineering and Analytical 
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Abstract 

The complex nature of crude oil distillation units, including their interactions with the 

associated heat recovery network and the large number of degrees of freedom, makes 

their optimization a very challenging task. We address here the design of a complex 

crude oil distillation unit by integrating rigorous tray-by-tray column simulation using 

commercial process simulation software with an optimization algorithm. While several 

approaches were proposed to tackle this problem, most of them relied on simplified 

models that are unable to deal with the whole complexity of the problem. The design 

problem is herein formulated to consider both structural variables (the number of trays 

in each column section) and operational variables (feed inlet temperature, pump-

around duties and temperature drops, stripping steam flow rates and reflux ratio). A 

simulation-optimization approach for designing such a complex system is applied, 

which searches for the best design while accounting for heat recovery opportunities 

using pinch analysis. The approach is illustrated by its application to a specific 

distillation unit, in which numerical results demonstrate that the new approach is 

capable of identifying appealing design options while accounting for industrially 

relevant constraints.  

Keywords: Process design, heat integration, genetic algorithm, grand composite curve 
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1   Introduction 

Crude oil distillation is one of the most complex and energy-intensive separation units 

in the petroleum refining industry. The crude oil distillation system comprises a 

complex distillation unit and a heat recovery network in which the crude oil feed is 

partially vaporised. Figure 1 illustrates a typical petroleum refinery crude oil 

distillation system. The system includes a fired heater that typically consumes fuel 

equivalent to 1 to 2% of the oil being processed1,2. This combustion of fuel is associated 

with high CO2 emissions and high operating costs. Extensive heat recovery is routinely 

implemented in crude oil distillation systems to reduce energy costs.  

In grassroots design, several degrees of freedom related to the column structure, its 

operating conditions and the associated heat recovery network are subject to 

optimization. The need to account for the complex interactions between these 

subsystems makes the design of crude oil distillation columns a highly challenging 

task. For a new (‘grassroots’) design, the column configuration (number of trays in 

each section of the column and location of the feed tray, pump-arounds and side-

stripper draws) and the operating conditions (feed inlet temperature, pump-around 

duties and temperature drops, stripping steam flow rates and reflux ratios) need to be 

selected. In addition, the heat recovery network (known as the preheat train) needs to 

be designed simultaneously. In this way, the column can be designed to create heat 

recovery opportunities that can be further exploited by the heat exchanger network. 

The design of this heat recovery network aims to identify the network configuration 

and heat transfer area that minimise the total annualised cost while accounting for both 

capital and operation expenditures.  
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Figure 1 Typical crude oil distillation system 

The operation of a standard crude oil distillation column is as follows (see Figure 1). 

Stored raw crude oil is partially heated in Preheat Train 1 and fed to a desalter, which 

removes dissolved or suspended salts from the crude oil feed3. The crude oil is further 

heated, in Preheat Train 2 and a fired heater, before being fed to the atmospheric 

distillation column. The preheat trains use heat recovered from the crude distillation 

unit, particularly the pump-arounds, condenser and product streams. The partially 

vaporised crude oil is fed to the atmospheric distillation column a few trays above the 

bottom stage. Stripping steam is supplied to the column at the bottom stage, which 

partly suppresses the boiling point of the crude mixture and further vaporises the 

crude oil mixture. The crude oil is separated into various fractions, such as light 

naphtha (LN), heavy naphtha (HN), light distillate (LD) and heavy distillate (HD). 

Side-strippers remove light components from side-draws using stripping steam or 

reboilers. Pump-arounds provide internal reflux and create heat recovery 

opportunities by cooling and returning liquid streams withdrawn from the column. 

The residue from the atmospheric column contains valuable hydrocarbons, which are 

typically further separated in a vacuum distillation column (not shown in Figure 1). 
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Conventional design methods4–6 consider the complex column and the heat recovery 

network in separate steps, without taking into account interactions between the two 

subsystems. Various researchers7–9 have applied optimization techniques to design the 

crude oil distillation column while simultaneously accounting for the heat recovery 

network. However, these approaches apply simple shortcut distillation models7 to 

support the design task in an attempt to avoid the numerical problems encountered 

when optimising more rigorous simulation models. The use of these shortcut models 

can lead to large errors, as they often cannot accurately predict the behaviour of the 

complex crude oil distillation unit8. These shortcut models are also restricted to specific 

column configurations, which limits their applicability. 

This work applies a simulation-optimization approach for the design of crude oil 

distillation units that integrates a rigorous tray-by-tray model of the distillation unit 

implemented in a commercial process simulator (Aspen HYSYS v8.6) with an 

optimization algorithm coded in Matlab R2015a. The optimization of process 

simulation models using external algorithms was addressed in other works10–12, but to 

the best of our knowledge none of them applied this approach to the design of complex 

crude-oil distillation units. In essence, these approaches decouple the simulation from 

the optimization in order to simplify the modelling and subsequent optimization of the 

process model. The process model is thus implemented in a simulation package that 

solves a system of nonlinear equations, while the optimization is carried out by an 

external algorithm that seeks the best values of the independent values by iteratively 

interrogating the process model.  

As will be later discussed in the article, these approaches differ in the optimization 

algorithm employed, which can be a deterministic method (e.g. gradient based) or 

based on stochastic optimization algorithms (e.g. genetic algorithms, simulated 

annealing). Hence, when applied to the design of complex distillation units, the 

simulation-optimization approach takes advantage of the physical property and 

thermodynamic models, as well as the crude oil characterization and column hydraulic 

models available in the process simulator. These tailored models ultimately lead to 

more accurate results compared with the use of shortcut methods. In addition, the 
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rigorous simulation environment is more versatile, allowing for a more flexible 

modelling of the column configuration. Furthermore, heat recovery opportunities for 

each proposed design were determined in this work using an open source algorithm 

implemented in Matlab13. Following this approach, pinch analysis was used iteratively 

to perform heat integration calculations for the designs proposed by an external 

optimizer. 

The remainder of this article is organised as follows. Section 2 reviews existing 

methodologies for the design of crude oil distillation units. In Section 3, a 

superstructure representing the crude oil distillation unit is proposed and a detailed 

optimization formulation is presented together with a customized solution procedure. 

The solution procedure makes use of readily available commercial process simulator to 

simulate the crude oil distillation column, hence avoiding the need to formulate the 

complex column using explicit equations; moreover, the process simulator 

environment is versatile and user-friendly, thus making our approach easier to 

implement in practice and accessible to industrial practitioners. Section 4 introduces a 

case study that illustrates the capabilities of the proposed design methodology. The 

conclusions of the work are finally presented in Section 5.  

2   Previous research on crude oil distillation unit design 

In the past decades, various methods have been proposed and developed for the 

design of crude oil distillation units. Conventional methods apply heuristic rules, 

experience, empirical correlations and simple relationships. For instance, the number 

of trays in each section of the column and the stripping steam are often estimated 

based on empirical correlations obtained from previously established designs 4. 

Similarly, in Watkins5 method, the number of trays in each section of a column is 

selected from a predetermined range, while the stripping steam flow is estimated 

based on product flow rates. The approaches of Nelson4 and Watkins5 formed the basis 

for many subsequent design methodologies for crude oil distillation units that involve 

iterations and trial and error procedures. Furthermore, the heat recovery network is 
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omitted in these design approaches, which neglect the complex interactions between 

such a network and the distillation column.  

Other research has focused on developing integrated design methods that address the 

design of the crude oil distillation unit and the associated heat recovery network 

simultaneously. Along these lines, Liebmann and co-workers1,14 combined rigorous 

column models and pinch analysis to design a crude oil distillation unit. Their 

approach takes design decisions in a sequential manner considering heat recovery at 

each step using pinch analysis. To avoid the numerical difficulties associated with the 

rigorous simulation of the column, Sharma15 proposed to use the concept of a column 

grand composite curve16. This strategy identifies the maximum amount of energy that 

can be recovered without affecting the separation. A limitation of this approach is that 

the role of the stripping steam is neglected. Bagajewicz and Ji17 focused on overcoming 

the above limitation, incorporating the effect of the stripping steam on the maximum 

heat recovery of a crude oil distillation column and introducing the concept of a heat 

demand–supply diagram. This approach, however, does not account for the trade-off 

between capital and energy costs. 

To design an integrated process system, it is necessary to design the complex column 

and the heat recovery network simultaneously. For example, Suphanit7 applied the 

column decomposition strategy of Liebmann and co-workers1,14 to develop a shortcut 

model for the crude oil distillation column. This model was then used within an 

optimization framework together with pinch analysis to simultaneously optimise 

distillation operating variables and the heat recovery network (utility demand and 

area) so as to minimize the total annualized cost. Rastogi8 extended the shortcut model 

of Suphanit7 to account for column pressure drop and pump-around location. A 

detailed model of both the heat exchanger network and the distillation column was 

incorporated into an optimization framework that optimized the column structure and 

operating conditions. Chen9 modified the shortcut models of Rastogi8 to allow for other 

pump-around locations and also modelled temperature-dependant properties of 

process streams undergoing phase change. In this work, the structure and operating 
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conditions of the column together with the heat exchanger network were optimized 

using simulated annealing.  

A comprehensive overview of optimization methods applied to process synthesis and 

design can be found in the excellent work of Grossmann et al.18 and Grossmann and 

Guillén-Gosálbez19. The optimization methods have been applied to design several 

chemical processess (other than crude oil distillation units)20–24. 

Several conclusions can be drawn from the literature review presented above. 

Traditional distillation design methods do not simultaneously consider heat recovery. 

Integrated design approaches do consider both, the column and the heat recovery 

network, but seldom analyse the trade-offs between capital and energy cost in a 

rigorous way. Optimization techniques have been used to design the column and heat 

recovery network7–9. However, to simplify the calculations, most of these approaches 

rely on shortcut distillation models7 that provide less accuracy and versatility. No 

approaches have been identified that directly use rigorous distillation models for 

optimization-based design of heat-integrated crude oil distillation systems. 

This research introduces a systematic framework for the design of heat-integrated 

crude oil distillation units that overcomes the limitations of established methods. Our 

approach applies rigorous tray-by-tray distillation column models to simulate 

alternative designs. These models are combined with a genetic algorithm that 

optimizes the column design. The number of trays in each column section together 

with the operating conditions (including the feed inlet temperature, pump-around 

duties and temperature drops, stripping steam flow rates and reflux ratios) are selected 

to minimize the total annualized cost. This cost accounts for the annualized capital cost 

and annual operating costs related to fuel consumption in the furnace.   

3   Optimization-based design approach 

This section presents a simulation-optimization based approach for the design of crude 

oil distillation units. First, the rigorous tray-by-tray model used to simulate the crude 
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oil distillation column is discussed. Then, the mathematical formulation of the 

optimization problem is presented. Next, an approach proposed to solve the 

optimization problem is described. We emphasize that we are dealing here with a very 

complex crude oil distillation system for which many decisions (including pump 

arounds, diameters and number of trays in different sections and operating conditions) 

must be optimized all together while considering the design of the HEN coupled with 

the unit. Developing a short-cut method for such a system is a very challenging task 

that would very likely result in larger approximation errors.  

3.1 Crude oil distillation unit simulation model 

In process design, it is crucial that models used to simulate design options are 

sufficiently realistic to deliver feasible solutions. Two main types of models are 

available for design of crude oil distillation units, namely, shortcut models7–9 and 

rigorous models14,17. The shortcut models adapt the Fenske–Underwood–Gilliland 

design equations for simple columns. These models predict the number of trays in each 

column section and operating conditions, such as reflux and reboil ratios. When 

applied to crude oil distillation, these models are restricted in terms of allowable 

configurations and accuracy of the predictions.  

On the other hand, the so-called rigorous models apply material and energy balances 

as well as equilibrium relations in every stage of the column25. These models provide 

more accurate predictions. However, they are more difficult to handle due to the need 

to start the calculations from a very good initial guess in order to avoid convergence 

problems.  Procedures for solving rigorous models are well established, and have been 

implemented in commercial process simulation software such as Aspen HYSYS, Aspen 

Plus, UNISIM, and PRO II. Such software allows designers to simulate complex 

distillation column flowsheets using iterative and sequential modular algorithms. 

Here, there is no need to define in an explicit form the model equations, as they are 

already implemented in the process simulator. Simulation packages like ASPEN, 

HYSYS or gPROMS already contain specific routines to solve distillation columns (and 

other unit operations) that are highly efficient. In this work, without loss of generality, 
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the ‘rigorous’ distillation model available in Aspen HYSYS v.8.6 is used to simulate the 

crude oil distillation column under steady state. Section 3.3 presents a detailed 

description of how the rigorous column model is built. 

3.2 Heat recovery consideration 

In general, heat recovery is carried out using a heat exchanger network (HEN). After 

fixing the process configuration and operating conditions, information on process 

streams (i.e., inlet and outlet temperatures and duties of all streams requiring heating 

and cooling) becomes available. This information could be used to design the HEN, 

which determines the minimum utility requirements that will be used to evaluate the 

design options.  

In an optimization-based design, many options need to be evaluated before selecting 

the best alternative. In this context, designing a full HEN for each potential design 

would require significant computational effort. This is because the HEN design can 

itself be posed as a nonconvex MINLP problem that is per se hard to solve, mainly due 

to the presence of bilinear terms in the constraints as well as concave ones in the 

objective function26. While there have been some recent attempts to solve the HEN 

design problem more efficiently21, the methods proposed still scale poorly with the 

number of hot and cold streams. To overcome this limitation, pinch analysis is applied 

here. Hence, targets for minimum utility requirement are determined to screen the 

design options and propose improvements for existing designs17. In this work, the 

grand composite curve is coded in Matlab R2015a10 and incorporated into the 

optimization procedure to calculate minimum utility requirements for the crude oil 

distillation unit. Detailed HEN design is not addressed. Nevertheless, pinch analysis is 

expected to minimize the dominant cost, i.e. fired heating, and it is well known that 

utility costs dominate distillation process economics. It is anticipated that the 

annualized HEN capital costs will be relatively similar for different column designs. 

Future work intends to account for HEN details.  
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3.3 Crude oil distillation column modelling – superstructure 

formulation 

In this section, the column superstructure used to design the crude oil distillation 

column is developed. A process superstructure considers (ideally) all possible design 

alternatives simultaneously. The superstructure of the complex heat-integrated crude 

oil distillation column is built treating Murphree tray efficiencies27 as binary variables 

that can activate or deactivate trays (following the approach developed by Yeomans 

and Grossmann28 and Caballero et. al.10). In this approach, a column section containing 

equilibrium stages includes a set of ‘temporary’ trays (also known as inactive trays) 

and ‘permanent’ trays (also known as active trays). On a permanent tray, mass transfer 

takes place between the vapour and liquid phases; it is assumed that phase equilibrium 

is achieved. On a temporary tray, no mass transfer takes place; the temporary tray is 

modelled as a by-pass with inputs equal to the outputs in each phase. In a commercial 

process simulator, trays can be modelled by setting appropriately their Murphree tray 

efficiency27: zero (when the tray is inactive) or one (when it is active). On both types of 

trays, the material and energy balances and equilibrium relations are solved. However, 

on a temporary tray, no separation takes place. Figure 2 illustrates the superstructure 

for modelling the crude oil distillation column. 
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Figure 2 Superstructure representation of crude oil distillation column 

As shown in Figure 2, the column superstructure consists of eight sections: five 

sections in the main column and three side strippers. The initial number of trays in 

each column section can be selected using traditional methods4,5 or shortcut models7–9. 

In the superstructure, each section is set up to ensure that more trays are available than 

will be needed. During optimization, the optimal number of trays in each section will 

be determined. The minimum possible number of permanent (active) trays in the 

superstructure is 18; 12 in the main column and 2 in each side stripper. These trays are 

located at points where a stream enters or leaves the column.  

3.4 Mathematical formulation  

The crude oil distillation column design problem can be formulated as an MINLP 

model (M1) based on the superstructure proposed in Figure 2: 
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                               (M1)              min 
                                                                             𝑥𝑆,𝑥𝑂

          ψ(𝑥𝐷 , 𝑥𝑆 , 𝑥𝑂)                                                                (1) 

 

𝑠. 𝑡.      ℎ𝐼(𝑥𝐷 , 𝑥𝑆 , 𝑥𝑂) = 0 

             ℎ𝐸(𝑥𝐷 , 𝑥𝑆 , 𝑥𝑂) = 0 

                𝑔𝐸(𝑥𝐷 , 𝑥𝑆 , 𝑥𝑂) ≤ 0    

 

     𝑥𝐷 ∈ 𝑋𝐷 , 𝑥𝑆 ∈ 𝑋𝑆, 𝑥𝑂 ∈ 𝑋𝑂  

 

where ψ is the objective function; ℎ𝐼  denotes the set of implicit equality constraints 

representing material, energy and thermodynamic equations embedded in the process 

simulator; ℎ𝐸 is the set of explicit equality constraints while 𝑔𝐸  is the set of inequality 

constraints. 𝑋𝐷, 𝑋𝑆 and 𝑋𝑂 are the feasible sets for the decision variables, namely 𝑥𝐷,  𝑥𝑆 

and 𝑥𝑂, which represent dependent, structural and operational variables, respectively. 

The dependent variables are calculated by the simulator for fixed values of 𝑋𝑆 and 𝑋𝑂. 

For the crude oil column design problem, the inequality constraints can be more 

specifically formulated as in Model M2:  

 

                                  (M2)             min
                                                                                  𝑥𝑆,𝑥𝑂

       ψ(𝑥𝐷 , 𝑥𝑆 , 𝑥𝑂)                                                                 (2) 

 

𝑠. 𝑡.      ℎ𝐼(𝑥𝐷 , 𝑥𝑆 , 𝑥𝑂) = 0 

            ℎ𝐸(𝑥𝐷 , 𝑥𝑆 , 𝑥𝑂) = 0 

                                                        𝑔1: 𝑙𝑏𝑖 ≤ 𝑁𝑖 ≤ 𝑢𝑏𝑖        𝑖 = 1,2,3, … , 𝑁𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

                                       𝑔2: 𝑙𝑏𝑗 ≤ 𝑄𝑃𝐴,𝑗 ≤ 𝑢𝑏𝑗        𝑗 = 1,2,3 

                                       𝑔3: 𝑙𝑏𝑗 ≤ ∆𝑇𝑃𝐴,𝑗 ≤ 𝑢𝑏𝑗       𝑗 = 1,2,3 

                                          𝑔4: 𝑙𝑏𝑘 ≤ 𝐹𝑠,𝑘 ≤ 𝑢𝑏𝑘           𝑘 = 1,2      

                                 𝑔5: 𝑙𝑏 ≤ 𝑅 ≤ 𝑢𝑏                             

                                 𝑔6: 𝑙𝑏 ≤ 𝑇𝐹 ≤ 𝑢𝑏                          

                                                                   𝑔7: 𝑙𝑏𝑙  ≤ 𝑇5𝑙 ≤ 𝑢𝑏𝑙         𝑙 = 1,2, … , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡              

                                                                    𝑔8: 𝑙𝑏𝑙  
≤ 𝑇95𝑙 ≤ 𝑢𝑏𝑙         𝑙 = 1,2, … , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡            
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where 𝑁𝑖 is the number of active trays in column section i; QPA,j and ∆TPA,j are the duty 

and temperature drop of pump-around j; FS,k is the steam flow rate of stream k; R is the 

overhead reflux ratio; TF is the feed inlet temperature; and 𝑇5𝑙  and 𝑇95𝑙  are the boiling 

temperatures of product 𝑙 at 5% and 95% vaporization (according to ASTM standards; 

note that other specifications could be defined in a similar way); 𝑁𝑙 is the number of 

product 𝑙.  

In Model M2, 𝑔1 to 𝑔6 are bounds on structural and operational variables, while 𝑔7 and 

𝑔8 represent constraints on product quality in terms of ASTM D86 boiling temperature: 

T5 and T95. To enhance the numerical robustness of the model, it is advantageous to 

include the latter constraints (product quality) in the objective function via penalty 

terms21. The resulting formulation, M3, is: 

 

     (M3)        min
                                𝑥𝑆,𝑥𝑂

     ψ(𝑥𝐷 , 𝑥𝑆, 𝑥𝑂) + [Π ∑[max (0, (𝑔𝑖))]2

𝑛

𝑖=1

]                                          (3) 

 

𝑠. 𝑡.      ℎ𝐼(𝑥𝐷, 𝑥𝑆, 𝑥𝑂) = 0                                                                    

ℎ𝐸(𝑥𝐷 , 𝑥𝑆, 𝑥𝑂) = 0                                                       

𝑔1 , 𝑔2 , 𝑔3, 𝑔4 , 𝑔5 , 𝑔6                                                      

  

where 𝑔𝑖  denotes the inequality constraints 𝑔7  and 𝑔8 ; Π  is a scalar parameter that 

scales the magnitude of the violation of constraints, and hence ensures that the product 

quality specifications are maintained during the optimization. Note that this penalty 

term can be easily formulated using slack variables. 

3.4.1 Objective function 

The aim of the optimization-based design task is to search for those process structure 

and operating variables that best achieve a desired objective. Different types of 

objective functions are relevant, for example, net profit, energy cost, net present value 

and total annualized cost. The most appropriate objective function to be used depends 

on the aims of the design. For grassroots design, a suitable objective is to minimize the 
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total annualized cost (TAC), as it accounts for the trade-off between capital investment 

and operating expenses. The total annualized cost is the sum of the total operating cost 

(OC) and annualized capital cost (ACC) (Smith, 2005):  

                                                     𝑇𝐴𝐶 = 𝑂𝐶 + 𝐴𝐶𝐶                                                                             (4) 

For the particular case of crude oil distillation unit, the most significant operating costs 

are the cost of stripping steam and of hot and cold utilities, usually fuel for fired 

heating and cooling water. Pinch analysis allows minimum utility requirements to be 

calculated29 for a given set of heating and cooling duties. In this way, opportunities for 

heat recovery are accounted for during the design optimization.  

                          𝑂𝐶 = ∑ 𝑆𝑇𝑖 . 𝐶𝑆𝑇,𝑖

𝑛

𝑖=1

+ 𝐻𝑈. 𝐶𝐻𝑈 + 𝐶𝑈. 𝐶𝐶𝑈       𝑛 = 2                                             (5) 

In Eq. (5), 𝐶𝑆𝑇 , 𝐶𝐻𝑈  and 𝐶𝐶𝑈  are the unit costs of stripping steam, hot and cold utilities, 

respectively; 𝐻𝑈  and 𝐶𝑈  are minimum hot and cold utilities, respectively, while n 

represents the number of stripping steam streams associated with the column.  

The annualized capital cost is the installed cost of the column shells (𝑆𝑐 ) and the 

installed cost of trays within the column, (𝑇𝐶), multiplied by an annualization factor 

(Af)29. 

                                              𝐴𝐶𝐶 = (𝑆𝑐 + 𝑇𝐶) ∗ 𝐴𝑓                                                                            (6) 

 

                                            𝐴𝑓 =
𝑖(1 + 𝑖)𝑡

(1 + 𝑖)𝑡 − 1
                                                                                    (7) 

 

where 𝑖 is the interest rate and 𝑡 is the plant life.  

 

3.4.2 Cost models 

The column shell and tray costs are estimated using the correlations proposed by 

Guthrie30. 
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               𝑆𝐶 = (
𝑀&𝑆 𝐼𝑛𝑑𝑒𝑥2011

280
) 101.9(𝐷)1.066(𝐻)0.802(2.18 + 𝐹𝑐1)                                     (8) 

 

where M&S Index2011 is the Marshall and Swift chemical equipment cost index for year 

2011 (4th quarter)31 allowing costs to be updated from 1969 (when the M&S Index was 

280); the cost is updated to current equipment cost using Eq. (10); 𝐷 is the sectional 

diameter of the column, 𝐻 is the sectional height, which depends on tray spacing and 

𝐹𝑐1is the column cost factor, which depends on the column material of construction 

and column operating pressure. 

 

            𝑇𝐶 = (
𝑀&𝑆 𝐼𝑛𝑑𝑒𝑥2011

280
) 4.7(𝐷)1.55𝐻𝐹𝑐2                                                                         (9) 

 

The tray cost factor 𝐹𝑐2  depends on the type of tray, tray spacing and material of 

construction.  

 

                      (
𝐶𝐸𝑃𝐶𝐼2014

𝐶𝐸𝑃𝐶𝐼2011
) × 𝐶𝑜𝑠𝑡2011                                                                                       (10) 

 

where CEPCI2011 and CEPCI2014 are the chemical engineering plant cost index for year 

2011 (4th quarter)31 and 2014 (4th quarter)32 respectively; Cost2011 is the equipment cost 

for year 2011, calculated using Eq. (8) and Eq. (9). The M&S Index2011, CEPCI2011 and 

CEPCI2014 are 1536.5, 590.1 and 575.7 respectively. 

The column diameter and height for a specific type of internal are determined using 

hydraulic models, as discussed in the Section 3.4.3. 

3.4.3 Hydraulic models 

In crude oil distillation column design, hydraulic analysis is required to identify an 

appropriate tray selection and to avoid entrainment (or jet flooding), weeping, coning 

and downcomer flooding25. Different design and types of trays and packings (e.g. sieve 



94 
 

tray, valve tray, high capacity tray) have a specific range of satisfactory vapour and 

liquid flow rates, defined by upper and lower bounds25,33,34. Therefore, the column 

diameter has to be sized appropriately to accommodate the flows of vapour and liquid 

in the column, and also provide enough active area for mass transfer25, without 

incurring an excessively high pressure drop. The tray spacing needs to be chosen in 

order to avoid entrained liquid jetting onto the tray above25. Furthermore, the 

downcomers should have sufficient area to allow liquid flow25. Established methods 

are available for column sizing and selection of internals25,34,35, many of which have 

been implemented in commercial process simulators. In this work, the column sizing 

capabilities implemented in the tray sizing utility of Aspen HYSYS v8.6 are employed 

to carry out the hydraulic calculations. The column diameter obtained from this 

calculation, together with the column height (determined based on permanent trays), 

are used to determine the purchase cost of the column.  

3.5 Solution procedure 

The optimization of the column naturally leads to an MINLP problem containing 

nonlinear equations and binary as well as continuous variables. Various approaches 

have been developed and proposed to solve this type of problem. These approaches 

can be broadly classified as deterministic (also known as gradient-based) methods36–39 

and stochastic (a class of derivative-free methods) methods36,40. A detailed discussion of 

MINLP algorithms can be found elsewhere36–41. Note that our MINLP is not defined in 

a fully explicit manner, but rather via both explicit and implicit equations implemented 

in the simulator and in an external modelling system (i.e., Matlab). MINLP problems 

encountered in the simulation-optimisation of chemical processes can be solved by 

several methods. Caballero et al.10 applied gradient-based methods to solve one such 

MINLP, which was decomposed into two levels following an outer-approximation 

scheme. In this work, at the lower level continuous variables are optimized for a fixed 

design by solving an NLP problem in which a gradient-based NLP solver iterates with 

the simulation model. At the upper level, new designs encoded in the values of the 

binary variables are generated by solving an MILP. This MILP is constructed by 

linearizing the nonlinear equations at the optimal solution of the NLP. These two levels 
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are solved iteratively until they converge towards a final solution considering a given 

stopping criterion. Stochastic approaches, on the other hand, attempt to solve the 

MINLP in a simultaneous way by optimising the decisions variables all together and 

without relying on gradient-based methods. The standard approach here is to combine 

metaheuristics (e.g. simulated annealing, genetic algorithms, etc.) with the simulation 

model and let them iterate for a given time. 

Since Model M3 is nonlinear and non-convex, standard deterministic methods can only 

guarantee convergence to a local optimum. Furthermore, obtaining the derivatives of 

the NLP might be difficult, which may lead to convergence problems when applying 

gradient-based NLP algorithms. To overcome these limitations, this work applies a 

stochastic global search method to solve M3 based on genetic algorithms (GA). We 

note that, despite the various strategies implemented in the GA, this approach is 

unable to guarantee convergence to the global optimum. Global optimality can only be 

ensured using deterministic methods, but these require the explicit form of the 

equations. In our case, these equations are implemented by the simulator, which does 

not provide direct access to the equations.   

The strategy proposed to optimize Model M3 is presented in Figure 3. The proposed 

approach combines a rigorous tray-by-tray crude oil distillation column model with 

cost models, a heat recovery model and a hydraulic model within a unified framework. 

This strategy searches for the best configuration and operating conditions that result in 

minimum total annualized cost. The crude oil distillation unit is simulated using a 

rigorous column model implemented in Aspen HYSYS v8.6, while the optimization 

algorithm is coded in Matlab R2015a. The exchange of information between Matlab 

R2015a and Aspen HYSYS v8.6 is established using the automation client-server 

application provided by Matlab R2015a.    
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Figure 3 Framework for the optimization-based design of crude oil distillation unit 

The implementation of the proposed framework is carried out in two steps. The 

distillation column superstructure is first defined in the Aspen HYSYS environment. 

This superstructure contains dependent, structural and operational variables that will 

be optimized by the GA. The mixed integer non-linear programing model (M3) is 

solved by a GA implemented in Matlab. The overall MINLP model includes equality 

constraints (explicit and implicit), inequality constraints, bounds on optimization 

variables and the objective function. The interface established between Matlab and 

Aspen HYSYS facilitates the transfer of the data required to calculate the objective 

function value and to assess whether the constraints are met. Once the model is 

defined, and the link between Matlab and Aspen HYSYS has been established, an 

optimization algorithm (e.g. genetic algorithm) is employed to search for the optimal 

column design. 
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Hence, in each iteration, the genetic algorithm proposes the column structure and 

operating conditions to be simulated in the rigorous column model. Process stream 

information from the converged column flowsheet is used by the heat recovery model 

to calculate the minimum hot and cold utility demand. For each permanent (active) 

tray inside the column, the vapour and liquid flow rates and fluid properties are 

calculated and used in the hydraulic model to determine the column diameter (using 

the tray sizing utility within the Aspen HYSYS v8.6 simulation environment). The 

column diameter and height, utility targets and steam flow rates are used to calculate 

the objective function. This objective value is used to guide the search for an optimal 

set of structural and operational variables that minimize the column total annualized 

cost. Certain combinations of inputs proposed by the optimization algorithm may lead 

to an infeasible simulation of the rigorous column, which may consequently halt the 

algorithm. This issue is overcome by adding a large penalty to the objective function 

whenever the column simulation fails. As discussed later in detail, numerical results 

show that this strategy leads to feasible designs that do not violate any inequality. The 

section that follows provides more detail about the genetic algorithm. 

3.5.1 Optimization algorithm 

The genetic algorithm falls into the class of stochastic optimization methods known as 

evolutionary programming. Genetic algorithms have been successfully applied to 

many complex chemical engineering problems42–45. The algorithm handles both integer 

decisions and continuous variables and does not require derivative information. 

Therefore, discontinuous functions can be handled with ease.  

The implementation of the genetic algorithm involves four fundamental steps, namely, 

generation of a random population of individuals, evaluation of fitness of individuals, 

and selection of the best individuals and reproduction using genetic operators (cross-

over and mutation) in order to create the population for the next generation46. Figure 4 

provides an overview of how these steps evolve to an optimal solution. A detailed 

description of each step follows. 
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Figure 4 Solution strategy based on genetic algorithm (adapted from Odjo et al.42) 

Step 1: Generation of random population of chromosomes 

The first step in the implementation of the genetic algorithm involves the generation of 

a random population of chromosomes (or individuals), which represents alternative 

structure and operating conditions of the crude oil distillation unit within the search 

space. The search space is defined by lower and upper bounds on the optimization 

variables and by a set of equality constraints that are defined implicitly in the 

simulation that enable the assessment of the units’ performance. Each chromosome 

contains 18 genes: 8 integer variables representing the number of trays in each column 

section and 10 continuous variables representing feed inlet temperature, pump-around 

duties and temperature drops, stripping steam flow rates and reflux ratio. This number 

of genes comes from an analysis of degrees of freedom in our systems. Note that other 
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combinations of variables could be defined. However, numerical examples show that 

this particular choice leads to a system that is numerically more robust than others, 

meaning that there are fewer solutions proposed by the genetic algorithm that do not 

convergence in the simulator. The total number of chromosomes in a generation, the 

population size, is usually pre-specified by the designer.  

Step 2: Evaluation of individual fitness 

In this step, all the chromosomes generated in Step 1 representing alternative designs 

are simulated on the rigorous distillation column model in HYSYS in order to 

determine their relative fitness. The fitness function is usually the objective function of 

the optimization problem, which in this case corresponds to the total annualized cost. 

The specifications in the simulation are as follows: product quality, boil-up ratio(s), 

reflux ratio(s), pump-around duties and temperature drops. Chromosomes leading to 

simulations that do not convergence are penalised to prevent the genetic algorithm 

from proposing similar solutions again. Similarly, solutions that do converge but 

violate at least one constraint are also penalised (see Eq. (3)).  

Step 3: Selection of best individuals 

All the members of the population are evaluated in terms of their fitness. High scores 

are assigned to members with high fitness and low scores to those with low fitness. 

High performing chromosomes (also called parents), i.e. alternative designs with 

minimum total annualized cost are later chosen for reproduction (cross-over or 

mutation).  Some of these high performing chromosomes (elites count) are retained and 

passed forward to the subsequent generation without changing their form47. In this 

work, cross-over fraction and mutation fraction are 0.8 and 0.2 respectively; and elites 

count is 5% of the total population. 
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Step 4: Reproduction 

Reproduction consists of two operations, namely, cross-over and mutation. For the 

cross over operation, two parents are selected at random, and then some part of the 

genetic information (i.e. number of trays in column sections, feed inlet temperature, 

pump-around duties and temperature drops, stripping steam flow rates and reflux 

ratio) of one parent is swapped with the other to create two new chromosomes47. 

Mutation involves random alteration of the genetic information (either number of trays 

in column section or operating conditions) of one parent to produce a new 

chromosome47. This operation helps to ensure diversity of the population and to 

prevent the algorithm from been trapped in a locally optimal solution47. 

The steps listed above are repeated several times until one of the convergence criteria is 

satisfied. In this work, as convergence criteria we use the maximum number of 

generations and population convergence. The former establishes a maximum number 

of iterations after which the algorithm terminates while the latter stops when the 

difference in performance between two consecutive populations is less than a given 

tolerance. On termination, the best-performing solution (i.e. the best individual) in the 

latest population and the corresponding objective function value are reported as the 

optimal solution to the design problem (provided all the constraints are met, otherwise 

the calculations are repeated using larger penalties). Implementation of the 

methodology is illustrated in a case study in the next section. 

4 Case study 

This section demonstrates the capabilities of the novel design approach.  

4.1 Problem description 

The case study is based on that presented by Chen9 and concerns the design of a crude 

oil distillation unit that separates 100,000 bbl/day (662.4 m3 h–1) of Venezuelan Tia 

Juana light crude oil5 into five products, namely, light naphtha (LN), heavy naphtha 
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(HN), light distillate (LD), heavy distillate (HD) and residue (RES). The details of the 

crude oil assay are presented in Tables S1 and S2 in the supporting information. 

The initial column design consists of a main column with three pump-arounds and 

three side-strippers, as shown in Figure 5. The main column has five sections (S-1 to S-

5) with 5, 9, 10, 8 and 9 trays, respectively. The HD, LD and HN side-strippers have 5, 7 

and 6 trays, respectively. The number of trays together with the utility demand is used 

to calculate the column annualized capital cost and operating cost, respectively, which 

are applied in Eq. (4) to estimate the total annualized cost. The operating conditions, 

product quality (in terms of ASTM 5% and 95% boiling temperature) and flow rates are 

presented in Tables S3 and S4 in the supporting information. The column operates at a 

uniform pressure of 2.5 bar.  

Sieve trays are assumed in the column hydraulic calculations. In all sections of the 

main column, four passes per tray are used, while two pass trays are used in the side-

strippers. The main column and all side-strippers are sized based on an 85% approach 

to jet flooding, 50% approach to downcomer and a tray spacing of 0.609 meters.  

The economic evaluation assumes an interest rate of 5%, a plant life of 20 years and 

8,700 operating hours per year in line with common practice (Maples, 2000). The initial 

column cost and costs of utilities are presented in Tables S5 and S6 in the supporting 

information. A minimum approach temperature of 30 ºC is used to calculate minimum 

utility requirements. The minimum approach temperature corresponds to typical 

values used in the design of industrial crude oil distillation unit (Smith  et al., 2010). 
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Figure 5 Case study: crude oil distillation unit design. 

4.2 Initialization of the column optimization  

The pre-optimization step starts by building the column superstructure that embeds all 

design alternatives using the approach presented in Section 3.3. The proposed 

superstructure for this case contains of 6, 10, 11, 9 and 10 trays in Sections S-1 to S-5 of 

the main column, and 6, 8 and 7 in the HD, LD and HN side-strippers respectively. 

Table 1a shows the lower and upper bounds on the number of trays in each column 

section.  
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Table 1a Bounds on numbers of trays per column section 

Section Lower bound Upper bound Initial value 

1 3 6 5 

2 7 10 9 

3 8 11 10 

4 6 9 8 

5 7 10 9 

6 3 6 5 

7 5 8 7 

8 4 7 6 

 

The lower bounds indicate the minimum number of active trays in each column 

section, and the difference between the upper and lower bound indicates the 

maximum number of temporary (inactive) trays, the existence of which is determined 

by the optimization algorithm. To complete the definition of the search space, bounds 

are defined for the operating conditions in Table 1b.  

 

Table 1b Bounds on operating conditions  

Operating condition Lower bound Upper bound Initial value 

PA 1 duty (MW) 8.40 14.00 11.2 

PA 2 duty (MW) 13.42 22.36 17.89 

PA 3 duty (MW) 9.63 16.05 12.84 

PA 1 DT (ºC) 10 30 20 

PA 2 DT (ºC) 40 60 50 

PA 3 DT (ºC) 20 40 30 

Main stripping steam (kmol h–1) 900 1500 1200 

HD stripping steam (kmol h–1) 188 313 250 

Feed temperature (ºC) 340 375 365 

Reflux ratio 3.17 6.17 4.17 

 

The product quality specifications that must be satisfied are shown in Table S4 in the 

supporting information. An allowable range of 10 ºC is set for each product 

specification. Note that the initial design must be ‘feasible’. This implies two things: the 
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solution must meet the product specifications and the associated simulation must in 

turn converge in Aspen HYSYS v8.6.  

4.3 Optimization parameters 

The optimization aims to identify a column with the best structure and operating 

conditions, corresponding to the minimum total annualized cost. Due to the stochastic 

nature of the genetic algorithm, each optimization run is likely to reach a different 

solution. In order to search for the best solution obtainable, the genetic algorithm is run 

ten times consecutively; each run is carried out using different initial population of 

chromosomes.  

The MINLP problem formulated in Section 3.4 is coded and solved in Matlab R2015a 

using the genetic algorithm implemented in the Global Optimization Toolboox, on a 

HP desktop PC with Intel(R) Core i5 processor running at 3.2GHz, and 8 GB of RAM 

(see Section 3.5.1 for detailed discussion on genetic algorithm) . The initial population 

contains 100 chromosomes and the maximum number of generations is set to 200. Note 

that the initial population is randomly created, considering the lower and upper 

bounds specified (see Tables 1a and 1b). The initial population represents the initial 

guess used by the genetic algorithm. These parameter values were determined by 

running the genetic algorithm multiple times to finally select those parameter values 

that represent a good compromise between computational effort and quality of the 

final solution. Details of the computational results for the multiple runs (i.e. 10 

consecutive runs) of the genetic algorithm are summarized in Tables S7 and S8 of the 

supporting information. The optimization time ranges between 3 to 6.5 hours. 

4.4 Optimization results 

4.4.1 Case 1: CDU design without constraint on product flow rate 

The best results found for the crude oil distillation unit are summarized in Figure 6 and 

Tables 2a to 2c.   
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Figure 6 Optimal configuration of crude oil distillation unit (Case 1) 

The column contains 6, 10, 8, customized 10 and 7 trays in the five sections of the main 

column, and 4, 8 and 3 trays in HD, LD and HN side-strippers respectively. The 

minimum utility targets for the optimal column, as calculated by the grand composite 

curve, are 40.35 MW of hot utility and 41.71 of cooling utility (respectively). This 

corresponds to a total utility cost of $6.3 million per annum ($MM y–1). It should be 

noted that the utility targets reflect the minimum amount of utility required by the 

column from a thermodynamic viewpoint, without taking into account heat exchanger 

network details. For a more detailed analysis, a heat exchanger network model will be 

required to replace the grand compose curve in the optimization framework. 

Nevertheless, the stream data for the optimal column presented in Table S9 of the 

supporting information can be used to design the heat exchanger network for the 

column. The column structure together with the steam and utility requirement lead to 

a total annualised cost of 7.84 $MM y–1.   
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Table 2a CDU operating conditions (Case 1) 

Variable Initial value Case 1 

PA 1 duty (MW) 11.2 8.41 

PA 2 duty (MW) 17.89 13.44 

PA 3 duty (MW) 12.84 10.25 

PA 1 DT (℃) 20 29 

PA 2 DT (℃) 50 55 

PA 3 DT (℃) 30 34 

Main steam (kmol h–1) 1200 900 

HD steam (kmol h–1) 250 188 

Feed temperature (C) 365 340 

Reflux ratio 4.17 3.17 

 

Table 2b Product quality and flow rate (Case 1) 

Products T5% (ºC, ASTM D86) T95% (ºC, ASTM D86) Flow rates (m3 h–1) 

 Initial value Case 1 Initial 

value 

Case 1 Initial 

value 

Case 1 

LN 26 24 111 111 103.5 98.8 

HN 139 129 187 187 78.2 86.6 

LD 216 217 301 301 140.3 130.5 

HD 311 304 354 354 48.1 45.3 

RES 361 352 754 752 292.5 301.4 

 

Table 2c Utility demand and column cost (Case 1) 

Variable Initial value Case 1 Units* 

Utility requirements     

Hot utility 54.61 40.35 MW 

Cold utility 61.18 41.71 MW 

Cost     

Utility cost 8.51 6.27 $MM y–1 

Steam cost 1.77 1.33 $MM y–1 

    

Total operating cost 10.28 7.60 $MM y–1 

Annualised capital cost 0.33 0.25 $MM y–1 

Total annualised cost 10.61 7.84 $MM y–1 

*$MM y–1 denotes millions of dollars per annum 

As shown in Table 2b, all the 5% and 95% ASTM boiling temperatures are within 10 ºC 

of the specified values; that is, no constraints on product quality are violated. On the 
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other hand, the flow rates of the five products have varied compared to the initial 

values. The most significant change is the increase of the atmospheric residue (RES) 

flow rate, representing a loss of valuable products from the atmospheric crude oil 

distillation unit. Such a large change could be avoided by adding constraints on the 

product flowrates and/or including the value of products in the objective function (i.e., 

maximizing profit instead of minimizing cost). Section 4.4.2 explores the use of 

constraints to restrict the flow rate of the atmospheric residue to within realistic limits. 

4.4.2 Case 2: CDU design with constraint on product flow rate 

Figure 7 and Tables 3a to 3c present the best results for the crude oil distillation unit 

design including constraint on product flow rates. A summary of the computational 

results (multiple runs) for this case is presented in Table S8 of the supporting 

information. 

 

Figure 7 Optimal configuration of crude oil distillation unit (Case 2) 



108 
 

The total number of trays in the crude oil distillation unit is 48: 39 in the main column 

and 3 in each side-stripper. The stripping steam requirements for Case 2 are the same 

as in Case 1. However, the hot and cold utility requirements have increased by 8.9% 

and 9.1% respectively. This results from the fact that in Case 2, the crude oil feed needs 

heating at higher temperature (361°C) compare with Case 1 (340°C). The heating is 

required to vaporize more valuable products from the crude oil feed, which are 

recovered in the distillation unit. The additional heating is performed at the expense of 

increasing the fired heater duty, which eventually increases the total operating cost of 

the column. The total annualised cost of the new column structure is 8.47 $MM y–1.   

Table 3a CDU operating conditions (Case 2) 

Variable Initial value Case 2 

PA 1 duty (MW) 11.2 9.58 

PA 2 duty (MW) 17.89 16.19 

PA 3 duty (MW) 12.84 15.20 

PA 1 DT (ºC) 20 21 

PA 2 DT (ºC) 50 43 

PA 3 DT (ºC) 30 21 

Main steam (kmol h–1) 1200 900 

HD steam (kmol h–1) 250 188 

Feed temperature (ºC) 365 361 

Reflux ratio 4.17 3.39 

 

 

Table 3b Product quality and flow rate (Case 2) 

Products T5% (ºC, ASTM D86) T95% (ºC, ASTM D86) Flow rates (m3 h–1) 

 Initial value Case 2 Initial 

value 

Case 2 Initial 

value 

Case 2 

LN 25.9 24 110.6 111 103.5 99.9 

HN 138.9 131 186.6 187 78.2 80.8 

LD 215.9 213 301.5 301 140.3 135.1 

HD 310.7 300 354.4 354 48.1 54.3 

RES 361.4 361 754.3 754 292.5 292.5 
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Table 3c Utility demand and column cost (Case 2) 

Variable Initial value Case 2 Units* 

Utility requirements     

Hot utility 54.61 44.32 MW 

Cold utility 61.18 45.90 MW 

Cost analysis    

Utility cost 8.51 6.89 $MM y–1 

Steam cost 1.77 1.33 $MM y–1 

    

Total operating cost 10.28 8.22 $MM y–1 

Annualised capital cost 0.33 0.26 $MM y–1 

Total annualised cost 10.61 8.47 $MM y–1 

*$MM y–1 denotes millions of dollars 

 

In Table 3b, the flow rate of the atmospheric residue (RES) remains unchanged, 

compared to the initial values. Therefore, no valuable product is lost from the 

atmospheric crude oil distillation unit. Furthermore, all of the product ASTM boiling 

temperatures are within 10 ºC of the specified values; again, no constraints on product 

quality are violated.  

5 Conclusions  

The design of a crude oil distillation unit is a nontrivial task due to the large number of 

degrees of freedom and complex interactions between individual units. Further 

challenges arise due to the need to design the complex column and heat recovery 

system simultaneously. Modified shortcut column models based on Fenske–

Underwood–Gilliland have been applied for these purposes. However, the accuracy of 

these models can be low and they cannot be readily applied to any column 

configuration. 

 This article introduced a simulation-optimization framework for the design of crude 

oil distillation units that overcomes existing limitations, where maximum heat 

recovery is considered using pinch analysis. The approach presented combines a 

rigorous tray-by-tray model of a complex crude oil distillation unit implemented in 
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Aspen HYSYS v8.6 with a genetic algorithm coded in Matlab R2015a. The optimization 

of the superstructure of the crude oil distillation column naturally leads to an MINLP 

model. This MINLP, solved by a GA, optimizes the crude oil distillation unit 

configuration (i.e. feed tray location, pump-around and side-stripper locations, number 

of trays in each section of the column) along with its operating conditions (i.e. feed 

inlet temperature, pump-around duties and temperature drops, stripping steam flow 

rates and reflux ratio) simultaneously.  

One important advantage of using stochastic optimizers is that they do not require 

derivatives and are designed to avoid getting trapped in locally optimal solutions 

(although they cannot guarantee global optimality within a given tolerance). 

Computational results for the case study demonstrate that the proposed framework is 

capable of identifying designs that significantly improve the starting solution. In 

addition, it was shown that product quality specifications can be met effectively using 

a suitable penalty function, although this may be at the expense of some valuable 

products slipping into the residue stream. This limitation can be overcome by 

constraining flow rates within allowable limits. 

Future work will explore the use of surrogate models48–51 of the distillation column in 

the optimization. Furthermore, to capture trade-offs between HEN capital cost and 

other costs, the framework needs to be extended to account for the synthesis of the heat 

exchanger network. Lastly, the proposed framework will be extended to retrofit of the 

complex crude oil distillation unit. 

Associated content 

*S Supporting Information  

Data on crude oil properties and characterization; initial feasible design data; and 

results for optimization of the crude oil distillation unit presented in the case study. 

This information is available free of charge via the Internet at http:// pubs.acs.org/. 
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Chapter 4   Design of heat-integrated crude 

…………... …….oil distillation systems using 

…………... .  surrogate models 

Chapter 3 presents a new approach for modelling crude oil distillation units using 

rigorous simulation models, taking into account both structural variables and 

operating conditions of the unit. The rigorous model proposed in Chapter 3 can give 

accurate predictions of the column performance; however, large computational times 

are required to find the optimal column structure and its operating conditions. This 

large computational time makes rigorous column models unsuitable for design 

problems that involve a large number of operating scenarios, for example, flexible 

crude oil distillation system that processes multiple crudes. To improve computational 

time, without compromising solution accuracy greatly, surrogate models can be used, 

where there are derived from the results of rigorous simulation models.  

This chapter addresses the third objective of this research, i.e., to adapt the design 

methodology of Chapter 3 to apply surrogate distillation column models, considering 

both column performance and definition of region of appropriate operating conditions. 

4.1 Introduction to Publication 2 

This paper presents a new modelling approach for crude oil distillation systems using 

surrogate models. The main advantage of the modelling approach presented here 

compared with those in literature (see Chapter 2) is that both structural and 

operational variables of the crude oil distillation unit are taken into account (and heat 

recovery). The surrogate modelling technique used is artificial neural networks due to 

their ability to capture complex non-linear relationships between input-output data 

(See Chapter 2). A comprehensive discussion on artificial neural network fundamentals 

and application can be found in Chapter 2, Sections 2.2.3.1 and 2.2.3.2. 
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In this work, the parameters of the artificial neural network (weight and bias) are 

regressed using data generated via multiple rigorous simulations, set up in a 

commercial process simulator (Aspen HYSYS). Firstly, Latin hypercube (Wang et al., 

2004) samples are generated for the relevant input variables (number of trays in 

column section, pump-around temperature drop and duty, stripping steam flow rate, 

feed inlet temperature and reflux ratio) using the function “ihsdesign” in MatLab 

(MATLAB, 2014). Through an interface (AspenTech, 2011) established between Aspen 

HYSYS and MatLab, all the samples are simulated on the rigorous model and their 

corresponding outputs (product quality [in terms of T5% and T95%], product flow rate, 

stream supply, target and enthalpy change, and column diameter) are collected and 

recorded. Due to the combinatorial nature of data sampling, not all the samples could 

lead to a converged simulation on the rigorous model. In this work, the maximum 

number of iteration is set to 20 (in the process simulator), therefore any sample that 

fails to converge after 20 iterations is deemed infeasible or unconverged sample. It 

should be noted that convergence can be improved by allowing for large number of 

iteration, better starting point, and repeating simulation multiple times with the same 

sample. However, the overall sampling time could increase significantly. 

In this work, only the converged samples were used to train the artificial neural 

network, as they represent feasible points within the design space. To prevent the 

optimisation algorithm from converging to an infeasible solution, it is necessary to 

remove the unconverged samples from the design space. This work developed a 

feasibility constraint using a support vector machine. Here, the feasibility constraints 

are equality constraints that are applied to remove infeasible solutions from the design 

space, thus increasing the likelihood that the optimal solution would be feasible when 

simulated on a rigorous model, and also computational effort can be reduced 

significantly. The support vector machine is trained using the entire samples (i.e. both 

converged and unconverged samples) generated from the multiple rigorous 

simulation.  

The surrogate models of the crude oil distillation unit are implemented in an 

optimisation framework, together with pinch analysis, in order to search for cost-
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effective solutions. The approach is applied to a relevant case study. Results indicate 

that cost-effective crude oil distillation unit can be identified using the proposed 

method at a significantly reduce computational time compared to when rigorous 

simulation model is used (see Chapter 3). The supporting information for this paper is 

presented in Appendix A.2. Chapter 5 extends the surrogate model to design a flexible 

heat-integrated crude oil distillation system.  
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Distillation Units using Surrogate Column Models 

and a Support Vector Machine 
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1Centre for Process Integration, School of Chemical Engineering and Analytical 

Science, University of Manchester, Manchester M13 9PL, UK 

2Department of Chemical Engineering, Centre for Process Systems Engineering, 
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Abstract 

This paper presents a novel optimization-based approach for the design of heat-

integrated crude oil distillation units, which are widely used in refineries. The 

methodology presented combines, within a unified framework, surrogate distillation 

column models based on artificial neural networks, feasibility constraints constructed 

using a support vector machine, and pinch analysis to maximize heat recovery, in 

order to optimize the distillation column configuration and its operating conditions. 

The inputs to the surrogate column model are given by the column structure and 

operating conditions, while the outputs are related to the column performance. The 

support vector machine classifier filters infeasible design alternatives from the search 

space, thus reducing computational time, and ultimately improves the quality of the 

final solution. The overall optimization problem takes the form of a mixed-integer 

nonlinear program, which is solved by a genetic algorithm that seeks the design and 

operating variables values that minimize the total annualized cost. The capabilities of 

the proposed approach are illustrated using an industrially–relevant case study. 

Numerical results show that promising design alternatives can be obtained using the 

proposed method. The approach can help engineers to design and operate petroleum 
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refineries optimally, where these are expected to continue to play a major role in the 

energy mix for some years. 

Keywords: Process design, atmospheric distillation unit, heat integration, genetic 

algorithm, artificial neural network 

1   Introduction 

 

1.1 Crude oil distillation: technical background 

Distillation is the most widely used separation technique in the chemical and 

petroleum industries. Petroleum refining starts with crude oil distillation, in which the 

entire crude oil feedstock undergoes initial separation to produce intermediate 

products, such as light naphtha, heavy naphtha, light distillate, heavy distillate, and 

atmospheric residue (see Figure 1). These cuts are further enhanced and blended into 

marketable products (e.g. gasoline, kerosene, jet fuel, diesel, bunker fuel and fuel oil 

etc.) that are supplied to the global energy market.   

Crude oil distillation is a capital- and energy-intensive process and is the largest 

consumer of energy in petroleum refineries (Gu et al., 2014). The energy consumed in 

crude oil distillation is equivalent to 1 to 2% of the total crude oil being processed 

(Szklo and Schaeffer, 2007). Consequently, it contributes significantly to the overall 

refinery CO2 emissions. Heat integration is typically applied to enhance energy 

efficiency in crude oil distillation by recovering heat from ‘hot’ streams requiring 

cooling to ‘cold’ streams requiring heating, thus reducing demand for fired heating, 

and thus both greenhouse gas emissions and operating cost.  
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Figure 1 – Typical crude oil distillation system 

Figure 1 illustrates a typical crude oil distillation system, which comprises a crude oil 

distillation unit, a heat recovery network (preheat train) and a fired heater (furnace) 

where the crude oil feedstock is heated and partially vaporized. The crude oil 

distillation unit is equipped with side-strippers and pump-arounds. Side-strippers are 

utilized to remove light component from side draws using stripping steam or reboilers, 

while pump-around loops provide internal reflux and create heat recovery 

opportunities by cooling and returning liquid streams withdrawn from the column. 

The crude oil distillation unit is strongly interlinked with the associated heat recovery 

network through pump-arounds, the condenser and product coolers. Changes in the 

design and operation of the crude oil distillation unit, therefore, affect the design and 

operation of the heat exchanger network and fired heater.  
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A new (‘grassroots’) design of a crude oil distillation unit aims to determine the 

optimal values of the design degrees of freedom, which include structural variables 

and operating conditions while taking into account the complex interactions between 

the column and the heat recovery network. The structural variables include the 

locations of the feed tray and of pump-around and side-stripper draw streams, and the 

number of trays in each section of the column. Operating conditions include the feed 

inlet temperature, pump-around duties and temperature drop, stripping steam flow 

rates and reflux ratio. The large numbers of degrees of freedom, complex interactions 

between individual units, and the need to design the column while accounting for heat 

recovery makes the design of crude oil distillation units highly challenging. 

1.2 Crude oil distillation column modelling 

Distillation column models may be employed to optimize both the column structure 

and its operating conditions with respect to various performance criteria. These models 

should be sufficiently realistic to provide meaningful solutions and robust enough to 

converge over a wide optimization search space.  

Existing design methods (Bagajewicz and Ji, 2001; Liebmann et al., 1998) applied a 

sequential approach that combines rigorous simulation models embedded in 

commercial process simulator and pinch analysis to support the search for energy 

efficient column structure and its operating conditions. However, these approaches 

require trial and error before arriving at the final design, and trade-off between capital 

and energy cost has not been considered. To overcome these limitations, an approach 

the combine rigorous tray-by-tray model of the distillation column and pinch analysis 

in an optimization framework has been developed (Ibrahim et al., 2017a). In this 

approach, a superstructure of the crude oil distillation column (comprising many 

design alternatives) is built in Aspen HYSYS, while the optimization is carried out 

using an external solver in MatLab. The approach takes advantage of the physical 

property and thermodynamic model as well as the crude oil characterization and 

column hydraulic models available in the process simulator to generate an accurate 
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estimate of the crude oil distillation unit performance. Optimization variables include 

number of trays in column sections and operating conditions.   

Despite the fact that rigorous models are versatile and produce accurate estimates of 

the distillation column performance, like most models, they require good initial points 

to converge to a feasible solution. Furthermore, from the optimization point of view, 

incorporating a rigorous tray-by-tray column model in an optimization framework so 

as to design the complex crude oil distillation unit is computationally intensive. To 

overcome these limitations, this work proposes a new strategy for the design and 

optimization of crude oil distillation units using surrogate column models. As will be 

seen in Section 4 of this article, the surrogate column model developed herein leads to 

significant reduction in computational time without sacrificing the model accuracy.  

1.3 Surrogate modelling of crude oil distillation columns 

In recent years, various regression and fitting techniques have been used to create 

surrogate models using different mathematical techniques, including polynomial 

regressions, artificial neural networks, and support vector regressions. Liau et al. (2004) 

and Motlaghi et al. (2008) applied artificial neural networks to build surrogate models 

of the crude oil distillation column using data collected from an existing plant. The 

models were used to perform operational optimization. Liau et al. (2004) focused on 

improving the yield of kerosene, diesel and atmospheric gas oil, while Motlaghi et al. 

(2008) optimized the flow rate of products according to their market values.  

Yao and Chu (2012) developed a surrogate model of the crude oil distillation using the 

concept of support vector regressions. The model was implemented in a framework to 

optimize profit by varying operating variables. Gueddar and Dua (2012) applied 

artificial neural network to construct a reduced model of the crude oil distillation unit 

that is suitable for refinery-wide optimization. The model inputs include crude oil 

properties (e.g. true boiling point) and flow rate, while the outputs consist of refine 

product yield and their specifications. A deterministic optimization is used to search 

for the best inputs that improves energy efficiency. López C. et al. (2013) applied a 
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polynomial function to build models of a crude oil distillation system. The models, 

together with energy balances representing the heat exchanger network, were 

implemented in a framework to maximize net profit.  

Ochoa-Estopier and Jobson (2015) applied data from multiple rigorous simulations to 

build a surrogate model of the crude distillation system using artificial neural 

networks. The column models, together with a heat exchanger network model, were 

implemented in an operational optimization framework to improve net profit while 

fulfilling practical constraints. More recently, Osuolale and Zhang (2017) applied 

bootstrap artificial neural networks to build a model of a crude oil distillation system, 

consisting of pre-fractionator, atmospheric column, and vacuum column. Sequential 

quadratic programming is used to optimize exergy efficiency by varying relevant 

operating conditions, where heat recovery opportunities are not explicitly considered. 

1.4 Scope and objectives 

The surrogate models for crude oil distillation columns presented so far assume that 

the design variables are fixed. Furthermore, these methodologies typically deal with 

continuous rather than discrete variables. This work extends the use of surrogate 

models to account for discrete design variables representing the number of trays in each 

column section (which cannot be handled via the approaches mentioned above). This 

work uses artificial neural networks, as these have been shown to provide simple, 

accurate and robust simulation models.    

This work proposes a new methodology for the design of heat-integrated crude oil 

distillation units that implement a surrogate model based on artificial neural networks. 

Unlike previous work applying surrogate models to represent a crude oil distillation 

unit (Ochoa-Estopier and Jobson, 2015), the proposed approach takes into account both 

discrete and continuous variables. The artificial neural network is constructed using 

‘samples’ that are results of multiple rigorous simulations.  
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Due to the highly combinatorial nature of the data sampling, not all samples within the 

search space are likely to lead to a converged simulation (i.e. a feasible design) using 

the rigorous model. In addition, numerical issues, e.g. poor initialization, can lead to 

non-convergence of rigorous simulations. In this work, a feasibility constraint is 

constructed using a support vector machine (Vapnik, 1995): the resulting classification 

model helps to restrict the search space to the region of feasible designs, thus avoiding 

the need to search in the region of infeasible designs during optimization. Restricting 

the search in this way increases the likelihood that the optimal design will feasible 

when modelled rigorously. Jobson et al. (2017) and Ibrahim et al. (2017b) provide fuller 

discussions of feasibility constraints in the context of surrogate modelling of crude oil 

distillation systems. 

In this work, the artificial neural network column model and feasibility constraint 

constructed using a support vector machine are implemented in an optimization 

framework, in which a genetic algorithm is used to search for column structural 

variables and operating conditions that minimizes total annualized cost. Heat 

integration is taken into account using pinch analysis, without considering the detailed 

heat exchanger network structure. Figure 2 summarizes the overall design framework. 
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Figure 2 – Overview of design framework 

The remainder of this paper is organized as follows. Section 2 presents an overview of 

the modeling tools adopted in this work, including the artificial neural network and 

the support vector machine. In Section 3, a detailed stepwise approach for modeling 

the complex crude oil distillation unit is developed. Section 4 presents the proposed 

mathematical formulation of the design problem together with a solution procedure. 

Section 5 illustrates and reviews the capabilities of the novel design methodology using 

a case study. Lastly, conclusions are presented in Section 6.  
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2 General background on surrogate modeling and support 

vector machine 

The modeling tools applied to model the crude oil distillation column include an 

artificial neural network and a support vector machine. As mentioned in Section 1, the 

artificial neural network is used to build a surrogate model of the crude oil distillation 

column that is subsequently implemented in an optimization framework, while the 

support vector machine filters out infeasible design alternatives during optimization, 

thus increasing the likelihood that the design alternatives proposed by the genetic 

algorithm will be feasible in the process simulator. A detailed description of the two 

modeling tools follows.   

2.1 Artificial neural networks 

Artificial neural networks (ANNs) are computational data-driven modeling systems 

that can represent complex nonlinear relationships between process input-output data 

points. The network consists of highly interconnected simple elements called neurons. 

The neurons are composed into at least two or more layers as shown in Figure 2.  

Various types of artificial neural network architectures (Basheer and Hajmeer, 2000) 

have been applied to model process systems of different levels of complexity (Henao 

and Maravelias, 2010; Gueddar and Dua, 2011; Nuchitprasittichai and Cremaschi, 2013; 

Ochoa-Estopier and Jobson, 2015). A multi-layer feedforward network is the most 

widely acceptable architecture due to its mathematical simplicity. This feature makes it 

suitable for implementation in an optimization framework, where the reduction of the 

mathematical complexity is an important factor (Nuchitprasittichai and Cremaschi, 

2012). Figure 3 shows a typical multi-layer feed forward network comprising two 

layers, namely, a hidden layer and an output layer. The hidden layer may consist of 

one or more sub-layers, although one sub-layer is a commonplace. Established 

literature (Henao and Maravelias, 2010) have shown that multi-layer feedforward 

networks with one hidden layer are capable of approximating arbitrary multivariate 

functions with a finite number of discontinuities; these are features of the problem of 

interest.   
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Figure 3 – Schematic representation of a multi-layer feed forward neural network 

(adapted from Beale et al. (2015))   

 

In Figure 3, the superscript and subscript denote the indices of the network layer and 

neuron respectively. Mathematically, the multi-layer feedforward network in Figure 3 

can be formulated as (Beale et al., 2015)  

 

𝒚 = 𝑓2(𝑾2𝑓1(𝑾1𝒚0 + 𝒃1) + 𝒃2) (1) 

 

where y0 and y represent the vectors of inputs (independent) and outputs (dependent) 

variables; b denotes the vector of biases and W denotes the matrix of weights. 𝑓1 and 

𝑓2 are transfer functions of the hidden and output layers, respectively. In this case, the 

hidden and output layers are represented by a sigmoid function and a linear function, 

respectively (Beale et al., 2015).  

The multi-layer feedforward network is trained to input-output data points using 

training algorithms. Different training algorithms are available (Beale et al., 2015). 

Backpropagation is the most commonly used method, which is the one used in this 

work. Backpropagation consists of two steps. First the prediction error, e.g., mean 

Inputs Hidden layer Output layer 
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square error, is computed using fixed value of weights and biases. Second, the weights 

and biases are adjusted to minimize the prediction error. The objective function used in 

most training algorithm can be defined as (Beale et al., 2015): 

 

𝑀𝑆𝐸 = ∑
(𝑡𝑖 − 𝑦𝑖)2

𝑁

𝑁

𝑖=1

 
(2) 

 

where MSE denotes the mean square error, N is the total number of sample points, t 

and y denote the target output and predicted output, respectively. Section 3.2 presents 

further detail on the development of artificial neural network model for a crude oil 

distillation column. 

2.2 Support vector machine 

A support vector machine (SVM) is a widely used statistical technique for regression 

analysis (Ławryńczuk, 2016; Zaidi, 2012) and data classification (De Boves Harrington, 

2015; Oliynyk et al., 2016). Vapnik (1995) provides a detailed description of the 

fundamentals of support vector machines. Here, the focus is on application of support 

vector machines for binary classification of samples (corresponding to column designs) 

as either feasible or infeasible. Feasible samples are those that lead to converged 

simulation, while infeasible samples are otherwise. The authors acknowledged that 

feasibility could be improved by additional iterations and/ or better initial guess. 

 The main idea of support vector machines is to define an optimal hyperplane that 

separates two or more classes of data points. For a given data set consisting of two 

separable classes, the optimal hyperplane is the one with the largest distance to the 

nearest data point, where distance is the Euclidian distance in the n-dimensional space. 

Figure 4 illustrates a hyperplane separating two classes of data: feasible samples 

denoted by squares and infeasible samples denoted by circles. In this work, samples 

leading to a converged simulation on the rigorous crude distillation column model 

built in Aspen HYSYS are termed feasible, while those leading to unconverged 

simulations are termed infeasible.  
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                                (a)                                                                                   (b) 

Figure 4 – Schematic representation of a support vector machine showing an optimal 

hyperplane for: (a) perfectly separable data sets, and (b) non-separable data sets in a 

two-dimensional space (adapted from Mahe et al. (2005)). Eq. (4) shows the detailed 

formulation for finding the optimal hyperplane. 

 

In Figure 4, the optimal hyperplane can be determined as follows: Let (𝒙𝑖 , 𝒚𝑖),

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … , 𝑛 , represent the set of training sample points, where 𝒙 ∈ ℝ𝑛  are 

decision variables (e.g. feed inlet temperature, pump-around duties and temperature 

drops, stripping steam flow rates and reflux ratio) and the corresponding sample class 

𝒚 ∈ {+1, −1}  represents whether the decision variables values lead to a feasible or 

infeasible solution, where +1 denotes a feasible sample and −1 an infeasible sample. 

The support vector machine classifier can be defined by (Vapnik, 1995) 

 

𝑦(𝒙) = 𝑠𝑖𝑔𝑛(𝒘 ∙ 𝒙 + 𝑏) (3) 

 

where 𝑤 ∈ ℝ𝑛 is the normal vector of the classification hyper plane, while 𝑏 ∈ ℝ is the 

bias.  

Given a new instance 𝒙, Eq. (3) allows classification of the sample as either feasible 

(positive sign) or infeasible (negative sign). Before Eq. (3) is applied to classify new 

samples, the weight vector (𝒘) and bias (𝑏) need to be fitted to the training sample 
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points. This process is called ‘learning,’ and is usually carried out by solving Problem 

P1 using optimization (Vapnik, 1995). The procedure seeks the hyperplane with the 

largest separation margin between the two classes of data.  

           [P1]             min    
𝑤,𝑏,𝜉   

1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

                             (4) 

                                                        s.t      𝑦𝑖(𝑤𝑇 ∙ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖  

                                                                  𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑛 

 

where n represents the number of training data points; 𝜉𝑖 are slack variables to account 

for misclassification of data points (see Figure 3b); C is a scalar penalty constant to scale 

constraint violations. 

Eq. (3) represents a linear formulation of the support vector machine, which are mostly 

applied to linearly separable data points (Vapnik, 1995). Other formulations for non-

linearly separable data points are also available such as polynomial functions, radial 

base functions and multi-layer perceptron (Vapnik, 1995).  

Section 3.3 presents the detailed application of the support vector machine, Eq. (3), to 

construct a feasibility constraint to be implemented in an optimization framework with 

the aim of filtering out infeasible designs during the optimization task. 

3 Modeling and solution procedure applied to a crude oil 

distillation column  

The proposed surrogate modeling method comprises three main steps, namely, data 

generation (known as sampling), regression of a surrogate column modeling using the 

concept of artificial neural networks, and construction of feasibility constraints using a 

support vector machine.  
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3.1 Data generation 

Data generation is an essential step in the construction of surrogate models, since the 

performance of the surrogate model strongly depends on the quality of the data used 

in the training stage. As discussed in the introduction, this work makes use of multiple 

rigorous simulations to generate sample points used for training the surrogate model.  

Data generation using multiple rigorous simulation consist of three (3) major steps: 

selection of relevant inputs (or independent variables) and outputs (or dependent 

variables), generation of random sample points for each input variable, and lastly, for 

each set of input data, a rigorous simulation of the crude oil distillation is carried out to 

obtain the corresponding set of output variables. 

In this work, the input variables selected include variables that can be adjusted to 

improve the crude distillation column performance. These variables include both 

structural (number of trays in each column section) and operational (feed inlet 

temperature, pump-around duties, and temperature drops, stripping steam flow rates 

and reflux ratio) degrees of freedom. The output variables selected include those that 

represent product quality (e.g., ASTM T5 and T95 boiling temperatures of each 

product), product flow rates, supply and target temperatures of streams requiring 

heating and cooling and corresponding enthalpy changes, and diameters of each 

column section. These variables allow calculation of the objective function and 

checking whether the product constraints are satisfied.   

Next, a sampling technique is applied to generate random samples for each input 

variable. Several sampling techniques are available, for example, Monte Carlo 

sampling, Hammersley sequence and Latin hypercube sampling (Subramanyan et al., 

2011). Without loss of generality, Latin hypercube sampling is used in this work, since 

it has shown to produce accurate statistical estimates of a probability distribution 

(Subramanyan et al., 2011). Latin hypercube sampling divides the input variable space 

into intervals, where samples are created randomly from each interval. The sampling 

method thus guarantees well-distributed samples.  
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After generating the samples, multiple rigorous simulations are carried out by 

simulating each such sample of the independent variables using a rigorous distillation 

column model implemented in a process simulation package. In this work, the multiple 

rigorous simulations are facilitated via an interface between Aspen HYSYS v8.6 and 

MatLab R2015a (AspenTech, 2011). Results of the simulations of the crude oil 

distillation in Aspen HYSYS v8.6 are recorded for each sample set. Samples are labeled 

as feasible if the simulation converges and infeasible if it does not. It is desirable to 

remove infeasible samples from the solution space to prevent the optimization 

algorithm from searching for and converging to infeasible solutions. Section 3.2 

describes how an artificial neural network model representing the distillation column 

is constructed using the converged samples and Sections 3.3 explains how the whole 

sample set is used to construct a support vector machine.  

3.2 Creating a surrogate distillation column model 

This work uses an artificial neural network to create a surrogate model of the crude oil 

distillation column. The network correlates input and output data representing 

independent and dependent variables of the crude oil distillation column. A major 

advantage of artificial neural networks over other statistical techniques is the ability to 

correlate multiple inputs to multiple outputs, leading to compact models that can be 

implemented in an optimization environment with ease. To take advantage of this 

important feature, the artificial neural network representing the crude distillation 

column is built by correlating all the independent variables to a group of specific 

dependent variables. In this work, the crude oil distillation unit consists of 18 

independent variables and 46 dependent variables. The dependent variables are 

divided into seven groups: ASTM T5 and T95 boiling temperatures, product flow rates, 

supply and target temperatures, enthalpy changes and diameters of each column 

section. Then seven ANN models are constructed to correlate the independent 

variables to each group of dependent variables. 

This work uses the Artificial Neural Network Tool Box in MatLab R2015a to construct, 

validate and test the surrogate crude oil distillation column model. A multi-layer feed-
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forward network with one input layer, one output layer, and one hidden layer is 

constructed. The hidden layer contains 10 neurons; the size of the output layer depends 

on the number of dependent variables. The former uses a sigmoid function, and the 

latter uses a linear transfer function, in line with common practice (Beale et al., 2015). 

The feasible sample points generated from the multiple rigorous simulations are 

randomly divided into a training set (70%), a validation set (15%) and a testing set 

(15%). The ANN model is first constructed using the points in the training set; note that 

the training data is normalized between -1 and 1 in order to improve training (Beale et 

al., 2015). The points in the validation set are employed during training to avoid model 

overfitting. The testing set is used for checking the performance of the model. The 

coefficient of determination is used to assess the performance of the seven networks. 

The coefficient of determination is a dimensionless quantity, typical range is 0 to 1, and 

it indicates the fraction of the variability of the dependent variable that is explained by 

the surrogate model (Diamond and Jefferies, 2001). The larger the coefficient of 

determination (close to one), the better the fitting and vice versa.  In building the 

artificial neural network, the size of the hidden layer and number of neurons can be 

varied until the desired performance is achieved. While a methodology to optimize the 

number of layers and neurons has been developed by Dua (2010), implementing this 

methodology can be time consuming and challenging. In this work, several neural 

networks were constructed; trial and error was used to identify how many layers and 

neurons are needed for a good performance for optimization-based design of the crude 

oil distillation unit. 

3.3 Feasibility constraint   

This work uses feasibility constraints formulated as a support vector machine to 

enhance the optimization task. The support vector machine constructed here has a 

third-order polynomial function with an output of +1 and -1. Positive one represents 

converged samples (feasible designs), and negative one denotes unconverged samples 

(infeasible designs). The inputs (18 variables) of the support vector machine are similar 

to that of the artificial neural network discussed in Section 3.2. All the samples 

generated via multiple rigorous simulations, consisting of converged and unconverged 
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samples, are used to build the support vector machine. The data set is split into 

training set (75%) and validation set (25%). The function fitcsvm, which is implemented 

in MatLab 2015a, is applied to train and validate the support vector machine.  

4 Framework for the design of crude oil distillation units 

In this section, the artificial neural networks representing the crude oil distillation unit 

and the feasibility constraint developed using support vector machine are 

implemented a framework to design the unit. First, the mathematical formulation of 

the optimization problem is presented, followed by an approach proposed to solve the 

optimization problem. 

4.1 Mathematical formulation 

The design of crude oil distillation column based on surrogate models (artificial neural 

network and support vector machine) can be formulated as a mixed integer nonlinear 

programming problem (P1) as follows:  

(P2)                  min 
                                     𝑥𝑆,𝑥𝑂

      𝑓(𝑥𝐷 , 𝑥𝑆, 𝑥𝑂)                                  

 

  𝑠. 𝑡.    ℎ (𝑥𝐷 , 𝑥𝑆, 𝑥𝑂) = 0 

                𝑔 (𝑥𝐷 , 𝑥𝑆, 𝑥𝑂) ≤ 0    

 

     𝑥𝐷 ∈ 𝑋𝐷 , 𝑥𝑆 ∈ 𝑋𝑆, 𝑥𝑂 ∈ 𝑋𝑂 

(4) 

where f is the objective function, ℎ  is the set of equality constraints represented by a 

surrogate model, 𝑔  is the set of inequality constraints; while 𝑋𝐷 , 𝑋𝑆  and 𝑋𝑂  are the 

feasible sets of the variables, namely: 𝑥𝐷 ,  𝑥𝑆  and 𝑥𝑂 , which represent dependent, 

structural and operational variables, respectively. As will be later discussed in more 

detail, this model is solved using a genetic algorithm. 

In this work, the surrogate model comprises seven artificial neural networks. Each 

neural network predicts a specific dependent variable of the crude oil distillation 

column. In addition to the artificial neural network, a support vector machine is also 
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trained to predict the feasibility of the crude oil distillation column. Hence, the equality 

constraints in Problem P2 can be more specifically represented as follows 

ℎ1:     [𝑇5𝑖 ] = 𝐴𝑁𝑁1(𝑥𝑠 , 𝑥𝑜)                       𝑖 = 1,2,3, … , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡  

ℎ2:     [𝑇95𝑖 ] = 𝐴𝑁𝑁2(𝑥𝑠 , 𝑥𝑜)                    𝑖 = 1,2,3, … , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡  

ℎ3:     [𝐹𝑖] = 𝐴𝑁𝑁3(𝑥𝑠 , 𝑥𝑜)                         𝑖 = 1,2,3, … , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡  

ℎ4:     [𝐷𝑗] = 𝐴𝑁𝑁4(𝑥𝑠 , 𝑥𝑜)                         𝑗 = 1,2,3, … , 𝑁𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

ℎ5:     [𝐸𝑘] = 𝐴𝑁𝑁5(𝑥𝑠 , 𝑥𝑜)                         𝑘 = 1,2,3, … , 𝑁𝑠𝑡𝑟𝑒𝑎𝑚 

  ℎ6:     [𝑇𝑆𝑙 ] = 𝐴𝑁𝑁6(𝑥𝑠 , 𝑥𝑜)                   𝑙 = 1,2,3, … , 𝑁𝑠𝑡𝑟𝑒𝑎𝑚 

  ℎ7:     [𝑇𝑇𝑙 ] = 𝐴𝑁𝑁7(𝑥𝑠 , 𝑥𝑜)                      𝑙 = 1,2,3, … , 𝑁𝑠𝑡𝑟𝑒𝑎𝑚 

  ℎ8:     [𝐶𝐶] = 𝑆𝑉𝑀 (𝑥𝑠 , 𝑥𝑜)   

  ℎ9:     𝐶𝐶 = 1  

 

 

 

where T5 and T95 represents the ASTM boiling temperatures of product i at 5% and 

95% vaporization, F is the flow rate of product i, D is the diameter of section j, E is the 

enthalpy change of stream k, TS and TT are the supply and target temperatures of 

stream l, CC represents the predicted convergence criterion (+1 for converged column 

and −1 otherwise), xs and xo are structural and operating variables (independent 

variables) and lastly, ANN and SVM represent artificial neural network and support 

vector machine functions respectively  

Inequality constraints in Problem P2 define bounds imposed on independent variables 

and product quality specifications. These can be represented as follows 

𝑔1:     𝑙𝑏𝑖 ≤ 𝑁𝑖 ≤ 𝑢𝑏𝑖        𝑖 = 1,2,3, … , 𝑁𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

𝑔2:      𝑙𝑏𝑗 ≤ 𝑄𝑃𝐴,𝑗 ≤ 𝑢𝑏𝑗       𝑗 = 1,2,3 

𝑔3:      𝑙𝑏𝑗 ≤ ∆𝑇𝑃𝐴,𝑗 ≤ 𝑢𝑏𝑗       𝑗 = 1,2,3 

𝑔4:      𝑙𝑏𝑘 ≤ 𝐹𝑠,𝑘 ≤ 𝑢𝑏𝑘           𝑘 = 1,2      

𝑔5:      𝑙𝑏 ≤ 𝑅 ≤ 𝑢𝑏                             

𝑔6:     𝑙𝑏 ≤ 𝑇𝐹 ≤ 𝑢𝑏                          

𝑔7:      𝑙𝑏𝑙 ≤ 𝑇5𝑙 ≤ 𝑢𝑏𝑙         𝑙 = 1,2, … , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡              

 𝑔8:     𝑙𝑏𝑙   
≤ 𝑇95𝑙 ≤ 𝑢𝑏𝑙          𝑙 = 1,2, … , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡            

 

 

 

(6) 

(5) 
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where Ni is the number of active trays in column section i; QPA,j and ∆TPA,j are the duty 

and temperature drop of pump-around j; FS,k is the flow rate of stream k; R is the 

overhead reflux ratio; TF is the feed inlet temperature; 𝑇5𝑙  and 𝑇95𝑙  are the boiling 

temperatures of product 𝑙  at 5% and 95% vaporization, for example, according to 

ASTM standards.  

The objective function [f(xD, xS, xO)] employed in this work is the total annualized cost, 

since the aim is to identify the design alternative that minimizes both capital 

expenditures and operating costs of the crude oil distillation unit. Although other types 

of objective function such as net profit, net present value, energy cost, and CO2 

emission could be used depending on the purpose of the design. 

The total annualized cost is the sum of the annualized capital cost (ACC) and the total 

operating costs (OC) of the crude oil distillation unit. The annualized capital cost is the 

sum of the installed cost of the column shells (𝑆𝑐) and of the trays within the column, 

(𝑇𝐶). The column shell and tray costs are estimated using the correlations proposed by 

Guthrie (1969) (see Support Information). The annualization factor described by Smith 

(2005) is applied to split the total column cost across the entire plant life at a specific 

interest rate.   

𝐴𝐶𝐶 = (𝑆𝑐 + 𝑇𝐶) ∙ 𝐴𝑓  

 

𝐴𝑓 =
𝑖(1 + 𝑖)𝑡

(1 + 𝑖)𝑡 − 1
 

(7) 

 

(8) 

 

where 𝑖 is the interest rate and 𝑡 is the plant life.  

The operating cost of the crude oil distillation unit is dominated by the cost of the fired 

heating, typically using fuel oil or natural gas; the cost of steam for stripping indirect 

heating and the cost of cold utilities also. In this work, the utility demand is estimated 

using pinch analysis, i.e., using composite curves to determine the minimum utility 

demand (Smith, 2005). The pinch calculation is carried out using an open source 

MatLab code (Morandin, 2014). In this way, heat recovery is incorporated during the 
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column optimization without the need to designing explicitly the associated heat 

exchanger network (HEN). Hence, the operating cost (OC) is evaluated using Eq. (9):  

𝑂𝐶 = ∑ 𝑆𝑇𝑖 ∗ 𝐶𝑆𝑇,𝑖

𝑛

𝑖=1

+ 𝐻𝑈 ∗ 𝐶𝐻𝑈 + 𝐶𝑈 ∗ 𝐶𝐶𝑈       𝑛 = 2                  (9) 

 

where 𝐶𝑆𝑇 , 𝐶𝐻𝑈  and 𝐶𝐶𝑈  are the unit costs of stripping steam and of the hot and cold 

utilities respectively; 𝐻𝑈 and 𝐶𝑈 are the minimum hot and cold utilities, respectively, 

while n represents the number of stripping steam streams associated with the column.  

4.2 Optimization framework 

In Problem P2, the inequality constraints, 𝑔1  to 𝑔6  are bounds on structural and 

operational variables, while 𝑔7  and 𝑔8  represent constraints on product quality in 

terms of ASTM D86 boiling temperature (T5 and T95). For the sake of simplicity and to 

facilitate the search for the optimal solution, the latter constraints are included into the 

objective function as a penalty function (Edgar et al., 2001); the new formulation, P3, is: 

(P3)        min
                            𝑥𝑆,𝑥𝑂

     𝑓(𝑥𝐷 , 𝑥𝑆 , 𝑥𝑂) + [Π ∑[max (0, (𝑔𝑖))]2

𝑛

𝑖=1

]  

 

                    𝑠. 𝑡.      ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6, ℎ7, ℎ8                    

                    𝑔1, 𝑔2 , 𝑔3 , 𝑔4, 𝑔5 , 𝑔6                               

 

 

(10) 

where 𝑔𝑖  denotes the inequality constraints 𝑔7  and 𝑔8 ; Π  is a scalar parameter that 

scales the magnitude of the violation of constraints, and hence ensures that the product 

quality specifications are maintained during the optimization. The magnitude of the 

scalar parameter may impact on the final optimal solution. A small value may allow 

some constraints to be violated, leading to infeasible solutions, while large values 

impose constraints very stringently. Computational experience suggests that a value of 

a similar magnitude as the objective function yields good results. In this work, Π is 106. 

Figure 5 presents the strategy proposed to optimize Problem P3. The proposed 

approach integrates the artificial neural networks, the support vector machine, the heat 
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recovery model (pinch analysis) and the cost models into a unified framework. The 

framework applies a stochastic optimization algorithm (i.e., a genetic algorithm) to 

search for the best column structure and operating conditions that minimize capital 

expenditure and operating expenses. 

The surrogate models employed in this work are easier to optimize than rigorous 

models (e.g. as used by Ibrahim et al., 2017a). Nevertheless, the sigmoid function used 

in this work to construct the surrogate model and the objective function (including 

non-linear capital cost correlations) together give rise to a nonlinear, non-convex 

optimization problem. Gradient-based searches are unlikely to locate the global 

optimum. Therefore, a stochastic optimization method, namely a genetic algorithm 

(GA), is used. The GA can search the solution space more effectively, even though it 

still cannot guarantee convergence to the global optimum 

 

Figure 5 – Optimization framework for the design of crude oil distillation 

unit 
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The framework shown in Figure 5 is implemented in MatLab. A genetic algorithm 

available in the global optimization toolbox in MatLab (‘ga’) is employed to carry out 

the search for cost-effective design alternative. In each iteration, the genetic algorithm 

proposes a column structure and its operating conditions; the proposed inputs are then 

checked by the support vector machine to confirm whether the design is likely to be 

feasible. Inputs identified as feasible are then used by the artificial neural network 

model to simulate the proposed design solution and predict its performance. Among 

the model outputs are process stream data used in the heat recovery model to 

determine utility targets and other information required to calculate the value of the 

objective function. Inequality constraints are applied to check whether product 

qualities and flow rates specifications are met. In cases that the support vector machine 

identifies solutions generated by the optimisation algorithm as likely to be infeasible, 

the corresponding designs are not simulated by the artificial neural network model. 

Instead, a penalty is added to the objective function. Attributing a poor performance to 

potentially infeasible solutions helps to train the genetic algorithm not to propose 

similar design alternatives again. In this way, the search focuses on the feasible region, 

increasing the likelihood that the optimization will converge to a feasible design 

option. Furthermore, the computational time is reduced, since potentially infeasible 

solutions are removed from the search space. The next section illustrates how the 

methodology is applied to a relevant case study. 

5 Case study 

5.1 Problem description 

This section demonstrates the capabilities of the novel design approach via the design 

of a crude oil distillation system. The crude oil distillation unit that separates 100,000 

bbl day–1 (662.4 m3 h–1) of Venezuelan Tia Juana light crude oil (Watkins, 1979) into five 

products, namely, light naphtha (LN), heavy naphtha (HN), light distillate (LD), heavy 

distillate (HD) and residue (RES). The initial design of the feasible column is obtained 

from Chen (2008); the unit comprises a main column with three pump-arounds and 

three side-strippers. The main column has five sections with 5, 9, 10, 8 and 9 sieve trays 
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respectively. The HD, LD and HN side-strippers have 5, 7 and 6 sieve trays, 

respectively (Chen, 2008), presented also in Ibrahim et al. (2017).  

Given data include operating conditions, product quality metrics (in terms of ASTM 5 

% and 95 % boiling temperatures) and product flow rates. The column operating 

pressure is taken to be uniform and equal to 2.5 bar. The economic calculation assumes 

an interest rate of 5%, a plant life of 20 years and 8700 operating hours per year. The 

costs of utilities, which include stripping steam (260 oC, 4.5 bar), fired heating (1500–

800 oC) and cooling water (supplied at 10 and returned at 40 oC) are $0.14 kmol–1, $150 

kW–1 a–1 and 5.25 $ kW–1 a–1 respectively. A minimum approach temperature of 30 oC in 

all streams is used to calculate the minimum utility requirements. Details of the crude 

oil assay, initial operating conditions, product quality specifications and flow rates 

(initial values) of the base case are presented in Tables S1 to S5 of the supplementary 

material. 

5.2 Surrogate crude oil distillation column model  

The surrogate modeling approach proposed in Section 3 is applied to model the crude 

oil distillation unit. First, a rigorous simulation model of the crude oil distillation unit 

is implemented in Aspen HYSYS using Peng-Robinson as thermodynamic property 

package. Sensitivity analysis is carried out to identify suitable bounds for each 

independent variable as shown in Table 5.1. Initially, bounds are defined for each 

independent variable, i.e., ±  10 ° C for temperature related variables, ±  25 % for 

stripping steam and duty, ± 2 for reflux ratio and -2/+1 for number of trays in column 

sections; then multiple simulations were carried out, and the bounds are adjusted 

accordingly, to facilitate convergence. The range of each bound is defined with 

reference to the initial/ nominal value. 

Next, the Latin Hypercube sampling method is applied to generate 7000 samples, each 

consisting of different combinations of the independent variables within the bounded 

region. Through an interface established between HYSYS and MatLab, all the samples 

are simulated on the rigorous column model developed in HYSYS. Out of these 

samples, 59% (4130) simulations converged; for the remaining 41% (2870), the 
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simulations did not converge. The sampling is carried out on a HP desktop PC with 

Intel(R) Core i5 processor running at 3.2 GHz, and 8 GB of RAM. It took around 1.5 h 

to generate the set of 7000 samples. 

 

Table 5.1 – Bounds on trays in column sections and operating conditions 

Variables Lower bound Upper bound Initial value 

Number of tray    

Section 1 3 6 5 

Section 2 7 10 9 

Section 3 8 11 10 

Section 4 6 9 8 

Section 5 7 10 9 

Section 6 3 6 5 

Section 7 5 8 7 

Section 8 4 7 6 

Operating condition    

PA 1 duty (MW) 8.40 14.00 11.2 

PA 2 duty (MW) 13.42 22.36 17.89 

PA 3 duty (MW) 9.63 16.05 12.84 

PA 1 DT (°C) 10 30 20 

PA 2 DT (°C) 40 60 50 

PA 3 DT (°C) 20 40 30 

Main stripping steam (kmol/h) 900 1500 1200 

HD stripping steam (kmol/h) 188 313 250 

Feed temperature (°C) 340 375 365 

Reflux ratio 3.17 6.17 4.17 

 

Figure 6 shows the performance results of the seven artificial neural networks 

representing the crude oil distillation units. The performance of the artificial neural 

network is calculated using the data in the testing set (see Section 3.2). The coefficient 

of determination for all artificial neural network models is approximately 0.9999. The 

values of the coefficient of determination indicate that the models built are able to 

explain 99.99% of the variance of the outputs, which indicates the goodness of fit.  
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Table 6 Parity plots showing predictions of artificial neural network versus rigorous 

model   

To gain further confidence on the ANN models, additional statistical tests are carried 

out to further assess the model accuracy. The performance criteria are average absolute 

error and average relative error, calculated for temperature related variables and other 

variables (product flow rate, enthalpy change and diameter in column sections) 

respectively. These tests are carried out using 100 converge samples generated using 

the approach presented in Section 3.1. Table 5.2 shows the average error of the 

predictions of the artificial neural network column model compared to the rigorous 

simulation model results. The seven artificial neural network models have 46 outputs 

in total: five each for T5 and T95 boiling temperatures; five product flow rates; 11 

supply temperatures; three target temperatures; eight duties for the condenser, three 
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pump-arounds, two reboilers and five product coolers; the eight diameters, one for 

each column section.  

Table 5.2 – Validation results for the ANN column model 

Variables Average absolute 

error (°C) 

 Variables Average relative 

error (%) 

Product quality  
 

 

Product flow rates 
 

LN T5% 0.098 

 

LN 0.169 

HN T5% 0.250 

 

HN 0.368 

LD T5% 0.454 

 

LD 0.168 

HD T5% 0.358 

 

HD 0.736 

RES T5% 0.269 

 

RES 0.084 

LN T95% 0.009 

 

Exchanger duties 

 HN T95% 0.028 

 

ADU condenser 0.295 

LD T95% 0.013 

 

LN cooler 2.227 

HD T95% 0.002 

 

HN cooler 1.035 

RES T95% 0.027 

 

LD cooler 0.301 

Supply temperature 

 

HD cooler 1.825  

ADU condenser 0.173 

 

RES cooler 0.248 

LN cooler 0.054 

 

HN reboiler 2.122 

HN cooler 0.196 

 

LD reboiler 0.683 

LD cooler 0.199 

 

Fired heater 0.101 

HD cooler 0.732 

 

Column diameter 
 

RES cooler 0.423 

 

Main column 
 

PA1 0.322 

 

Section 1 0.898 

PA2 0.208 

 

Section 2 0.903 

PA3 0.277 

 

Section 3 0.915 

HN reboiler 0.220 

 

Section 4 0.942 

LD reboiler 0.235 

 

Section 5 0.767 

Target temperature 

 

HN side-stripper 2.409  

ADU condenser 0.057 

 

LD side-stripper 0.345 

HN reboiler 0.178 

 

HD side-stripper 3.012 

LD reboiler 0.165 

 
  

 

As shown in Table 5.2, the largest average absolute error in temperature-related 

variables is less than 0.5°C and average relative error for all other variables is less than 

3%. The largest deviation is observed for the section diameter in the HN and HD side 

strippers, yet the associated error is small and may have a marginal impact on the 
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column capital cost calculations. These results confirm the effectiveness and accuracy 

of the artificial neural network column model. 

5.3 Feasibility constraint based on support vector machine  

Table 5.3 presents the validation results of the support vector machine classifier. Note 

for positive class: true prediction means the SVM classifies the sample as feasible, and 

it later converges in the simulation model; false means that it is labeled as feasible, but 

it does not converge in the rigorous model. For negative class: true prediction means 

the SVM labels the sample as infeasible, and it indeed does not converge in the 

rigorous model; false prediction means the SVM labels the point as infeasible, yet it 

converges in the rigorous model. 

 

Table 5.3 – Validation results for support vector machine.  

Prediction class True prediction False prediction 

Positive class 

(Converged samples, +1) 

966 

[91.1%] 

95 

[8.9%] 

   

Negative class  

(Unconverged samples, −1) 

396 

[58%] 

293 

[42%] 

   Overall: Correct prediction 78% 

              Wrong prediction 22% 

 

From the optimization point of view, false positives cut-off the feasible region, 

therefore rejecting design alternatives that may be feasible (and potentially optimal). 

False negatives wrongly enlarge the search space by adding infeasible points. False 

positives need to be minimized, as otherwise there is the danger that the optimization 

algorithm will converge towards an infeasible solution. On the other hand, low false 

negatives will lead to larger CPU times, but do not compromise the quality of the final 

solution.  

The support vector machine results are compared with previous work (Ochoa-Estopier 

and Jobson, 2015), in which an artificial neural network was used to classify sample 

points. The same data set used in training the support vector machine is used to train 

the artificial neural network. The procedure for setting up the artificial neural network 
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can be found elsewhere (Beale et al., 2015). Table S10 in the supplementary material 

shows the performance results obtained from this analysis. From the results, artificial 

neural network retains slightly (3.4%) more feasible designs than the support vector 

machine. On the other hand, the support vector machine removes high proportion 

(4.1%) of the infeasible designs than the artificial neural network. This analysis 

indicates that the support vector machine is advantageous when the emphasis is to 

increase the likelihood for optimization solutions to be feasible when simulated on a 

rigorous model. 

5.4 Crude oil distillation unit optimization results 

 The MINLP problem [PD2] is solved using MatLab R2015a, employing the genetic 

algorithm, ‘ga’ implemented in the Global Optimization Toolbox. The initial population 

contains 100 chromosomes (representing alternative designs), and the maximum 

number of generations is set to 300. These parameters values are tuned via some 

preliminary tests.   

The genetic algorithm is run ten times in order to confirm that the solutions obtained 

are of a reasonable quality, as indicated by standard deviation.  

To check for the effectiveness of the support vector machine introduced in this work, 

the optimization is run (using the artificial neural network column model) with and 

without the support vector machine. As shown in Table S11 (see supplementary 

material), the order of magnitude of the objective function for the two cases are within 

similar range, although when the support vector machine is not used, only 70% of the 

optimization results lead to a feasible simulation on the rigorous model compared with 

100% when the support vector machine is used, confirming the need to include 

support vector machine within an optimization framework for the design of crude oil 

distillation unit  

Details of the computational results for the multiple runs of the genetic algorithm 

(including support vector machine) are summarized in Tables S6 (see supplementary 
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material). The solution with the lowest objective function value and minimum 

computational time is reported Figure 7 and Tables 5.5 to 5.7. The five sections of the 

main column consist of 6, 10, 11, 8 and 7 trays respectively (counting from the bottom), 

while HD, LD, and HN side strippers have three trays each. The minimum hot and 

cold utility demand has decreased by 20% and 28%, respectively, compared with the 

initial design. These decrease are due to: (i) reduction in the temperature of the feed to 

the column, which reduces the fired heating duty for a given flow rate and furnace 

inlet temperature; (ii) redistribution of product flow rates between adjacent streams, 

i.e., transfer of product from streams with low temperature to those with high 

temperature, without compromising product quality specifications (see Table 5.6). The 

latter strategy improves the total amount of recoverable heat at high temperature 

(high-quality heat) within the system, thereby decreasing hot utility demand. 

The total operating cost, consisting of utility cost and steam cost, amounts to 6.81 $MM 

a–1 (where MM is million), while the annualized capital cost of the column is 0.21 $MM 

a–1. Therefore, the column total annualized cost amounts to 8.45 $MM a–1, which is 20% 

lower than the initial design. 
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Figure 7 – Optimal configuration of crude oil distillation unit 

 

Table 5.5 – Crude oil distillation unit operating conditions 

Variable Initial design Optimized design 

PA 1 duty (MW) 11.2 11.05 

PA 2 duty (MW) 17.89 14.01 

PA 3 duty (MW) 12.84 14.35 

PA 1 DT (℃) 20 20 

PA 2 DT (℃) 50 56 

PA 3 DT (℃) 30 28 

Main steam (kmol h–1) 1200 900 

HD steam (kmol h–1) 250 189 

Feed temperature (℃) 365 361 

Reflux ratio 4.17 3.33 
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Table 5.6 – Product quality and flow rate 

Products T5% (°C, ASTM D86) T95% (°C, ASTM D86) Flow rates (m3 h–1) 

 Initial 

design 

Optimized 

design 

Initial 

design 

Optimized 

design 

Initial 

design 

Optimized 

design 

LN 25.9 24.5 110.6 110.6 103.5 99.4 

HN 138.9 131.1 186.6 186.8 78.2 85.5 

LD 215.9 215.7 301.5 301.5 140.3 134.7 

HD 310.7 306.9 354.4 354.4 48.1 49.8 

RES 361.4 360.4 754.3 754.1 292.5 293.3 

 

Table 5.7 – Utility demand and column cost   

Variable Initial design Optimized design Unit* 

Utility requirements     

Hot utility 54.61 44.46 MW 

Cold utility 61.18 46.04 MW 

Cost     

Utility cost 8.51 6.91 $MM a–1 

Steam cost 1.77 1.33 $MM a–1 

    

Total operating cost 10.28 8.24 $MM a–1 

Annualized capital cost 0.33 0.21 $MM a–1 

Total annualized cost 10.61 8.45 $MM a–1  

*$MM denotes millions of dollars 

 The minimum energy demand is calculated using pinch analysis, without taking into 

account details of the heat exchanger network. Nevertheless, the stream information in 

Table S8 of the supplementary material can be used to design the heat exchanger 

network for the column. For a more detailed analysis, a heat exchanger network model 

will be required to replace the grand composite curve. In this way, the column and the 

heat exchanger network can design simultaneously.  

The optimization results i.e., the optimal column configuration and operating 

conditions obtained using the surrogate model were then used as inputs to a rigorous 

simulation in Aspen HYSYS, in order to check whether: (i) the simulation will 

converge; (ii) the ANN results are in good agreement with the converged simulation 

results; (iii) the performance in the two cases is similar, i.e., the ANN gave good 

guidance about the economic performance.  The column validation, shown in Tables S6 
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(see supplementary material), indicates that the optimal results obtained using the 

surrogate model are in excellent agreement with those generated by the rigorous 

simulation, confirming the accuracy and effectiveness of the proposed approach. 

The optimization results were also compared to results obtained via a direct 

simulation–optimization approach using a rigorous distillation column model, the 

results of which are shown in Table 5.8. The same input data (as presented in Tables S1 

to S4) were used in both approaches. Details of the procedure for setting up the 

problem and generating the results for the simulation-optimization approach can be 

found elsewhere (Ibrahim et al., 2017). The simulation-optimization is facilitated via an 

interface established between Aspen HYSYS v8.6 and MatLab, where the rigorous 

column modeling is carried out in Aspen HYSYS v8.6, and the optimization is 

performed in MatLab using a genetic algorithm. 

   Table 5.8 – Comparison of surrogate and rigorous model performance  

Variable 
Optimization with the 

rigorous model 

Optimization with the# 

ANN+SVM 
Unit* 

Utility requirements     

Hot utility 44.32 44.46 MW 

Cold utility 45.9 46.04 MW 

Cost analysis    

Utility cost 6.89 6.91 $MM a–1 

Steam cost 1.33 1.33 $MM a–1 

    

Total operating cost 8.22 8.24 $MM a–1 

Annualized capital cost 0.26 0.21 $MM a–1 

Total annualized cost 8.47 8.45 $MM a–1 

*$MM denotes millions of dollars 

#Validated results 

As can be seen in Table 5.8, the heating and cooling duties for two different methods 

are more or less the same, leading to similar utility cost and the same stripping steam 

cost. A total annualized cost of 8.45 $MM a–1 is obtained using the surrogate model-

based approach, which is slightly lower than the one from the simulation-optimization 

approach, although the two results have the same order of magnitude.   
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The CPU time for the simulation-optimization approach was 180 CPU minutes 

compared with about 100 CPU minutes obtained using the surrogate column model. It 

should be noted that the CPU time for the surrogate model includes sampling (94 

minutes), model construction and validation (5.2 minutes), and column optimization 

and pinch analysis (1.25 minutes). Sampling required most of the computation time. 

Overall, significantly less time was required (44%) without affecting the optimality and 

accuracy of the solution. 

It is also worth mentioning that model development needs to be carried out only once, 

and then enables the optimization of the system considering different objectives and 

constraints. For example, in a design problem where many scenarios might be 

explored, the proposed approach may significantly overcome the direct optimization 

of the rigorous model. As an example, consider the application of a standard sensitivity 

analysis that aims to understand how the design changes according to variations in a 

cost parameter. In the proposed approach, the artificial neural network and support 

vector machine are built only once, and then the optimization is run (which is quite 

quick) as many times as desired. On the contrary, carrying out the same calculations 

with the rigorous model would entail much longer times as the time-consuming 

optimization of approximately three hours would need to be repeated many times. 

6 Conclusions 

Optimization-based design of crude oil distillation unit using surrogate models 

naturally leads to a mixed integer nonlinear programming problem that is very 

difficult to solve. Heat recovery needs to be considered during column design in order 

to account effectively for the trade-off between capital and operating cost. 

This work proposes a novel systematic framework for the design of heat-integrated 

crude oil distillation unit that combines a surrogate column model (in particular an 

artificial neural network), the support vector machine as a feasibility classifier and 

pinch analysis within an optimization framework that applies a genetic algorithm.  
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Suitable dependent and independent variables identified via sensitivity analysis were 

applied to generate sample points. Those samples that resulted in converged rigorous 

simulations were employed to build a surrogate model of the column using an artificial 

neural network, while the entire set of samples (whether or not the rigorous simulation 

converged) was used to train the support vector machine which aimed to classify the 

solution space into feasible (i.e. likely to converge) and infeasible designs. The artificial 

neural network predictions are shown to be in good agreement with the results from 

the rigorous column model, and the support vector machine is shown to have some 

ability to remove a significant proportion of the infeasible design options from the 

search space. The column design was optimized, considering both structure and 

operational variables, using a genetic algorithm. The proposed approach was 

demonstrated to be capable of identifying cost-effective designs in significantly 

reduced times, compared to direct simulation-optimization using rigorous column 

models, rather than surrogate column models. 

Future work will extend the proposed approach to design a flexible heat-integrated 

crude oil distillation unit that optimally processes multiple crude oil feedstocks.  

Appendix A: Supplementary material 

Supplementary data associated with this article can be found, in the online version, at  

https://doi.org/10.1016/j.cherd.2018.03.006 
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Chapter 5  Design of flexible heat-integrated 

…………... .crude oil distillation systems 

As discussed in Chapters 1 and 2, crude oil feedstocks processed in a petroleum 

refinery are inevitably subject to variability during operation. Refinery processes 

designed based on one type of crude oil feedstock may fail to accommodate variability 

of crude oil feedstocks. To enable the crude oil distillation system to operate 

satisfactorily over a range of feedstocks, it is necessary to incorporate some degree of 

flexibility at the design stage. 

Chapters 3 and 4 present new methodologies for the design of crude oil distillation 

system that processes single crude oil feedstock. Numerical results show that the use of 

surrogate distillation column model is computationally efficient compared to rigorous 

simulation models. Thus, surrogate model is used in this chapter for the design of 

flexible crude oil distillation system. 

This chapter addresses objectives four, five and six of this research, that is, (i) develop 

an optimisation framework that incorporates suitable distillation column models and 

pinch analysis to support the design of flexible crude oil distillation systems; (ii) 

propose an effective solution strategy to facilitate the search for flexible, cost-effective, 

and energy-efficient design option; (iii) demonstrate the capabilities of the proposed 

framework using industrially-relevant case studies. This chapter includes two papers, 

i.e., Publication 3 and Publication 4.  

5.1 Introduction to Publications 3   

Publication 3 presents a new approach for the design of flexible crude oil distillation 

systems that can process multiple feedstocks. Unlike the methodologies presented in 

literature (see Chapter 2), the developed approach takes into account important design 
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issues such as trade-offs between capital and energy cost, heat integration, and 

simultaneous optimisation of structural and operational degrees of freedom of the 

system. 

The surrogate modelling approach for crude oil distillation units presented in Chapter 

4 is modified and extended to take into account multiple crude oil feedstocks. Here, the 

artificial neural network and support vector machine are constructed for the individual 

crude oil to be processed. The inputs of the artificial neural networks include pump-

around temperature drop and duty, stripping steam flow rate, feed inlet temperature, 

reflux ratio, and number of trays in column sections, while the outputs are product 

quality (ASTM T5% and T95% boiling temperature) and flow rate, stream enthalpy 

change, stream supply and target temperatures, and column diameter. As stated in 

Chapter 4, the input and output variables selected are those that have significant 

influence on the distillation column performance (e.g. energy demand, profit margin 

etc.)  

To design the flexible crude oil distillation system, an optimisation framework that 

integrates the surrogate column models representing the individual crude oil 

feedstocks and pinch analysis is developed. The optimisation problem is posed as a 

mixed integer nonlinear programming problem with many scenarios. The size of the 

problem increases with increase in number of crude oil to be processed. This type of 

problem (non-convex MINLP) is very difficult to solve (Floudas, 1995; Biegler et al., 

1997; Edgar et al., 2001). In an attempt to ease the numerical difficulty during 

optimisation, the problem is solved in two stages, i.e., the design stage (Stage 1) and 

the operating stage (Stage 2). Stage 1 aims to select the optimal structural design 

variables (number of trays in each column section) of the distillation column. In Stage 

2, the operating variables (for the individual crude oils) that maximise profit margin 

are selected, where the column structure is fixed in the second stage. It is 

acknowledged that solving the problem in a single stage could lead to a better optimal 

solution, however, as the size of the problem becomes larger, single stage solution can 

be difficult and computationally demanding.  
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To effectively solve the non-convex MINLP problem, a hybrid-optimisation approach 

is proposed, combining stochastic and deterministic optimisation methods. Hence a 

genetic algorithm is applied to optimise the integer variables (number of trays in 

column sections) in Stage 1, while in Stage 2, successive quadratic programming is 

applied to select the optimal set of operating conditions for the individual crude oil to 

be processed. The proposed methodology is applied to an industrially-relevant case 

study that involves the design of a flexible crude distillation unit for the separation of 

three crude oil feedstocks (Tia Juana light, Bonny light, and Brent) into five refined 

petroleum products (light naphtha, heavy naphtha, light distillate, heavy distillate and 

residue). Numerical results indicate that a flexible crude oil distillation unit that can 

operate optimally across the three crude oil feed stock can be identified within the 

solution space. Furthermore, all product quality specifications are within their 

constraint limits, and the validation results indicate that the optimal distillation column 

obtained using the surrogate model is in good agreement with the rigorous simulation, 

confirming the effectiveness and accuracy of the proposed approach. The supporting 

information for this paper is presented in Appendix A.3. 

5.2 Introduction to Publications 4 

This paper presents a new methodology for the design of chemical processes under 

uncertainty. The approach presented in Section 5.1 is capable of dealing with problems 

involving a few operating scenarios. For a large number of operating scenarios (e.g. 

several crude oil feedstocks to be processed at different times of the year), the two-

stage optimisation approach leads to a large-scale multi-scenario optimisation problem  

with discrete and continuous variables. The solution of such problem can be 

computationally intensive, leading to large CPU times. Publication 4 develops an 

alternative scenario-based flexible design approach that effectively deals with a large 

number of operating scenarios.  

Overall, the proposed methodology comprises four main steps. Firstly, the system 

parameters that are subject to variability are identified and characterised using a 

probability distribution function (e.g. normal, triangle, uniform, Gaussian etc.). The 
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distribution is then discretised to create several points that represent distinct operating 

scenarios within the design space.  This step can be skipped when the scenarios are 

defined a priori, for example different crude oil to be processed.  

Secondly, process synthesis is carried out to generate alternative design for each 

representative scenario. This step is facilitated using a process superstructure (e.g. 

HEN model proposed by Yee and Grossmann (1990)) and optimisation algorithm such 

as outer approximation (Duran and Grossmann, 1986), genetic algorithm (Mitchell, 

1998) etc. This step requires solving a complex mixed integer nonlinear programming 

problem. 

Thirdly, each design alternative created in the previous step is assessed across the 

entire operating scenarios, taking into account different performance metric, e.g. 

economic, feasibility and risk metrics. This step is carried out by fixing the process 

configuration and unit size, then the system is optimised by solving a nonlinear 

programming problem, considering the entire operating scenarios. 

Finally, a multi-criteria decision-making tool, Analytic Hierarchy Process (Saaty, 2008), 

is applied to select the most flexible and economically viable design among several 

alternative. Two case studies are used to demonstrate the capabilities of the proposed 

method. Numerical results indicate that the proposed methodology is capable of 

handling multi-scenario multi-criteria problem effectively. The supporting information 

for this paper is presented in Appendix A.4. 
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Abstract 

This paper presents a new optimization-based approach for the design of flexible heat-

integrated crude oil distillation units that can process multiple crude oil feedstocks. In 

this work, the crude oil distillation unit is modeled based on artificial neural network 

and a support vector machine. The artificial neural network model predicts the 

performance of the distillation unit for a given crude oil feedstock. The inputs to the 

artificial neural network include the column structural variables and operating 

conditions, while the outputs are variables required to evaluate the column 

performance. The support vector machine classifier filters out infeasible design 

alternatives (i.e. designs that are unlikely to converge when simulated using a rigorous 

model) from the solution space. The artificial neural network models and support 

vector machines constructed for different crude oil feedstocks are integrated into a 

two-stage optimization framework in order to optimize the column structural variables 

and operating conditions. Pinch analysis is used to estimate minimum utility demand. 

An effective solution strategy that combines stochastic and deterministic optimization 

algorithms is applied to search for economically viable and flexible design alternatives 

that can operate over a given range of crude oil feedstocks while satisfying product 
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quality specifications. The capability of the proposed approach is illustrated using an 

industrially-relevant case study.  

Keywords: Flexible process design, heat integration, genetic algorithm, artificial neural 

network, support vector machine  

1   Introduction 

Petroleum refineries typically process various crude oil feedstocks in order to 

accommodate changes in feedstock supply and product demand and to maximize 

profit margins. The need to process different crude oil feedstocks motivates the 

development of design methodologies that facilitate flexible operation of a refinery. 

Here, flexibility refers to the capability of a refinery process to accommodate various 

operating scenarios related to changes in crude oil feedstock, in market price of refined 

petroleum products, and in product specifications to meet the market requirements. 

Crude oil distillation is the first major processing step in any petroleum refinery; 

therefore it is imperative that the distillation unit can process different crude oil 

feedstocks and can accommodate various operating scenarios. The crude oil distillation 

process is complex, capital- and energy-intensive, consuming fuel equivalent to 1 to 2% 

of the entire crude oil feedstock being processed (Szklo and Schaeffer, 2007). This 

tremendous amount of energy consumption is associated with significant CO2 

emissions and operating costs. Heat integration is usually implemented to improve the 

energy efficiency of the distillation process, where heat is recovered from ‘hot’ streams 

that require cooling and used to heat ‘cold’ streams, thus reducing both CO2 emissions 

and operating cost. 

A typical crude oil distillation system comprises crude oil distillation units and a heat 

recovery network in which the raw crude oil feedstock is preheated and partially 

vaporized. An atmospheric distillation unit, equipped with side-strippers and pump-

around loops, is typically complemented by pre-separation units and/or a vacuum 

distillation unit. This work focuses on the atmospheric distillation unit. The two sub-

systems exhibit strong interactions through cooling in pump-arounds, the column 
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condenser and product coolers. The design and operation of the crude oil distillation 

unit affect the design and operation of the heat recovery network and vice-versa. The 

interactions between the two sub-systems are of paramount importance in the design 

of the overall system: the distillation unit can be designed to create opportunities for 

heat recovery, while the heat recovery network can be designed to exploit those 

opportunities, leading to good design solutions, considering capital investment, 

product yield and operating costs.. 

In general, grassroots design of a crude oil distillation unit aims to select the distillation 

column structural variables (namely, feed tray location, pump-around and side-

stripper location, number of trays in each section of the column) and its operating 

conditions (i.e. feed inlet temperature, duties and temperature drops of pump-arounds, 

stripping steam flow rates and reflux ratio). The requirement to process multiple crude 

oil feedstocks and/ or blends of crude oils introduces further challenges and 

complexity for distillation system design.  

An industrially relevant design methodology needs to account for challenges related to 

the large number of design degrees of freedom, complex interactions within the 

system, heat recovery opportunities, and multiple feedstocks, as well as design 

optimality. Most existing design methodologies (e.g. Liebmann et al., 1998; Sharma et 

al., 1999; Ibrahim et al., 2017a, 2017b) focus on distillation of a single, specific crude oil. 

However, operating a distillation unit of a fixed design for other crude oil feedstocks 

can impact on the overall system performance (considering, for example, energy 

consumption, CO2 emissions or profit) or can even lead to infeasible operation (i.e. 

failure of the design to satisfy product quality specifications or to respect hydraulic 

limits, e.g. related to flooding). Few published methodologies are available for the 

design of crude oil distillation units that process multiple crude oil feedstocks, and that 

of Bagajewicz and Ji (2001) does not adequately address trade-offs between capital 

investment, operating cost and product yield, and does not consider structural design 

variables along with operating conditions. 



170 
 

This work proposes a new optimization-based methodology for the design of flexible 

crude oil distillation units that can process multiple feedstocks. Extending previous 

work (Ochoa-Estopier and Jobson, 2015; Ibrahim et al., 2017b), the complex crude oil 

distillation unit is modeled using surrogate models regressed against data generated 

via multiple rigorous simulations. The surrogate model for the crude oil distillation 

unit, together with pinch analysis (to calculate minimum utility requirements), is 

applied within a two-stage optimization framework to facilitate the search for design 

alternatives that are economically viable and also able to process a range of crude oil 

feedstocks. The new approach addresses shortcomings of existing methodologies to 

consider trade-offs between capital investment and energy cost, and to account for 

relevant practical constraints (e.g. product yield and hydraulic limits of the column). 

Section 2 of this manuscript provides a review of relevant research literature on design 

methodologies for crude oil distillation; Section 3 presents the new design approach for 

flexible crude oil distillation units. This two-stage approach applies surrogate models 

and both stochastic and deterministic optimization algorithms. In Section 4, an 

industrially-relevant case study demonstrates the capabilities and benefits of the 

proposed methodology, conclusions and recommendations for future work are 

presented in Section 5. 

2   Previous work: design of crude oil distillation units  

Methodologies for design (and optimization) of crude oil distillation units have been 

presented and developed over many decades. Conventional design methods (Nelson, 

1958; Watkins, 1979; Jones, 1995) rely on heuristic rules, empirical correlations, and 

simple mass and energy balance calculations. The crude oil distillation unit and heat 

recovery network are considered separately, without accounting for interactions 

between the two sub-systems. These methods require trial and error and require 

significant engineering effort.  

Several researchers have accounted for interactions between the distillation unit and 

the heat recovery network by considering heat recovery together with design of the 
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distillation unit.  Liebmann et al. (1998) pioneered an approach that applied rigorous 

column simulation and pinch analysis sequentially to facilitate the search for an 

energy-efficient column configuration and its operating conditions. Sharma et al. (1999) 

proposed a two-step design approach: first material and energy balance are applied to 

each section of a proposed crude oil distillation column and then the corresponding 

temperature–enthalpy data are used to construct the column grand composite curve 

(Dhole and Buckingham, 1994) to maximize heat recovery without adversely affecting 

separation. Bagajewicz and Ji (2001) applied the related concept of a heat demand–

supply diagram to identify the best location for pump-arounds, while taking into 

account the effect of stripping steam on heat recovery, as well as to identify suitable 

operating conditions for a column processing a range of crude oil feedstocks. The 

methods proposed by Liebmann et al. (1998), Sharma et al. (1999) and Bagajewicz and 

Ji (2001) assume a fixed number of trays in each column section, and thus do not 

consider the trade-off between capital investment and energy cost. Furthermore, the 

design is not optimized.  

Ibrahim et al. (Ibrahim et al., 2017a) proposed a superstructure for optimizing the 

structure of a crude oil distillation unit, extending the approach developed by 

Caballero et al. (2005) for simple columns, where pinch analysis is used to account for 

heat recovery. The crude oil distillation unit is modeled in Aspen HYSYS, while the 

optimization framework is developed in MatLab. An interface (AspenTech, 2011) is 

established between the two software packages to exchange information during 

optimization. In this approach, both the column structural variables (number of trays 

in each column section) and operating conditions are optimized. Using the rigorous 

column model for system optimization was shown to be computationally expensive; 

subsequent work (Ibrahim et al., 2017b) improved the computational performance of 

the methodology through the use of surrogate models based on artificial neural 

networks in place of the rigorous column model, extending the approach of Ochoa-

Estopier and Jobson (2015). Support vector machines were applied to filter the search 

space to improve the quality of solutions and to expedite the optimization. The 
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resulting optimization framework was shown to be effective for generating cost-

effective design solutions.  

The design methodologies presented above focus on crude oil distillation units that 

process a specific feedstock. While the resulting design may perform well for a given 

feedstock, the design is likely to perform poorly for alternative crude oil feedstocks 

with properties that are significantly different from those considered during the 

design. Although Bagajewicz and Ji (2001) presented an approach for selecting the 

operating conditions of a crude oil distillation unit that can process light, medium and 

heavy crude oils, the distillation column configuration is not optimized. To the best of 

the authors’ knowledge, no approaches have been identified that apply distillation 

models, together with optimization algorithms, to design flexible heat-integrated crude 

oil distillation units that can perform well for a range of crude oil feedstocks. 

This manuscript proposes a new methodology for the design of flexible crude oil 

distillation units that can process multiple crude oil feedstocks. The method extends 

surrogate modeling techniques (Ibrahim et al., 2017b) together with stochastic and 

deterministic optimization techniques In this work, a separate artificial neural network 

model (Beale et al., 2015) and support vector machine (Vapnik, 1995) representing the 

distillation unit is constructed for each crude oil feedstock to be processed. These 

models and associated feasibility constraints (Jobson et al., 2017) are applied in a two-

stage optimization procedure (Grossmann and Guillén-Gosálbez, 2010); a hybrid 

stochastic-deterministic approach is proposed to optimize the structural variables of a 

column that can operate for all proposed scenarios, and the operating conditions of the 

column are optimized for each feedstock under consideration. The approach considers 

performance in terms of product yield, product quality specifications, column 

hydraulic constraints, capital investment and operating costs.  

3   Proposed methodology 

This section presents the new framework for the design of flexible crude oil distillation 

units that applies surrogate models. Figure 3.1 provides an overview of the approach, 
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showing its four main steps: problem initialization, data sampling, surrogate column 

modeling and two-stage optimization-based design. First, the information required to 

simulate the distillation of the crude oil feedstocks is collated. These data include the 

crude oil assay and product quality specifications. An initial feasible design, i.e. the 

column structure and operating conditions, is established. This information, together 

with the knowledge of the crude oil distillation unit, is applied to identify appropriate 

dependent and independent variables. Samples can then be generated: these are the 

results of multiple rigorous simulations. The samples for each crude oil are used to 

construct surrogate models of the crude oil distillation column. The surrogate models 

for all the crude oils and a pinch analysis algorithm are applied in an optimization 

framework, where a hybrid stochastic-deterministic algorithm is used to search for 

column configuration that can operate optimally across all the crude oil to be 

processed. The details of each step are covered in subsequent sections. 
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Figure 3.1 Framework for the design of flexible crude oil distillation units 

3.1   Initialization 

Surrogate models are used to simplify calculations and to improve computational 

performance, compared to more rigorous models, while also providing a relatively 

accurate representation of the process being modeled. A key challenge is to select an 
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appropriate set of dependent and independent variables and a form of the surrogate 

model that balances accuracy and ease of computation.  

For the case of design of a crude oil distillation column, the independent variables 

include the structural and operational design degrees of freedom; these are the inputs 

of the surrogate model. The dependent variables – the outputs of the surrogate model – 

allow calculation of the value of the objective function, and also allow relevant 

inequality constraints to be checked, for example those related to product quality. 

Ibrahim et al. (2017b) propose a suitable set of dependent and independent variables 

for modeling a crude oil distillation unit for design purposes. In this work, the 

independent variables are: the feed inlet temperature, stripping steam flow rates, 

pump-around temperature drops and duties, reflux ratio and number of trays in each 

column section. The dependent variables are: supply and target temperatures of 

heaters and coolers, variables characterizing product quality (for example, ASTM T5% 

and T95% boiling temperatures), product flow rates and diameter required in each 

column section.  

Prior to optimization, it is necessary to define the limits of the solution space to ensure 

that the optimized solutions are meaningful and potentially realizable. Therefore, 

before sampling, sensitivity analyses are carried out. Simulations for which the 

specified independent variables do not converge are assumed not to lead to realistic 

solutions; the corresponding inputs are identified as ‘infeasible’. Initially, bounds are 

defined for each independent variable, i.e., ± 10 °C for temperature related variables, ± 

25 % for stripping steam and duty, ± 2 for reflux ratio and -2/+1 for number of trays in 

column sections. Single-variable sensitivity studies (via multiple rigorous simulations) 

for all independent variables are therefore carried out to determine the range for which 

convergence is obtained and thus to define their upper and lower bounds for sampling.  

An important premise of this work is that the vector of inputs corresponding to an 

unconverged simulation signifies a set of independent variables that will not lead to a 

feasible solution. A ‘feasible’ solution is one that meets all problem constraints, 

including material and energy balances, phase equilibrium relations and problem-

specific constraints, e.g. those relating to product quality or yield. It is acknowledged 
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that non-convergence is not absolutely correlated with feasibility – in some cases, 

convergence could be achieved with better initialization or additional iterations. 

Furthermore, it is recognised that not all converged solutions will meet all problem-

specific constraints, since the rigorous simulation model only imposes a limited set of 

constraints, according to the number of degrees of freedom in the model; a penalty 

function applied during optimization may be needed to impose additional constraints. 

Nevertheless, the intention of reducing the sampling space is to eliminate samples that 

do not converge, so as to avoid generating spurious optimal solutions that simply 

cannot satisfy all constraints. 

3.2 Data sampling 

Once the sets of dependent and independent variables are identified, and bounds are 

defined for each independent variable, samples can be generated within the design 

space. The sampling approach applied in this work comprises two main steps: 

First, random samples are generated for each independent variable. Various types of 

sampling techniques such as Monte Carlo sampling, Latin hypercube sampling, and 

Hammersley are widely used to generate random samples (Diwekar and Kalagnanam, 

1997). Without loss of generality, the Latin hypercube sampling is used in this work, 

since it has been shown to facilitate statistically useful distributions of samples 

(Subramanyan et al., 2011). 

Second, all the Latin hypercube samples generated are sent as inputs to a rigorous 

simulation of the crude oil distillation column; the corresponding outputs are recorded. 

In this work, the rigorous distillation model is built in Aspen HYSYS, while the Latin 

Hypercube sampling is implemented in MatLab. An interface is established to link the 

two software packages (AspenTech, 2011) for automated exchange of information 

during sampling. 

Not all the samples generated using the Latin hypercube sampling algorithm lead to 

converged simulations. To facilitate building an accurate and robust surrogate column 

model, the samples classified as ‘converged’ and ‘unconverged’, according to whether 
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the simulation using rigorous models converged. Only the converged samples are used 

to build the surrogate models, as for these samples there is a meaningful relationship 

between the inputs and outputs. The entire sample set is classified (as converged and 

unconverged samples); this classification underpins the construction of feasibility 

constraints using a support vector machine. 

3.3 Surrogate modeling of the distillation unit  

In this work, the concept of an artificial neural network is applied to build surrogate 

models of the crude oil distillation unit. Comprehensive descriptions of artificial neural 

networks can be found elsewhere (Basheer and Hajmeer, 2000; Himmelblau, 2008). 

Here, the artificial neural network toolbox embedded in MatLab 2015a is used to 

facilitate the construction, validation, and testing of surrogate models. The artificial 

neural network correlates system inputs and outputs, either by correlating multiple 

inputs with multiple outputs, or by correlating multiple inputs to a single output. The 

former requires a relatively small number of networks for a given problem and leads to 

a relatively compact model, where compactness is invaluable for systems with a large 

number of outputs, for example the crude oil ditillation system. 

The structure of the artificial neural network consists of a multilayer perceptron with 

one input layer, a variable number of hidden layers and one output layer (Beale et al., 

2015). The hidden and output layers comprise a specified number of neurons. Given 

that algorithms for selecting the number of layers and numbers of neurons are 

challenging or time consuming to implement, in this work, the number of layers and 

numbers of neurons are determined by trial and error: alternative networks are 

generated for different numbers of layers and numbers of neurons and the accuracy of 

the resulting network is assessed for the ‘testing’ data in terms of the ‘prediction error.’ 

Following the findings of published studies (Basheer and Hajmeer, 2000; Himmelblau, 

2008), the sigmoid function was chosen to connect hidden layers and the linear 

function was selected to connect to the output layer.  

The data set generated in the sampling step is used to train the networks. The 

converged data set is randomly divided into three subsets, for training (70%), 
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validation (15%) and testing (15%), where these splits follow available guidance (Beale 

et al., 2015). First, the artificial neural networks are regressed against the training set, 

where the aim is to minimize the difference between predicted outputs and the 

corresponding values in the sample set (note that the data set is scaled between -1 and 

1 in order to improve training (Beale et al., 2015)). Then the validation set is utilized 

during the training process to avoid over-fitting (Beale et al., 2015). Finally, the testing 

set is used to check the accuracy of the artificial neural network model, where the 

performance criterion used in this work is the coefficient of determination (Allen, 

1997). The artificial neural network toolbox in MatLab enables all these steps and 

permits the user to choose the size and structure of the model, the performance 

criterion and to review the performance for each of the data subsets. In addition to the 

artificial neural network model for the column, a model is developed to partition the 

solution space, in order to promote the search for feasible solutions (i.e. those that are 

likely to converge). The aim is to restrict the optimization search space to the region 

comprising feasible solutions, to enhance computational efficiency and increase the 

likelihood of identifying optimal solutions that are also feasible.  

A support vector machine is constructed to partition the solution space. The entire data 

set (both converged and unconverged samples) is randomly split into a training set and 

a validation set. In this work, a 75%–25% split is used, based on previous work 

(Ibrahim et al., 2017b). The MatLab function fitcsvm is used to train and validate the 

support vector machine (MATLAB, 2014). In this work, the support vector machine is 

chosen to be a third-order polynomial that generates outputs equal to +1 and – 1, 

denoting feasibility and infeasibility, respectively.   

Sampling and surrogate modeling, resulting in artificial neural network models and 

support vector machine, is carried out separately for each type of crude oil under 

consideration. These models are then applied within the optimization framework 

discussed below. 
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3.4   Optimization-based design 

The two-stage optimization framework is presented below in terms of its mathematical 

formulation, solution strategy for solving the optimization problem and 

implementation. 

In developing the mathematical formulation, the following assumptions are made: 

i. Each crude oil feedstock represents a discrete operating scenario; 

ii. Only one crude oil is processed per operating scenario and blending is not 

considered; 

iii. Weighting factors are used to reflect the relative importance of a scenario.  

The first stage considers the column structure, where a structure is proposed and 

evaluated in the second stage. Structural decisions comprise the number of trays in 

each column section; the number and locations of feeds, pump arounds, draw streams, 

vapour return streams, reboilers and stripping steam feeds are fixed (i.e. are located at 

the top of bottom of a given section, where the number of trays in that section is a 

variable). In the second stage, the fixed structure is applied to all the operating 

scenarios (i.e. to all the crude oil feedstocks to be processed) and the operating 

conditions for each scenario are optimized to achieve the best overall performance. The 

overall performance is the weighted average of the performance of the individual 

scenarios. Model M1 (eq. 1) summarizes the problem formulation, which takes the 

form of a mixed integer nonlinear programming (MINLP) problem:   

[M1]                  max
                                   𝑥𝑠,𝑦

   𝑈(𝒚) + ∑ 𝑤𝑠 ∙ 𝑉𝑠(𝒙𝑠 , 𝒚)

𝑆

𝑠=1

                                                                                 (1) 

𝑠. 𝑡.    𝑔𝑠(𝒙𝑠 , 𝒚) ≤ 0                                                                                     

ℎ𝑠(𝒙𝑠, 𝒚) = 0                                                                         

𝒙𝐿,𝑠 ≤ 𝒙𝑠 ≤ 𝒙𝑈,𝑠                                                                    

𝒚𝐿 ≤ 𝒚 ≤ 𝒚𝑈                                                                       

𝒙 ∈ 𝑋, 𝒚 ∈ 𝑌                                                                      
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where 𝑈(𝒚) denotes the objective function of the first stage, i.e. the annualized capital 

cost of the distillation unit for the set of discrete variables 𝒚, where 𝒚 is the vector 

representing the number of trays in each column sections; 𝑉𝑠(𝒙𝑠 , 𝒚) denotes the second 

stage objective function and 𝒙𝑠 is the vector representing the operating variables for a 

given scenario, 𝑠 . The weighting factor  𝑤  is pre-specified, e.g. according to the 

probability or importance of each scenario. 𝑋 , 𝑌 , 𝑆  represent the sets of operating 

conditions, 𝒙 , discrete variables, 𝒚 , and operating scenarios, 𝑠 ; 𝑔  and ℎ  represent 

inequality constraints and equality constraints, respectively. Subscripts 𝐿 and 𝑈 denote 

lower and upper bounds. 

3.4.2   Optimization algorithm  

Optimization methods are broadly categorized as deterministic and stochastic, where 

deterministic approaches require information about gradients of the objective function 

and constraints in the search for optimal solutions. Unlike deterministic methods, 

stochastic methods apply random numbers in the search for optimal solutions. An 

advantage of stochastic methods is that, by introducing randomness and ignoring 

gradients, they are less likely to become trapped near locally optimal solutions. 

Stochastic methods can suffer from computational inefficiency as a result of the 

randomness and it is difficult to guarantee that an optimum solution, whether local or 

global, has been obtained. Stochastic search methods such as genetic algorithms, 

simulated annealing and particle swarm optimization have been applied extensively in 

process design optimization (Edgar et al., 2001). 

To mitigate the disadvantages of both approaches, while also taking advantage of their 

strengths, this work combines stochastic and deterministic methods in the search for 

optimal solutions. In the first stage, which is dominated by discrete design alternatives, 

the column structure is optimized using stochastic methods. The second stage applies 

deterministic search methods, as only continuous variables are involved. 

In particular, a genetic algorithm is applied in the first stage, since it has been shown to 

be well suited for solving large-scale highly combinatorial problems (Steimel et al., 

2013). Successive quadratic programming (Edgar et al., 2001) is used to optimize 
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continuous variables in the second stage. This deterministic algorithm is selected 

because of its ability to guarantees optimality (local) of a solution.  

3.4.3   Implementation of the optimization framework 

The artificial neural network model of the column and the support vector machine 

describing the solution space can be created in MatLab, where these models are fitted 

to samples generated and recorded using an interface between MatLab and Aspen 

HYSYS. The models are conveniently formulated as functions in MatLab and can 

readily be called to evaluate the performance of specific proposed solutions and to 

optimize the system performance. On the other hand, the mathematical functions 

expressing these models can be coded in other equation-based software environments, 

such as GAMS and Fortran, and their optimization capabilities can be exploited.  

In this work, the surrogate models provided as MatLab functions are applied for 

optimization. In the first stage, the genetic algorithm ’ga’ in the global optimization 

toolbox of MatLab 2015a is employed; in the second stage, the successive quadratic 

programming algorithm fmincon is applied.  

4   Case study 

 

4.1   Problem description 

The case study, which aims to demonstrate the capabilities of the proposed design 

methodology, considers the design of a crude oil distillation unit that is flexible enough 

to process three specified crude oil feedstocks and that is optimized in terms of profit 

margin. 

The three feedstocks of interest are Tia Juana, Bonny light and Brent crude oil 

(Watkins, 1979; TOTAL, 2015) into five products: light naphtha, heavy naphtha, light 

distillate, heavy distillate, and residue. Each feedstock represents an operating 

scenario, and it is assumed that each is processed for 4 months each year, so the three 

scenarios are equally weighted. The flow rate of each crude oil is 100,000 bbl day–1 
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(662.4 m3 h–1). The crude oil assay information for the three crude oils is presented in 

Table S1 of the supplementary material.  

Figure 4.1 illustrates the crude oil distillation column configuration: the main column 

has three pump-arounds and is connected to three side-strippers. The main column has 

five sections (S-1 to S-5), and the three side-strippers represent three sections (S-6 to S-

8).  

As the methodology requires an initial feasible design, the initial stage distribution and 

operating conditions for Tia Juana light crude oil are adapted from the design of Chen 

(2008), presented also in Ibrahim et al. (2017a). Trial and error is applied to adapt the 

stage distribution to the two other crude oils, i.e., Bonny light and Brent. The details of 

the initial stage distribution and initial operating conditions for the three crude oils are 

presented in Tables S2 and S3 of the supplementary material. 

 

Figure 4.1 Configuration of crude oil distillation unit to be optimized 
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The initial flow rates of products and their respective specifications (in terms of ASTM 

T5% and T95% boiling temperatures) are presented in Table S4 of the supplementary 

material. The operating pressure is uniformly 2.5 bar. The main column and side-

strippers are equipped with sieve trays spaced 0.61 m apart. The required diameter for 

each section is estimated using the tray sizing utility in Aspen HYSYS, assuming that 

the approach to jet flooding should be at most 80% and that downcomer backup 

should not exceed 50%.  

The economic evaluation of the design assumes an interest rate of 5%, a plant life of 20 

years and 8700 operating hours per year. Table S5a presents the transfer value of 

intermediate products and costs of the crude oils; Table S5b presents the cost of 

utilities. A minimum approach temperature of 30℃ is used to calculate the minimum 

utility requirement.  

4.2   Initialization and data sampling 

The data in Section 4.1 are used to set up a rigorous simulation model of the crude oil 

distillation unit in Aspen HYSYS (v8.6). For each independent variable, a sensitivity 

analysis is carried out.  Based on the range of the variable for which simulation 

convergence was obtained, bounds were identified for the three crude oils; these are 

presented in Tables S6 to S9 of the supplementary material. 

Next, 7000 Latin Hypercube samples are generated for each crude oil. Sampling took 

about 2 seconds per simulation on a HP desktop PC with an Intel® Core i5 processor 

running at 3.2 GHz and 8 GB of RAM.  

4.3   Surrogate model of crude oil distillation column 

In this case study, the crude oil distillation unit outputs are divided into seven groups 

as shown in Table 4.1, following previous work (Ibrahim et al., 2017b). Each group of 

outputs is correlated with the inputs using a dedicated artificial neural network. The 18 

inputs are the number of trays in each column section (8), pump-around temperature 

drops (3) and duties (3), stripping steam flow rates (2), feed inlet temperature (1), and 

reflux ratio (1). Trial and error was used to select the structure of the surrogate model, 
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as discussed in Section 3.3. Each of the 7 artificial neural networks has one input layer, 

one hidden layer and one output layer, where the hidden layers each have ten neurons. 

Table 4.1 summarizes the purpose of the artificial neural network models and the 

associated number of outputs. The system comprises of 11 target temperatures, three of 

which are predicted using ANN number seven (see Table 4.1), five of which are exit 

temperature of product coolers (values fixed at 40℃ for LN, HN and LD cooler; 50℃ 

and 100℃ for HD and residue coolers respectively), and three of which are return 

temperatures of pump-arounds (values equal to pump-around supply temperature less 

temperature drop—input variable) 

Table 4.1 Description of artificial neural network models  

ANN number Description Outputs 

1 Product quality (T5 %) 5 

2 Product quality (T95 %) 5 

3 Product flow rate 5 

4 Column diameter 8 

5 Enthalpy change 9 

6 Supply temperature 11 

7 Target temperature* 3 

 

Of the 7000 samples, only the converged samples were used to fit the artificial neural 

network model, i.e. 4130 samples for Tia Juana light; 6782 for Bonny light and 4419 for 

Brent. The performance of the artificial neural network models representing the 

distillation column of Tia Juana, Bonny light, and Brent is presented in Table 4.2 in 

terms of the coefficient of determination. As can be seen in Table 4.2, the coefficient of 

determination for all the artificial neural networks ranges from 0.992 to 0.999. These 

results reveal that all the networks can explain at least 99% of the variance of the 

outputs (from the rigorous model). The performance of each artificial neural network is 

calculated using data in the testing set (see Section 3.3)  

Figures S1 to S3 of the supplementary material provide parity plots which illustrate 

how almost all of the models are in very good agreement with the results of the 

rigorous simulation models, apart from models 4 and 5 for Brent crude oil, where there 
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are significant, but randomly distributed, deviations for the models predicting column 

diameter and enthalpy change.  

Table 4.2 Performance of artificial neural networks (coefficient of determination) 

Serial no.  Network ID Description Outputs Tia Juana Bonny light Brent 

1 ANN1 T5 % 5 0.999 0.999 0.999 

2 ANN2 T95 % 5 0.999 0.999 0.999 

3 ANN3 Product flow 5 0.999 0.999 0.999 

4 ANN4 Column diameter 8 0.999 0.999 0.992 

5 ANN5 Enthalpy change 9 0.999 0.999 0.998 

6 ANN6 Supply temp. 11 0.999 0.999 0.999 

7 ANN7 Target temp. 3 0.999 0.999 0.999 

 

To increase confidence in the artificial neural network models, an error analysis is 

carried out, where the error is the difference between the rigorous simulation results 

and the predictions of the artificial neural network. The average absolute error is 

calculated for temperature-related variables and is presented in Table 4.3; Table 4.4 

presents the average relative error is calculated for other variables. These calculations 

are carried out using new data set (100 converged simulation) generated via Latin 

Hypercube sampling technique presented in Section 3.1.  

As can be seen in Table 4.3, the highest average absolute error for stream supply and 

target temperatures is 1.5℃. All other temperature predictions are within 1C of the 

more rigorous prediction. Table 4.4 shows that prediction of product flow rates is good 

(less than 1.4% error). The maximum average error in exchanger duties is case-specific, 

ranging from 2.2% for Tia Juana to 16.4% for Brent. The errors in the prediction of 

required diameter is around 8%; the largest errors relate to side-stripper diameters. The 

difference of around 0.3 m in the stripper diameter gives rises to a difference of around 

575.9 $/y in the capital cost of the side-stripper, amounting to a difference of less than 

0.0006% in the net profit for the process. Overall, the statistical test reveals that 

predictions of the artificial neural network models representing the distillation 

columns processing Tia Juana, Bonny light and Brent crude oils are in good agreement 

with those of the more rigorous Aspen HYSYS simulations.  
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Table 4.3 Average absolute error (C) calculated for the ANN representing each 

crude oil 

Variables Tia Juana Bonny light Brent 

Product quality (C) 
 

 
 

LN T5% 0.098 0.099 0.194 

HN T5% 0.250 0.701 0.934 

LD T5% 0.454 0.059 0.258 

HD T5% 0.358 0.839 0.438 

RES T5% 0.269 0.666 0.434 

LN T95% 0.009 0.103 0.725 

HN T95% 0.028 0.004 0.496 

LD T95% 0.013 0.527 0.002 

HD T95% 0.002 0.003 0.004 

RES T95% 0.027 0.215 0.344 

Supply temperature (C)   
 

ADU condenser 0.173 0.263 0.351 

LN cooler 0.054 0.101 0.116 

HN cooler 0.196 0.361 0.518 

LD cooler 0.199 0.269 0.332 

HD cooler 0.732 0.778 0.609 

RES cooler 0.423 0.420 0.403 

PA1 0.322 0.535 1.519 

PA2 0.208 0.453 0.620 

PA3 0.277 0.360 0.244 

HN reboiler 0.220 0.341 0.452 

LD reboiler 0.235 0.395 0.491 

Target temperature (C)  
 

 

ADU condenser 0.057 0.066 0.117 

HN reboiler 0.178 0.266 0.501 

LD reboiler 0.165 0.096 0.313 
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Table 4.4 Average relative error calculated for the ANN representing each crude oil 

Variables Tia Juana Bonny light Brent 

Product flow rate (m h–1) 

LN 0.169 0.482 0.266 

HN 0.368 0.566 0.588 

LD 0.168 0.276 0.334 

HD 0.736 1.388 0.641 

RES 0.084 0.504 0.159 

Exchanger duty (MW) 

ADU condenser 0.295 0.250 0.342 

LN cooler 2.227 1.232 4.073 

HN cooler 1.035 0.572 0.590 

LD cooler 0.301 0.398 0.739 

HD cooler 1.825 1.279 3.798 

RES cooler 0.248 0.414 1.073 

HN reboiler 2.122 5.684 16.349 

LD reboiler 0.683 2.829 8.979 

Fired heater 0.101 0.035 0.213 

Column diameter (m) 

Main column 
 

  

Section 1 0.898 1.105 1.262 

Section 2 0.903 1.029 2.492 

Section 3 0.915 0.970 0.828 

Section 4 0.942 0.856 0.746 

Section 5 0.767 0.795 1.570 

HN side-stripper 2.409 4.850 8.257 

LD side-stripper 0.345 2.165 7.382 

HD side-stripper 3.012 3.313 2.034 
 

Table 4.5 shows the validation results of the support vector machine for Tia Juana, 

Bonny light and Brent. For each crude oil, 75% of the total samples are used to 

construct the support vector machine, while the remaining 25% is used to check the 

effectiveness of the SVMs. 

The output of the support vector machine can be either 1 (converged samples) or –1 

(unconverged samples). In Table 4.5, a true prediction is when the support vector 

machine predicts the output of the rigorous model correctly, for example, if the 

rigorous model converged and the support vector machine predicts 1. On the other 

hand, false prediction is when the support vector machine wrongly predicts the output 

of the rigorous model. From the optimization perspectives, true positive prediction 

retains the feasible region containing converged samples (feasible designs), while true 



188 
 

negative prediction removes infeasible region (containing infeasible designs) from the 

design space. As can be seen in Table 4.5, a considerable portion of the feasible region 

of the three crude oils is retained: 91.1%, 97.3% and 93.4, while a moderate portion of 

the infeasible region is removed from the design space: 58%, 7%, and 70%. In the other 

case, false positive prediction means feasible designs have undesirably removed from 

the design space, while false negative prediction means infeasible designs are retained 

within the design space, which is undesirable; leading to large CPU time, but the final 

solution is not affected.  

Table 4.5 Performance of support vector machines 

Prediction class Tia Juana Bonny light Brent 

True 

prediction 

False 

prediction 

True 

prediction 

False 

prediction 

True 

prediction 

False 

prediction 

Positive class 

(Converged samples, 1) 

966 

[91.1%] 

95 

[8.9%] 

1646 

[97.3%] 

47 

[2.7%] 

998 

[93.4%] 

71 

[6.6%] 

       

Negative class  

(Unconverged samples, 0) 

396 

[58%] 

293 

[42%] 

4 

[7%] 

53 

[93%] 

477 

[70%] 

204 

[30%] 

   

    

Overall: Correct prediction 78% 94.3% 84.3% 

              Wrong prediction 22% 5.7% 15.7% 

 

4.4   Flexible crude oil distillation unit – optimization results 

The artificial neural network column models and support vector machine classifiers for 

the three crude oils are implemented into Model M1 (see Section 3.4) in order to search 

for the best column structure as well as the operating conditions for each of the three 

crude oils. More specifically, the equality constraints in Model M1 are represented as; 

 ℎ1,𝑠:     [𝑇5𝑖] = 𝐴𝑁𝑁1,𝑠(𝑥𝑠 , 𝑦)            𝑖 = 1,2,3, … , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡  

ℎ2,𝑠:     [𝑇95𝑖 ] = 𝐴𝑁𝑁2,𝑠(𝑥𝑠 , 𝑥𝑜)        𝑖 = 1,2,3, … , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡  

ℎ3,𝑠:     [𝐹𝑖] = 𝐴𝑁𝑁3,𝑠(𝑥𝑠 , 𝑥𝑜)              𝑖 = 1,2,3, … , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡  

ℎ4,𝑠:     [𝐷𝑗] = 𝐴𝑁𝑁4,𝑠(𝑥𝑠 , 𝑥𝑜)             𝑗 = 1,2,3, … , 𝑁𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

ℎ5,𝑠:     [𝐸𝑘] = 𝐴𝑁𝑁5,𝑠(𝑥𝑠 , 𝑥𝑜)            𝑘 = 1,2,3, … , 𝑁𝑠𝑡𝑟𝑒𝑎𝑚 

  ℎ6,𝑠:     [𝑇𝑆𝑙] = 𝐴𝑁𝑁6,𝑠(𝑥𝑠 , 𝑥𝑜)          𝑙 = 1,2,3, … , 𝑁𝑠𝑡𝑟𝑒𝑎𝑚 

  ℎ7,𝑠:     [𝑇𝑇𝑙] = 𝐴𝑁𝑁7,𝑠(𝑥𝑠 , 𝑥𝑜)            𝑙 = 1,2,3, … , 𝑁𝑠𝑡𝑟𝑒𝑎𝑚 

  ℎ8,𝑠:     [𝐶𝐶] = 𝑆𝑉𝑀𝑠 
(𝑥𝑠 , 𝑥𝑜)     

  ℎ9,𝑠:     𝐶𝐶 = 1  

 

 

 

(2) 
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where 𝑇5𝑖 and 𝑇95𝑖  represent the ASTM boiling temperatures of product i at 5 vol% 

and 95 vol% vaporization; 𝐹𝑖 is the volumetric flow rate of product i; 𝐷𝑗  is the diameter 

of section j; 𝐸𝑘 is the enthalpy change of stream k; 𝑇𝑆𝑙 and 𝑇𝑇𝑙  are the supply and target 

temperatures of stream l; CC represents the convergence criterion predicted by the 

support vector machine (+1 or −1); ANN and SVM represent the artificial neural 

network model and support vector machine function, respectively. 

The inequality constraints in Model M1 can be expressed as 

 

 𝑔1,𝑠:     𝑙𝑏𝑗 ≤ 𝑁𝑗 ≤ 𝑢𝑏𝑗       𝑗 = 1,2,3, … , 𝑁𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

  𝑔2,𝑠:      𝑙𝑏𝑙 ≤ 𝑄𝑃𝐴,𝑙 ≤ 𝑢𝑏𝑙        𝑙 = 1,2,3 

  𝑔3,𝑠:      𝑙𝑏𝑙 ≤ ∆𝑇𝑃𝐴,𝑙 ≤ 𝑢𝑏𝑙        𝑙 = 1,2,3 

  𝑔4,𝑠:      𝑙𝑏𝑚 ≤ 𝐹𝑠,𝑚 ≤ 𝑢𝑏𝑚            𝑚 = 1,2      

   𝑔5,𝑠:      𝑙𝑏 ≤ 𝑅 ≤ 𝑢𝑏                             

   𝑔6,𝑠:     𝑙𝑏 ≤ 𝑇𝐹 ≤ 𝑢𝑏                          

   𝑔7,𝑠:      𝑙𝑏𝑖 ≤ 𝑇5𝑖 ≤ 𝑢𝑏𝑖         𝑖 = 1,2, … , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡              

   𝑔8,𝑠:     𝑙𝑏𝑖   
≤ 𝑇95𝑖 ≤ 𝑢𝑏𝑖         𝑖 = 1,2, … , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡          

 

 

 

 

where Nj is the number of active trays in column section j; QPA,l and ∆TPA,l are the duty 

and temperature drop of pump-around l; FS,m is the steam flow rate of stream m; R is 

the overhead reflux ratio; TF is the feed inlet temperature; 𝑇5𝑖  and 𝑇95𝑖  are the boiling 

temperature of product 𝑖 at 5% and 95% vaporization, for example, according to ASTM 

standards.  

In Model M1, 𝑔1 to 𝑔6 are bounds on independent structural and operational variables, 

while 𝑔7  and 𝑔8  represent constraints on dependent variables, related to product 

quality. The inequality constraints pertaining to all these variables can be included in 

the objective function as a penalty function (Edgar et al., 2001). In this way, Model M1 

is converted to an unconstrained optimization problem, which is considerably easier to 

solve than the original constrained problem.  The resulting reformulation, M2, is: 

(3) 
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[M2]                 max
𝑥𝑠,𝑦

   𝑈(𝒚) + ∑ 𝑤𝑠 ∙ 𝑉𝑠(𝒙𝑠 , 𝒚) + [Π ∑[max (0, (𝑔𝑖,𝑠))]
2

8

𝑖=7

]

𝑆

𝑠=1

                               (4) 

             

                            𝑠. 𝑡.      ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6, ℎ7, ℎ8, ℎ9                                                                                          

                                     𝑔1 , 𝑔2, 𝑔3 , 𝑔4 , 𝑔5, 𝑔6                             

where 𝑔𝑖  denotes the inequality constraints 𝑔7  and 𝑔8 ; Π  is a large scalar value that 

amplifies the consequences of violating constraints g7 and g8, which helps to ensure that 

the optimal solution meets all the constraints. 

4.4.1   Objective function 

Optimization-based design aims to select the best design option among several 

alternatives according to a given performance criterion. In process synthesis and 

design, many different performance criteria can be used, including economic indicators 

such as profit margin, total annualized cost, net present value, and other indicators, 

such as CO2 emissions and safety. The choice of performance criterion depends 

significantly on the design objectives. In this work, the aim is to design a flexible crude 

oil distillation system that maximizes the economic performance, in particular, profit 

margin.  

The first stage of the optimization procedure aims to fix the structure of the crude oil 

distillation column, without considering the associated operating conditions for any of 

the scenarios. Therefore the objective function at this stage can only consider capital 

expenditure. In this work, the objective to be minimized is the annualized capital cost 

(ACC) of the distillation unit, which is the sum of installed column shell cost (SC) and 

total tray cost (TC). Without loss of generality, the capital cost correlations of Guthrie 

(1969) are used, given the number of trays and diameter in each section of the column. 

These predicted costs are multiplied by a suitable installation factor and cost index to 

update the costs. Further details are provided in Section S3 of the supplementary 

material. The annualization factor ( 𝐴𝑓 ) described by Smith (2005) is applied to 

apportion the total capital cost over the plant life (𝑡), for a specified interest rate (𝑖).   
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                                            𝐴𝐶𝐶 = (𝑆𝑐 + 𝑇𝐶) ∙ 𝐴𝑓                                                                           (5) 

 

                                             𝐴𝑓 =
𝑖(1 + 𝑖)𝑡

(1 + 𝑖)𝑡 − 1
                                                                              (6) 

 

The objective to be maximized at the second stage, V, is the profit margin (PM), i.e. 

transfer value (or “transfer price”) (R) of intermediate products less the cost of the crude 

oil feedstock and the operating cost (OC), specifically, the cost of stripping steam and 

of heating and cooling utilities. Note that Eq. (5) to (7) relate to a given operating 

scenario and the price of crude oil is different in each scenario (depends on crude oil 

type been processed). 

                                         𝑃𝑀 = 𝑅 − 𝐶𝐶𝑂 ∙ 𝐹𝐶𝑂 − 𝑂𝐶                                                                          (7)     

                                     𝑅 = ∑ 𝐹𝑖 ∙ 𝑃𝑖

𝑁

𝑖=1

                       𝑖 = 1,2,3, … , 𝑁𝑃𝑟𝑜𝑑𝑢𝑐𝑡                                  (8) 

                                   𝑂𝐶 = ∑ 𝑆𝑇𝑚 ∙ 𝐶𝑆𝑇

𝑀

𝑚=1

+ 𝑄𝐻𝑈 ∙ 𝐶𝐻𝑈 + 𝑄𝐶𝑈 ∙ 𝐶𝐶𝑈       𝑚 = 1,2                    (9) 

 

In Eq. (7) to (9), CCO is the unit price of a given crude oil feedstock; FCO is the flow rate 

of crude oil feedstock; 𝐹𝑖  and 𝑃𝑖 are the flowrate and transfer value of intermediate 

petroleum products respectively; 𝐶𝑆𝑇 , 𝐶𝐻𝑈  and 𝐶𝐶𝑈  are the unit costs of the stripping 

steam and the hot and cold utilities respectively; QHU and QCU are the minimum 

demand for hot and cold utilities, respectively, while k represents the number of 

stripping steam streams associated with the column.  

In this work, the minimum demand for hot and cold utilities is estimated using pinch 

analysis (Smith, 2005). The algorithm of Morandin (2014) is applied to generate the 

grand composite curve and determine QHU and QCU. This approach has the advantages 

of enabling operating costs to be evaluated for every proposed solution, without 

needing to consider the details of the associated heat recovery system. However, the 

approach does not allow meaningful estimates of the cost of the heat exchanger 

network to be made; nor does it account for challenges relating to obtaining a design 
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for the heat exchanger network that can accommodate all the operating scenarios of 

interest.  

The optimization variables in Model M2 include the number of trays in each column 

section and the column operating conditions for each crude oil. Tables S6 to S9 presents 

the bounds on the optimization variables. The product quality specifications that must 

be satisfied are presented in Table S4, where the product quality indicators have a 

tolerance of 10C (Chen, 2008).  

As explained in Section 3.4, the design variables are optimized in the first stage using a 

genetic algorithm, while the operating conditions of the individual crude oils are 

optimized in the second stage using successive quadratic programming. The tuning 

parameters of the genetic algorithm include the population size and number of 

generations. In this work, an initial population size of 30 alternative column 

configurations and 20 generations are selected by trial and error: after applying the 

algorithm multiple times, these parameters were selected as they represented a good 

compromise between the performance of the optimum solution and the computation 

time.  

Stochastic optimization methods do not guarantee optimality of a solution. To gain 

confidence in the optimization results, the optimization framework is applied ten times 

consecutively and the best result is selected. Each run is carried out using a different 

set of initial population that are randomly generated. For the results presented in Table 

S10, optimization took 3426 to 4480 seconds. Figure 4.2 illustrates the optimal column 

design for processing the three crude oil feedstocks, while Tables 4.6 and 4.7 presents 

the optimal operating conditions and details of the product quality and flow rates. As 

shown in Figure 4.2, the distillation unit has 5, 10, 8, 10 and 10 trays in the five sections 

of the main column, and 5, 7 and 4 trays in the HN, LD and HD side-strippers, 

respectively. The total annualized cost of the distillation unit is $0.41·106 a–1. 
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Figure 4.2 Optimized design of flexible crude oil distillation unit 

 

Table 4.6 Optimal operating conditions of crude oil distillation unit  

Operating condition Tia Juana Bonny light Brent 

PA 1 duty (MW) 14.00 15.00 7.00 

PA 2 duty (MW) 14.89 17.58 23.31 

PA 3 duty (MW) 16.05 13.35 22.00 

PA 1 DT (℃) 20 70 50 

PA 2 DT (℃) 40 15 55 

PA 3 DT (℃) 20 19 25 

Main steam (kmol h–1) 1500 1500 1300 

HD steam (kmol h–1) 188 118 232 

Feed temperature (℃) 375 375 375 

Reflux ratio 3.78 4.35 2.97 
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Table 4.7 Optimal product quality and flow rates for three crudes 

Variables Tia Juana Bonny light Brent 

Product quality (℃) 
   

LN T5% 25.5 25.1 3.9 

HN T5% 135.9 132.8 136.5 

LD T5% 217.9 215.9 215.9 

HD T5% 308.2 299.4 308.2 

RES T5% 367.8 377.4 373.9 

LN T95% 110.6 110.6 110.9 

HN T95% 186.5 186.6 186.2 

LD T95% 301.5 301.4 301.5 

HD T95% 354.4 354.4 354.4 

RES T95% 755.6 620.2 657.8 

Product flow rates (m3 h–1)    

LN 103.3 115.5 160.4 

HN 82.2 104.9 92.0 

LD 131.7 184.5 133.1 

HD 60.3 86.8 64.8 

RES 285.1 171.0 212.3 

 

Table 4.8 Optimal product quality and flow rates for three crudes 

Variables Tia Juana Bonny light Brent 

Utility requirements  
   

Hot utility (MW) 49.79 52.75 69.94 

Cold utility (MW) 58.71 57.32 70.29 

Cost analysis 
   

 Utility cost (MM$ a–1) 7.80 9.16 9.35 

 Steam cost (MM$ a–1) 2.06 1.97 1.87 

Total operating cost (MM$ a–1) 9.85 11.14 11.22 

Profit margin (MM$/y) 140.59 97.42 101.39 

Annualized capital cost (MM$ a–1) 0.41 

Net profit (MM$ a–1) 130.74 86.29 90.17 

Expected profit (MM$ a–1) 102.40 

MM$ a–1 denotes millions of dollars per annum 

The minimum hot utility requirement for Tia Juana, Bonny light and Brent, as 

calculated by the grand composite curve (Morandin, 2014), is 49.8 MW, 52.8 MW, and 

69.9 MW, respectively. Evidently, lightest crude oil has the highest hot utility demand. 
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This trend is consistent with the findings of Al-Mayyahi et al. (2011), who reported a 

significant hot utility demand in processing a crude oil blend comprising a large 

fraction of a light crude oil and vice versa. This behavior may be explained by 

considering that, when distilling light crude oils, a large quantity of recoverable heat is 

available at relatively low temperatures (in the top sections of the column), while for 

heavy crude oils, recoverable heat is predominantly available at higher temperatures 

(in the bottom sections of the column). The lower-temperature heat is less useful in the 

heat recovery system than the higher-temperature heat; consequently, more of the heat 

needs to be supplied by a fired heater, increasing fuel costs and CO2 emissions, as can 

be seen in Table 4.8.  

In Table 4.6, the flow rates of stripping steam (main steam and HD steam) for Tia 

Juana, Bonny light and Brent are 1688 kmol h–1, 1618 kmol h–1, and 1532 kmol h–1, 

respectively. The main purpose of stripping steam is to suppress the boiling point of 

the hydrocarbons and to supply heat for vaporizing the hydrocarbon mixture in the 

flash zone (feed inlet location) of the crude oil distillation unit. The increased demand 

for stripping steam as the density of the crudes oil increases results from the greater 

need to suppress the boiling point of heavier hydrocarbons.  

The optimum expected profit is $102.4·106 a–1, with Tia Juana light, Bonny light and 

Brent contributing 43%, 28% and 29%, respectively. The optimum product flow rate 

and product quality for the three crude oils are presented in Table 4.7. It may be seen 

that, in all cases, the maximum profit is attained by increasing the flow rate of the most 

valuable product at the expense of less valuable products. Table 4.7 shows that all 

product quality specifications are met, within 10C.  

The predicted performance for the optimal flexible design of the crude oil distillation 

unit is validated using rigorous simulation in Aspen HYSYS. Tables S11 and S12 of the 

supplementary material show that the results obtained with the surrogate model are in 

good agreement with the rigorous simulation results, with errors in temperatures of 

less than 2C and other errors within 3%. 
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4 Conclusions 

The complex nature of crude oil distillation coupled with the large number of degrees 

of freedom poses a highly challenging design and optimization problem. Additional 

challenges arise due to the need to simultaneously design the complex column and 

address heat recovery and to take into account multiple feedstocks. Existing methods 

address column design only for single crude oil feedstocks, or do not adequately 

account for capital–energy trade-offs as well as design optimization.  

This work proposes a systematic framework for the design of flexible crude oil 

distillation units that process multiple crude oil feedstocks. The optimization 

framework integrates surrogate column models based on ANNs and support vector 

machine and a hybrid stochastic–deterministic optimization algorithm. The framework 

comprises two stages: structural design and optimization of operating conditions. In 

the first stage, a genetic algorithm is employed to search for the best structure, 

accounting for all crude oil feedstocks of interest; in the second stage, successive 

quadratic programming searches for the optimal operating conditions for each 

feedstock. A case study indicates that the methodology enables a flexible design to be 

identified in reasonable computational times (around 1 h). 

Future work aims to extend the methodology to consider a larger number of crude oil 

feedstocks and crude oil blends. An important limitation of the work is that no details 

of the heat recovery system are considered: an approach to design a single cost-

effective heat exchanger network that can service all envisaged processing conditions is 

also required. Future work could replace the pinch-based calculation with a detailed 

heat exchanger network model for flexible operation, for example, the HEN models of 

de Oliveira Filho et al. (2007) or Yee and Grossmann (1990). 

Appendix A: Supplementary material  

Supplementary data associated with this article can be found, in the online version, at 

http://  
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 Abstract 

This paper introduces a novel methodology for the synthesis of chemical processes 

under uncertain operating conditions. The approach comprises four main steps: (i) 

uncertainty characterization and generation of scenarios using sampling methods; (ii) 

process synthesis based on the ‘sample average approximation algorithm’ to generate 

feasible designs; (iii) evaluation of each such design in the space of uncertain 

parameters using both feasibility and probabilistic metrics computed over the 

scenarios generated in Step 2; and (iv) application of the analytic hierarchy process to 

identify the designs that best reflect decision-makers’ preferences. We illustrate the 

capabilities of our methodology through its application to the design of heat exchanger 

networks under uncertain inlet conditions, and distillation column for multicomponent 

separation with uncertain feed conditions. Numerical results obtained demonstrate 

that the proposed methodology is capable of synthesizing a network and a distillation 

column that are flexible, operable under a wide range of operating conditions, and 

with better overall performance than designs that do not explicitly account for flexible 

operation.  
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1. Introduction 

Chemical process design is typically performed under the assumption of fixed 

operating parameters (temperature, pressure, composition, flow rate, etc.) at so-called 

nominal conditions. During plant operation, however, it is likely that the operating 

parameters will change, affecting the operability, controllability and feasibility of the 

design. To address these variations in processing conditions, it is necessary to 

introduce some degrees of flexibility at the design stage, to ensure that the process will 

be able to accommodate deviations from the nominal state during its operation 

(Grossmann et al., 1983). In the past, flexibility considerations were incorporated at the 

design stage based on engineers’ experience and judgment (Wagler and Douglas, 

1988), usually relying on empirical overdesign factors (Swaney and Grossmann, 1985). 

These approaches depend little on understanding of or insight into the required 

degrees of flexibility of a given design and may lead to significant overdesign, typically 

associated with unnecessarily high capital investment (Grossmann et al., 1983).  

Chemical process design under uncertainty is an active area of research (Halemane and 

Grossmann, 1983; Pistikopoulos and Ierapetritou, 1995; Sahinidis, 2004; Wang and 

Rong, 2010; Kostin et al., 2012; Rogers and Ierapetritou, 2015; Amaran et al., 2016; 

Wang et al., 2016). Two main methods are applied to address optimization problems 

containing uncertain parameters, namely, robust optimization and stochastic 

programming (Georgiadis and Pistikopoulos, 1999; Bertsimas et al., 2010; Grossmann 

and Guillén-Gosálbez, 2010; Zhang et al., 2016). In robust optimization approaches, the 

solution to the uncertain problem is determined for every possible realization of the 

uncertain parameter within the feasible region for a certain probability of satisfying the 

problem constraints. On the other hand, in stochastic programming, uncertainties are 

described by discrete scenarios. Each scenario corresponds to a particular realization of 

the uncertain parameter within the uncertain space. This type of problem is typically 

solved in two stages (Pistikopoulos and Ierapetritou, 1995; Grossmann and Guillén-
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Gosálbez, 2010). In the first stage, design variables and the process configuration are 

selected, while in the second stage the adjustable variables are optimized according to 

the realization of the scenarios. 

The design of flexible processes can be seen as a special case of design under 

uncertainty, where the engineer seeks a design capable of remaining feasible – i.e. 

meeting the design objective – within a given operating interval. Instead of using any 

of the methods for optimization under uncertainty mentioned above, many researchers 

have focused on developing customized approaches for this problem based on the 

definition of a flexibility index. This flexibility index, which is calculated considering 

the variability of the uncertain parameters (typically the operating conditions in a 

process design problem), is then optimized as an additional criterion (i.e. flexibility 

objective in addition to economic objective). In a pioneer work, Swaney and 

Grossmann (1985) developed a flexibility index, F, as a quantitative measure of the 

maximum tolerable deviation of an uncertain parameter within the feasible operation 

region. This original index has been the basis for many methodologies for the design of 

flexible chemical processes.  

Pistikopoulos and Grossmann (1988a) proposed a linear model for retrofitting an 

existing flowsheet in order to improve flexibility at minimum total annualized cost. By 

exploring the linear model, they explicitly included flexibility constraints into the 

formulation. In a later work, Pistikopoulos and Grossmann (1988b) extended the linear 

formulation to design problems with infeasible nominal points and nonlinear behavior. 

Chacon-Mondragon and Himmelblau (1996) proposed an integrated approach for 

process design addressing flexibility and total annualized cost. To incorporate the two 

potentially conflicting objectives (flexibility index and total annualized cost) at the 

design stage, a multi-objective optimization (MOO) problem was formulated to 

simultaneously maximize the flexibility index and minimize the total annualized cost 

considering the potential realizations of the uncertain parameter within the feasible 

region of operation.   



206 
 

Chen and Hung (2004) proposed an iterative three-step approach that integrates 

flexibility analysis and process synthesis. First, an MINLP formulation derived from a 

process superstructure is used to identify a candidate design. In the second step, the 

flexibility of the design is quantified to assess whether the design is feasible over the 

full disturbance range. Finally, a constraint is applied to exclude designs that fail to 

satisfy the flexibility criterion from the search space used for the next iteration. 

Recently, Wang et al. (2016) explored the application of flexibility analysis in the 

context of chemical process supply chain design in the face of uncertainties in product 

demand, raw material supply, production yield and price of final product. Zhang et al. 

(2016) compared flexibility analysis and robust optimisation from the historical 

context.  

Most of the research highlighted above relies on the definition and optimization of 

flexibility indices. However, these approaches lead to nonlinear problems with 

auxiliary constraints required to calculate the flexibility index. As a result, such 

approaches can be computationally expensive and also difficult to implement for 

problems described using black box models.  

This work presents a systematic framework for the optimal design of chemical 

processes under uncertainty that overcomes the above limitations. First, the proposed 

method does not rely on auxiliary constraints, thereby simplifying the calculations 

from the viewpoint of implementation (i.e. it can easily be implemented in process 

simulators). Second, the new approach considers in an explicit manner the inherent 

trade-off between level of flexibility and economic performance through the 

application of a multi-criteria decision-support methodology. Third, the approach can 

handle different types of distribution of uncertainties, where established methods for 

flexible design do not incorporate probabilistic information in the analysis. The 

capabilities of the methodology, which integrates the Sample Average Approximation 

(SAA) algorithm (Kleywegt et al., 2001) with the Analytic Hierarchy Process (Saaty, 

1990), are illustrated through its application to the design of a heat exchanger network 

(HEN) and a distillation column. 
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The remainder of this article is organized as follows: Section 2 defines the problem to 

be addressed. Section 3 presents the detailed mathematical formulation of process 

design under uncertainty together with an efficient solution method. Section 4 applies 

the proposed approach to a case study on heat exchanger network design with 

uncertain inlet conditions and distillation column design with uncertain feed 

conditions. Finally, comprehensive conclusions on the current study are drawn. 

2. Problem statement 

The chemical process design problem to be addressed can be formally stated as 

follows:  

The design methodology aims to identify the configuration and operating conditions of 

a chemical process that will allow the process to operate feasibly (i.e. to meet 

production goals, within a specified tolerance) and optimally (i.e. with good 

performance, defined in terms of appropriate performance metrics), over the whole 

range of the space of uncertain parameters. The approach is based on the assumption 

that these uncertain parameters can be represented using a set of pre-defined scenarios, 

each of which has a known probability of occurring. 

Given are sufficient process data to allow design and evaluation of proposed designs. 

Some of these design variables may be uncertain (i.e. their values may vary according 

to a given probability function within a given range). For example, data may include 

process stream data (i.e. supply and target temperatures, heat capacity flow rates and 

heat transfer coefficients, temperatures of available utilities), process specifications (e.g. 

flow rate and composition of product streams), constraints (e.g. minimum approach 

temperature, range of operating temperatures or pressures) and economic data (e.g. 

unit costs of utilities, parameters of capital cost models, operating hours, project life).  

Two design problems are used to illustrate the capabilities of the proposed approach: 

heat exchanger network design and distillation column design.  
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3. Methodology  

To solve the problem defined in Section 2, a general mathematical formulation for 

design under uncertainty is proposed, together with an effective solution procedure. 

The application of this approach is presented in Section 4.  

3.1 Mathematical formulation 

Problem (1) presents a general mathematical formulation for the problem of process 

design under uncertainty: 

 

min
𝑑,𝑧,𝑥

        𝑓(𝑑, 𝑧, 𝑥, 𝜃)   

                                                      

𝑠. 𝑡                 ℎ(𝑑, 𝑧, 𝑥, 𝜃) = 0                      

                       𝑔(𝑑, 𝑧, 𝑥, 𝜃) ≤ 0  
 

                     𝑑 ∈ 𝐷, 𝑧 ∈ 𝑍, 𝑥 ∈ 𝑋, 𝜃 ∈ 𝛩  

(1) 

 

where d, z, x, 𝜃 represent the vectors of design, control, state and uncertain variables 

respectively. 𝑓(𝑑, 𝑧, 𝑥, 𝜃) is the objective function; ℎ(𝑑, 𝑧, 𝑥, 𝜃) and 𝑔(𝑑, 𝑧, 𝑥, 𝜃) denote the 

equality and inequality constraints, respectively; X, Z and D represent sets of state, 

control and design variables, respectively, while 𝛩 denotes the set of all possible values 

that the process parameters can take.  

For simplicity, the state variable, x, is eliminated from Problem (1), leading to the 

alternative representation in Problem (2):  

min
𝑑,𝑧

          𝑓(𝑑, 𝑧, 𝜃)  

                                                      

𝑠. 𝑡                 ℎ(𝑑, 𝑧, 𝜃) = 0                      

                       𝑔(𝑑, 𝑧, 𝜃) ≤ 0  

 

                     𝑑 ∈ 𝐷, 𝑧 ∈ 𝑍, 𝜃 ∈ 𝛩  

(2) 
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This work assumes that the uncertain parameters can be described via a set of pre-

defined scenarios. A scenario is taken to be a sample of the uncertain parameter space, 

in which each parameter takes a specific value (i.e. corresponding to a particular 

realization in the space of uncertain parameters). This leads to the formulation 

presented as Problem (3): 

min
𝑑,𝑧

          𝑓(𝑑, 𝑧𝑠 , 𝜃𝑠)  

                                                      

𝑠. 𝑡                 ℎ(𝑑, 𝑧𝑠 , 𝜃𝑠) = 0            ∀𝑠 ∈ 𝑆                      

                       𝑔(𝑑, 𝑧𝑠 , 𝜃𝑠) ≤ 0            ∀𝑠 ∈ 𝑆  
 

                     𝑑 ∈ 𝐷, 𝑧𝑠 ∈ 𝑍  

(3) 

where 𝜃𝑠  is the vector of parameters values in scenario s belonging to the set of 

scenarios S. Note that structural design decisions are not scenario-dependent, as they 

must be taken here and now, before (and whether or not) any particular uncertain 

scenario occurs. On the other hand, operating decisions are scenario-dependent, as it is 

assumed that the corresponding value of a manipulated variable can be set in response 

to the specific materialization of the uncertain parameter.  

The objective function 𝑓(𝑑, 𝑧𝑠 , 𝜃𝑠)  of the model might include more than a single 

criterion, as in general we will be interested in maximizing the economic performance 

(optimality), while at the same time ensuring adequate operation under all possible 

conditions (feasibility), that is, while maximizing the flexibility level. Hence, different 

metrics might be used to represent the design objectives (further details on this topic is 

presented in Section 3.2.2), leading to a multi-objective model. In general, these 

objectives will tend to conflict; for example, ensuring that the design will work well 

over a wide range of operating conditions will tend to increase capital costs. Hence, the 

multi-objective and multi-scenario problem, M1, will take the form: 

(M1)             min
𝑑,𝑧𝑠

       {𝑓1(𝑑, 𝑧𝑠 , 𝜃𝑠), … , 𝑓𝑘(𝑑, 𝑧𝑠 , 𝜃𝑠)} 

                                                         

(4) 
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                        𝑠. 𝑡               ℎ(𝑑, 𝑧𝑠 , 𝜃𝑠) = 0            ∀𝑠 ∈ 𝑆                      

                                             𝑔(𝑑, 𝑧𝑠 , 𝜃𝑠) ≤ 0            ∀𝑠 ∈ 𝑆  
 

                                          𝑑 ∈ 𝐷, 𝑧𝑠 ∈ 𝑍  

where f1 to fk are the scalar objectives to be minimized. A key point in this formulation 

is the approach in which flexibility can be quantified using metrics described by 

algebraic equations.  

The solution of model M1 is not unique, but rather given by a set of Pareto points, each 

achieving a unique combination of objective function values. Hence, assuming that the 

model could be efficiently solved, one should still address the challenge of selecting a 

specific Pareto solution to be implemented in practice. To this end, this work applies 

the Analytic Hierarchy Process (AHP), a multi-criteria decision-support tool that 

translates decision-makers’ preferences into weights. The weights provided by the 

AHP allow Model M1 to be reformulated into the following single-objective multi-

scenario problem, M2:  

(M2)             min
𝑑,𝑧𝑠

       ∑ 𝑤𝑖𝑓𝑖(𝑑, 𝑧𝑠 , 𝜃𝑠)𝑘
𝑖=1  

                                                         

                        𝑠. 𝑡               ℎ(𝑑, 𝑧𝑠 , 𝜃𝑠) = 0            ∀𝑠 ∈ 𝑆                      

                                             𝑔(𝑑, 𝑧𝑠 , 𝜃𝑠) ≤ 0            ∀𝑠 ∈ 𝑆  

 

                                          𝑑 ∈ 𝐷, 𝑧𝑠 ∈ 𝑍  

(5) 

where 𝑤𝑖 represents the weight assigned to objective i (calculated via the AHP). Model 

M2 is easier to solve than M1, as it has a single objective. However, it might still be 

difficult to calculate the global optimum due to its size and nonlinearities, as its 

number of equations depends on the number of scenarios (e.g. mass and energy 

balances are defined for every scenario). To simplify its calculation, we use a variant of 

the sample average approximation (SAA) algorithm (Kleywegt et al., 2001) that is 

explained in more detail in Section 3.2.2. 
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3.2 Solution procedure 

The solution strategy applied to solve M2 efficiently is illustrated in Figure 1 and 

involves four main steps:  

• Step 1: Stochastic modeling: characterization and sampling of the uncertain 

operating conditions.  

• Step 2: Generation of design solutions using the SAA algorithm (see Section 3.2.2): 

process synthesis for every sample generated from the uncertain distributions. 

• Step 3: Assessment of the designs in the space of uncertain parameters: process 

optimization of the designs generated in Step 2 considering all the scenarios that 

represent the uncertain parameters. 

• Step 4: Identification of the best trade-off solution: Application of the analytic 

hierarchy process to identify the best process design among the alternatives 

identified in the previous steps.  

 

 

Figure 1 Strategy for optimal process design with uncertain operating conditions. 
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In the new design method proposed in this work, the uncertain parameters are 

described via probability distributions, as opposed to other published research on 

flexibility that defined minimum and maximum levels within which uncertain 

parameters fall. Monte Carlo sampling of the uncertain parameters is then applied to 

generate representative scenarios (i.e. samples). For each such scenario, a deterministic 

model is solved to generate potentially attractive design alternatives. The performance 

of each of these designs is evaluated by fixing the design variables in a deterministic 

model that considers all the scenarios simultaneously and optimizes only the operating 

variables (for all the scenarios that represent the uncertain parameters). This 

optimization evaluates the performance of each design in the space of uncertain 

parameters; these outputs are the inputs to the analytic hierarchy process that 

identifies the best process design that best matches the preferences of the decision-

makers, as represented using weights in equation (15). Details of each step of the 

proposed strategy are presented in Sections 3.2.1 to 3.2.4. 

3.2.1 Step 1: Stochastic modeling 

The first step involves describing and quantifying the uncertain parameters via 

probability functions, such as uniform, normal and triangular distributions, among 

others (Diwekar, 2008). After the probability distributions are constructed, an 

appropriate sampling technique is applied to sample and propagate the effect of the 

uncertainty into the model. Different sampling techniques are presented in the 

literature (Diwekar, 2003). Without loss of generality, the Monte Carlo sampling 

method is adopted in this work, as it shows equidistribution properties of the sets of 

points in the space of uncertain parameters (Diwekar and Rubin, 1994). Monte Carlo 

sampling is based on a pseudo-random number generator that approximates a given 

distribution, where the specific values of each input are selected by inverse 

transformation over the cumulative probability distribution (Diwekar and Rubin, 

1994). The sample from the Monte Carlo simulation is defined by a combination of 

different random values for each input (Diwekar and Rubin, 1994); this information is 

used in Step 2 to synthesize a different design for each scenario. 
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3.2.2 Step 2: Generation of design solutions using the SAA algorithm 

The sampled scenarios are used as inputs in the deterministic model M2, which is 

solved using an algorithm based on the SAA algorithm. The SAA algorithm solves 

recursively an approximate model containing fewer scenarios than the original model 

and stores the values of the first-stage decision-variables for each such run. These first-

stage variables are then fixed in the original problem containing all the scenarios and 

the second-stage decisions are optimized. The first-stage solution that performs best in 

the original problem approximates the global optimum of the original model.  

Here we apply the SAA algorithm; in the first step of the algorithm we use 

deterministic models constructed for each scenario. Hence, following this approach, 

model M2 is solved at the process synthesis step to generate designs for each sampled 

scenario (i.e. we solve M2 for every scenario separately). Note that the original problem 

has several objective functions (e.g. expected performance, risk metric, etc.), some of 

which need to be calculated over the whole range of scenarios. Nevertheless, in this 

stage of the algorithm, one scenario is considered at a time, which prevents the 

calculation of the objectives required to assess the level of flexibility of every design 

alternative. To overcome this limitation, the alternatives are optimized considering a 

single criterion (i.e. the economic performance). Hence, for every scenario, 𝑠∗, the value 

of the first-stage variables �̅�𝑠∗ that define the optimal design for that outcome of the 

uncertain parameters is obtained by solving the following problem: 

(M3)            �̅�𝑠∗ = argmin
𝑑,𝑧𝑠∗

𝑓𝑒𝑐𝑜(𝑑, 𝑧𝑠∗, 𝜃𝑠∗)  

                                                         

                        𝑠. 𝑡          ℎ(𝑑, 𝑧𝑠∗, 𝜃𝑠∗) = 0                     

                                        𝑔(𝑑, 𝑧𝑠∗ , 𝜃𝑠∗) ≤ 0  
 

                                     𝑑 ∈ 𝐷, 𝑧𝑠∗ ∈ 𝑍  

(6) 

where 𝑧𝑠∗ and 𝜃𝑠∗ are the optimal control variables and parameter values, respectively, 

associated with design �̅�𝑠∗  and scenario 𝑠∗ ∈ 𝑆  and feco is the economic objective 
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function. It should be noted that argmin is a function that returns the values of 𝑑 and 

𝑧𝑠∗ that minimizes feco. 

 3.2.3 Step 3: Assessment of the designs generated in the space of 

uncertain parameters  

The designs generated in step 2 are optimized in the parameter space in order to assess 

their performance. Note that each design is optimized for a single scenario (i.e. it is 

optimal for that combination of uncertain parameter values, but might be suboptimal 

for others); therefore it might be unfeasible when it is evaluated under conditions that 

differ from those for which it was optimized. To avoid infeasibilities during the 

assessment stage, the equality and inequality constraints must be relaxed, and a 

penalty added to the objective function. The model is therefore modified as follows: 

 (M4)     min
𝑧𝑠

   ∑ 𝑝𝑟𝑜𝑏𝑠(𝑓𝑒𝑐𝑜(�̅�𝑠∗, 𝑧𝑠 , 𝜃𝑠) + 𝜋(𝑠𝑙𝑎𝑐𝑘𝑠
ℎ+ + 𝑠𝑙𝑎𝑐𝑘𝑠

ℎ− + 𝑠𝑙𝑎𝑐𝑘𝑠
𝑔

))𝑠∈𝑆           (7)   

 

  𝑠. 𝑡              ℎ(�̅�𝑠∗, 𝑧𝑠 , 𝜃𝑠) + 𝑠𝑙𝑎𝑐𝑘𝑠
ℎ+ + 𝑠𝑙𝑎𝑐𝑘𝑠

ℎ− = 0   ∀𝑠 ∈ 𝑆                

                                                 𝑔(�̅�𝑠∗, 𝑧𝑠 , 𝜃𝑠) − 𝑠𝑙𝑎𝑐𝑘𝑠
𝑔

≤ 0  ∀𝑠 ∈ 𝑆                           

 

               𝑧𝑠 ∈ 𝑍, 𝑠𝑙𝑎𝑐𝑘𝑠
ℎ+, 𝑠𝑙𝑎𝑐𝑘𝑠

ℎ−, 𝑠𝑙𝑎𝑐𝑘𝑠
𝑔

∈ ℝ+ 

where probs is the probability of scenario, s, occurring, 𝜋 is a penalty weighting that 

penalizes the violation of the equality and inequality constraints, while 

𝑠𝑙𝑎𝑐𝑘𝑠
ℎ+, 𝑠𝑙𝑎𝑐𝑘𝑠

ℎ−  and 𝑠𝑙𝑎𝑐𝑘𝑠
𝑔

 (slack variables) represent the extent of deviation from 

feasible operation. Note that here we optimize a single objective, the economic 

performance, calculated as 𝑓𝑒𝑐𝑜(�̅�𝑠∗, 𝑧𝑠 , 𝜃𝑠)  plus the penalty related to deviation from 

feasible operation, represented by a weighted sum of the slack variables. 

From the set of operating conditions, 𝑧𝑠𝑑̅̅ ̅̅ , that is optimal for each scenario, we can 

finally calculate the different objectives. In this work, we focus on slack variables (TS), 

expected total cost (ETC) and worst case (WC). These objectives were selected since we 

are interested in finding an optimal design that represent the best trade-off between 
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extent of flexibility, process economics and risk associated to process operation under 

different scenarios. The details of the individual objectives follow:  

• The sum of the so-called 1-norms of the slack variable (TS), which indicates the 

deviation from the feasible region of operation for a specific design over all 

expected scenarios. This objective is mathematically defined as follows: 

𝑇𝑆𝑑 = ∑ 𝑝𝑟𝑜𝑏𝑠 (‖𝑠𝑙𝑎𝑐𝑘𝑠
ℎ+‖

1 
+ ‖𝑠𝑙𝑎𝑐𝑘𝑠

ℎ−‖
1 

+ ‖𝑠𝑙𝑎𝑐𝑘𝑠
𝑔‖

1 
)𝑠𝜖𝑆                      (8) 

  1-norm is the sum of the absolute values of the slack variables  

• The expected total cost (ETC), which represents the weighted sum of the total 

annualized cost (TAC) over all the scenarios:  

𝐸𝑇𝐶𝑑 = ∑ 𝑝𝑟𝑜𝑏𝑠𝑇𝐶𝑠𝑠𝜖𝑆                                                                                     (9) 

where 𝑇𝐶𝑠  is the cost in scenario, s, of the design being assessed and 𝑝𝑟𝑜𝑏𝑠 is the 

probability of occurrence of scenario, s. 

• The worst case (WC), which is the maximum value of the total cost over all of 

the scenarios. 

𝑊𝐶𝑑 = max
𝑠

{𝑇𝐶𝑠}                                                                                         (10) 

The best process design is identified after aggregating the values of each 

performance indicator for each potential design alternative. Section 3.3 introduces 

the AHP and shows how it can be applied to carry out such aggregation. 

3.2.4 Step 4: Application of Analytic Hierarchy Process (AHP) to identify 

optimal design 

The analytic hierarchy process (AHP) (Saaty, 1990) is an important tool used in the 

field of multi-criteria decision-making to select alternatives according to multiple 

objectives. One important feature of AHP is the ability to handle both qualitative 

(subjective opinion) and quantitative inputs. AHP has been widely used to solve 

problems in different areas including manufacturing (Yurdakul, 2004), logistics (Wang 

et al., 2005), management (Saaty et al., 2003) and engineering (Su et al., 2003). 
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The application of AHP comprises three main steps: (i) decomposition, (ii) comparative 

judgment and (iii) synthesis of priorities (Korpela and Lehmusvaara, 1999). In the 

decomposition step, the complex multi-criteria problem is decomposed into a 

hierarchy of decisions. The hierarchy places the overall objective (goal) as the highest 

element, followed by criteria, sub-criteria and alternatives (which are the lowest level 

elements in the hierarchy), as illustrated in Figure 2. The second step, comparative 

judgment, involves the construction of a matrix of pairwise comparisons of the 

elements at each level (criteria, sub-criteria and alternatives) in the hierarchy using the 

standard Saaty scale presented in Table 1. In the third step, weights are assigned 

according to the comparison matrix and based on the experience and judgment of the 

designers. An aggregated score is then calculated for each design to allow the best 

designs to be ranked. 

Table 1 Pairwise comparison scale of preference (Adapted from Saaty et al., 2003) 

Magnitude of 

Importance 

Definition Description 

1 Equally important Two criteria contribute equally to the overall 

objective 

3 Moderately more 

important 

Experience and judgment slightly favor one 

criterion over the other 

5 Strongly more 

important 

Experience and judgment strongly favor one 

criterion over the other 

7 Very strongly more 

important 

Experience and judgment very strongly favor one 

criterion over the other 

9 Extremely more 

important 

Experience favoring one criterion is of the highest 

possible or of magnitude 

 

 

Figure 2 Hierarchy for AHP – based analysis for the proposed methodology 
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In the context of our methodology, we start by defining a hierarchy as shown in Figure 

2. The objective is to identify a flexible process design considering three performance 

criteria namely: extent of violation of constraints (as indicated by ‘total slack’ metric), 

expected total cost and worst case performance. The next step is to generate a matrix of 

pairwise comparisons based on the scale of preferences described in Table 1. The 

pairwise comparison matrix is used to generate the weights (w1, w2 and w3) assigned to 

each criterion (performance criterion) according to the decision-makers’ judgment.  

Let us consider a coefficient matrix A showing the relative importance of k different 

objectives.  

(

1 𝑎1𝑖 𝑎1𝑘

⋮ ⋱ ⋮
1

𝑎𝑘1

1

𝑎𝑘𝑖
1

) 

Before calculating the weights associated with such matrix, we first check its 

consistency by using a consistency index (CI), the value of which should fall below a 

given threshold (Saaty, 1990):  

 

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑘

𝑘−1
                                                                  (11) 

 

where 𝜆𝑚𝑎𝑥  is the maximum eigenvalue of the matrix A and k is the number of 

objectives. (In our case k is 3, but more objectives could be defined). The consistency 

index is then compared with a random index (RI) (Saaty, 1990) to determine the 

consistency ratio (CR):  

 

                                         𝐶𝑅 = 𝐶𝐼/𝑅𝐼                                (12)                                                          

The random index is the consistency index of a matrix with random inputs, which has 

the same order with matrix A (Saaty, 1990). If the consistency ratio is above a threshold 

value ( 𝐶𝑅 ≤ 0.10 ) then the pairwise comparisons must be revised (Saaty, 1990). 

Otherwise, we can proceed to calculate the weights for each objective by solving the 

following system of linear equations: 

    ∑ 𝑎𝑖𝑖′𝑤𝑖′ − 𝜆𝑚𝑎𝑥𝑤𝑖′ = 0              ∀𝑖𝑘
𝑖′=1                                 (13) 
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 where 𝑖 and 𝑖′ are row and column index of the elements in matrix A respectively. 

 

Once the weights are obtained, we can sort the designs according to an aggregated 

score. Let �̅�𝑠∗ be the optimal design for scenario s*, its aggregated score (AGs*) is 

calculated as follows:  

 

       𝐴𝐺𝑠∗ = ∑ 𝑤𝑖𝑓𝑖(�̅�𝑠∗ , 𝑧�̅� , 𝜃𝑠)𝑘
𝑖=1                                          (14) 

 

where 𝑧�̅� are the optimal values of the second stage decision-variables associated with 

that design; 𝑓𝑖 is the normalized value of objective function i. Different normalization 

methods can be applied to normalize 𝑓𝑖; without loss of generality, we have used the 

following: 

 

𝑓𝑖 =
𝑓𝑖−𝑓𝑖

𝑓𝑖−𝑓𝑖
                                                                       (15) 

 

where 𝑓𝑖 is the normalised value of sample 𝑓𝑖, 𝑓𝑖 and 𝑓𝑖 are the corresponding minimum 

and maximum objective values across all the alternative designs (i.e. the minimum and 

maximum value taken by objective i for all the design alternatives generated by the 

SAA algorithm). 

Finally, the different designs can be ranked in terms of the aggregated score. A detailed 

stepwise application of the AHP is illustrated using a case study in Section 4.  

4. Case Study  

The capabilities of the proposed methodology are demonstrated on two case studies: 

heat exchanger network with uncertain inlet temperatures and heat capacity flow rates 

demonstrates, and design of a distillation column with uncertain feed condition 

(temperature, flow rate and composition). 
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4.1 Case 1: Heat exchanger network design   

Design problem data include stream data for one hot stream (H1), two cold streams 

(C1 and C2), steam (S1), cooling water (W1), costs of utilities and heat exchanger 

capital cost. The problem data are presented in Table 2 and equation (16) (Biegler et al., 

1997). 

Table 2 Stream data for HEN design   

Streams 

 

Tin 

(𝐊) 

Tout 

(𝐊) 

FCp 

(kW 𝐊-1) 

h 

(kW m-2 𝐊-1) 

Cost 

($ kW-1 yr-1) 

H1 440 350 22 2 - 

C1 349 430 20 2 - 

C2 320 368 7.5 0.67 - 

S1 500 500 - 1 120 

W1 300 320 - 1 20 

Minimum approach temperature (∆Tmin) = 1 K  

Exchanger cost = 6,600 + 670(𝐴𝑟𝑒𝑎)0.83               (16) 

The overall heat transfer coefficient for each heat exchanger match is calculated from 

the heat transfer coefficient, h considering the individual streams in Table 2. A 

minimum approach temperature of 1 K is defined.  

4.1.1 Step 1: Description and sampling of uncertain operating conditions 

The uncertain parameters (i.e. HEN inlet temperature and heat capacity flow rate) are 

described using normal distributions. The mean value of the distribution is specified to 

be the nominal conditions, while standard deviations of 7% and 2% are defined for the 

distribution of inlet temperatures (in K) and heat capacity flow rates, respectively. Ten 

sets of operating conditions, i.e. supply temperatures and heat capacity flow rates of 

hot stream H1 and cold stream C1, are generated using Monte Carlo sampling; these 

are presented in Table 3. In this work, it is assumed that all scenarios are equally 

probable, i.e. the probability of each occurring is 0.091. 

 



220 
 

Table 3 Sample data for uncertain stream conditions.  

Scenario 

 

TH1(in) 

(𝐊) 

TC1(in) 

(𝐊) 

FCp(TH1) 

(kW 𝐊-1) 

FCp(TC1) 

(kW 𝐊-1) 

SNC 440 349 22.0 20.0 

S1  442 346 21.9 20.4 

S2  437 349 22.1 19.7 

S3  438 348 22.2 19.6 

S4 443 347 21.2 20.0 

S5 437 345 21.7 19.6 

S6  434 356 21.6 19.6 

S7  434 352 21.8 20.3 

S8  441 353 22.4 20.6 

S9  445 346 21.7 20.9 

S10  435 352 22.0 19.8 

*NC = Nominal case  

4.1.2 Step 2: Synthesis of flexible HENs for each scenario  

The simultaneous MINLP model proposed by Yee and Grossmann (1990) and the 

corresponding stagewise superstructure are adopted for the synthesis of a flexible 

HEN. Figure 3 illustrates the stagewise superstructure for the HEN design problem.  

 

 

 

Figure 3 Heat exchanger network superstructure 
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The number of stages in the superstructure can be determined by the maximum 

number of hot and cold streams (Biegler et al., 1997). In each stage, various heat 

recovery ‘matches’ between hot and cold streams are possible. The network with the 

minimum total annualized cost can be determined via optimization of the MINLP 

model introduced by Yee and Grossmann (1990); this model assumes isothermal 

mixing at the exchanger outlets and elimination of bypass and split streams with more 

than two matches per stage. The objective function and constraints of the original 

MINLP were modified to allow them to be used in the context of our approach; in 

particular, the single scenario model needed to be reformulated as a multi-scenario 

model, the equality and inequality constraints were formulated using slack variables 

and penalties related to slack variables were added to the objective function. The 

detailed mathematical formulation is presented in Section S1 of the Supplementary 

material. 

To generate the potential HEN design options, the modified MINLP model was 

implemented in the General Algebraic Modeling System (GAMS version 24.0.2, 2012) 

and solved with the BARON solver on a HP desktop PC with Intel(R) Core i5 processor 

running at 3.2 GHz, and 8 GB of RAM. The SAA algorithm was implemented in 

GAMS, while the AHP approach was coded in MATLAB R2014a.  

The time taken to solve each iteration of the deterministic MINLP model ranged from 

1.0 to 3.14 seconds. The CPU time to solve the stochastic (multi-scenario) MINLP 

models where the design variables were fixed took 1.0 to 1440 seconds. Note that the 

relative gap of the global solver is set to 10 %, in order to ensure an acceptable margin 

between primal (upper bound) and dual (lower bound) problem. 

Table 4 shows the details of the optimized HEN structure, required heat transfer area, 

relative gap and total annualized cost (TAC) for each scenario, as evaluated using the 

deterministic HEN model (see appendix). The design for the nominal case, DNC, is that 

obtained given the nominal input values. It can be observed that three heat exchangers 

are needed (1,1,1; 1,2,1; 1,2,2) in the nominal case design and the heat transfer area 
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needed is 183 m2; no heaters or coolers are needed, i.e. the design is fully heat 

integrated.  

Other scenarios have different HEN structures. Designs D1, D4 and D9 each have two 

heat exchangers and a heater, while design D8 has two heat exchangers and a cooler, 

and design D6 has two heat exchangers, one heater and one cooler. The remaining 

designs have three heat exchangers and one heater. With the exception of designs D1, 

D4, D6, D8 and D9, all other designs incorporate a splitter.  

Design D5 has the lowest total HEN area (142 m2) with total annualized cost of 

$89,951/y, while Design D10 has the largest requirement for heat transfer area (220 m2), 

corresponding to TAC of $97,288/y. Among the potential alternative designs, D6 is 

moderate in terms of required heat transfer area, and thus capital investment. 

However, to select the HEN design that is flexible and operable over a wider range of 

operating conditions, further evaluation of the alternative designs and of the nominal 

case design is required. 

Table 4 Optimal HEN design for each scenario 

Optimal 

HEN 

design 

Individual unit area (m2) for match (i,j,k), qhu,i 

and qcu,j 

Relative gap 

(%) 

Total 

annualized 

cost ($ y-1) 1,1,1 1,2,1 1,2,2 qhu,1 qhu,2 qcu,1 

DNC 144.7 7.6 30.6    0.09 76,502 

D1 121.8  38.8  1.5  0.09 80,434 

D2 146.5 7.8 30.6 0.8   0.09 88,410 

D3 148.2 7.9 30.2 0.3   0.09 85,920 

D4 108.9  55.3  0.9  0.09 77,502 

D5 108.8 9.5 21.2 2.8   0.09 89,951 

D6 94.7  45.8 2.8  4.8 0.09 94,641 

D7 150.3 7.5 33.6 2.3   0.09 99,909 

D8 112.1  66.2   3.3 0.03 78,775 

D9 104.7  60.0  0.8  0.04 77,421 

D10 174.5 7.5 37.0 0.8   1.00 97,288 

i,j,k denotes the match between cold stream i and hot stream j in stage k 

qhu,i  denotes a heater on cold stream i 

qcu,j denotes a cooler on hot stream j 
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4.1.3 Step 3: Assessment of flexible HENs  

For each alternative design, the decision variables that define the equipment size and 

configuration are fixed, and the design is optimized within the uncertain space (i.e. for 

all the scenarios defined in Table 3). The value of the expected total cost, worst case 

performance and penalty related to slack variables (total slack) for each design 

alternative are shown in Figure 4. Since the performance indicators have different units 

and orders of magnitude, normalized values are used to compare the design options. 

The normalization is performed using Eq. 15 as presented in Section 3, in a way such 

that each performance indicator falls in the range 0 to 1, as can be seen in Figure 5.  

 

Figure 4 Normalized performances for the potential HEN design options, where lower 

values indicate better performance with respect to all the criteria 

It can be observed from Figure 4 that the nominal case design (DNC) is not the design 

with the lowest expected total cost, ranking third of 11 designs. Furthermore, this 

design does not perform particularly well with respect to the other two performance 
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indicators – in the worst case, its performance ranks third, and with respect to 

feasibility, as reflected by the ‘total slacks’ indicator, it ranks sixth. This observation 

supports a core premise of this work, i.e. a design that is based only on the nominal 

conditions may not perform well over the range of scenarios that can reasonably be 

expected to occur. 

Figure 4 also shows that three designs (D4, D6 and D9) are best in at least one or more 

objectives. Among the best solutions, D9 has the lowest expected total cost and lowest 

worst case performance, while D6 has the lowest penalties relating to slack variables. D4 

has a moderate expected total cost and slack-related penalty: these both are higher than 

in D6.   

It is valuable to gain a physical understanding of why the three best-performing 

designs did perform well. Firstly, it may be observed that D6, with four rather than 

three heat transfer units, has the third highest total annualized cost. The presence of 

two heat exchangers, one heater and one cooler in D6 apparently allows the network to 

cope well with variations in demand for heating and cooling and in stream supply 

temperatures. In particular, the heater and cooler provide flexibility to satisfy changes 

in the heating and cooling demand by increasing or decreasing the flow of steam and 

cooling water entering the heater and cooler respectively. In addition, D6 includes a 

utility path in the network structure, as illustrated in Figure 7. A utility path in the heat 

exchanger network establishes a link between two or more utility exchangers. The 

utility path within the network allows both heat exchanger and utility exchanger 

duties to be adjusted, as heat demand and stream temperatures vary from one scenario 

to another.  

While design D4 is similar to D9, it includes slightly less heat exchanger area (165.1 m2), 

although the area of the heater is slightly higher than that in D9. On the other hand, 

there is no utility path in design D4. However, the presents of large heat transfer area 

that is 10 % greater than that in D6 enables D4 to cope with variation in stream 

temperatures  
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Given the performance information presented in Figure 4, it is not straightforward to 

select which of the three (identified) designs is the best. These results support that 

premise that a multi-criteria decision-making approach is required to identify the most 

flexible and operable HEN design. 

4.1.4 Step 4: Selection of flexible and operable HEN 

The AHP was applied using the pairwise comparison presented in Table 5. The Saaty 

scale of preferences introduced in Table 1 was applied to determine the relative 

importance of each performance indicator relative to the others. For example, if we 

assume the total slack indicator is five times more important than total expected cost, 

then the corresponding entry in the matrix takes the value of 5/1. Note that in the 

pairwise comparison of criteria in Table 5, only the upper part of the matrix is required, 

as the lower part is obtained from the inverse of the upper part.  

Table 5 Pairwise comparison matrix for criteria employed for selecting best HEN 

design 

 
Expected total 

cost 
Worst case Total slack  Weights 

Expected total 

cost 
1 1/1 1/9  0.091 

Worst case 1 1 1/7  0.112 

Total slack 9 7 1  0.797 

 

The weights associated with the matrix are shown in Table 5, which are calculated 

using equation (13). The performance in terms of penalties related to slack variables is 

the most important criterion, followed by the worst case and then the total cost. Note 

that these weights depend on decision-makers’ preferences.  

In the final step, the design alternative with the lowest overall performance indicator is 

determined. To carry out this task, the weights presented in Table 5 are used in 

equation (14) to calculate the aggregate performance for each design option shown in 

Figure 4. The weighted performance of each alternative design is then obtained, as 
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shown in Figure 5, where a lower value indicates a better performance in terms of both 

cost and violation of constraints.   

 

Figure 5 Overall ranking of alternative HEN design options 

 As can be observed in Figure 5, design D8, with its exceptionally poor performance 

with respect to feasibility metrics, has the worst overall performance (0.82). Designs D2, 

D7 and D10 have a moderate performance of 0.32, 0.21 and 0.26, respectively, while D6 

has the best performance of 0.20, which is 0.32 lower than that of the nominal case 

design. Therefore, it can be concluded that design D6 is the best one, according to the 

decision maker’s preferences presented in Table 5, followed by design D7.  

While it is clear that design D6 has the best overall performance using the values in 

Table 5, it is not necessarily the best for other weightings. We can assess the impact of 

the designer’s preferences, expressed using different combinations of weighting 

factors, by constructing the ternary diagram presented in Figure 6. In the ternary 

diagram, each axis reflects the weight of that performance indicator, and the colors of 

the points reveal whether designs D2 (red diamond), D3 (gray square), D4 (black 
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hexagram), D6 (blue circle), D7 (green pentagram), D9 (red cross), and DNC (green 

asterisk) is the best design overall.  

 
 

Figure 6 Relative ranking of alternative HEN designs  

In Figure 6, the best design option identified in Figure 5 is indicated by a red circle. 

Clearly design D9 dominates when decision-makers prefer low expected total costs and 

priorities lean towards minimizing costs for the worst-case scenario, while D6 emerges 

as the optimal solution when decision-makers prefer constraints not to be violated (the 

total slack metric).  

Next, we compare the best design option (D6) with the nominal design; both are as 

presented in Figure 7 and Table 6.   
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(a) 

 

 

(b) 

Figure 7 Heat exchanger network (a) nominal case design DNC, (b) optimal design D6  

The nominal case design has three exchangers with a total area of 183 m2. Therefore, 

DNC operates at maximum energy recovery with zero heater and cooler required. On 

the other hand, D6 has two exchangers, one cooler and one heater, with a total heat 

transfer area of 148 m2, respectively. As discussed in Section 4.4, the heater in design D9 

enhances flexibility of the heat exchanger network, as the flow rate of steam can be 

adjusted according to the heating demand in each scenario. Inevitably, a price must be 

paid for flexibility: the additional unit (heater and cooler) in design D6 increases its 

operating cost and thus total annualized cost of the design, which is 19% higher than 

that of the nominal case design. 
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Table 6 Comparison of nominal case design (DNC) and design D6 

 

 

 

 

 

 

 

 

4.2 Case 2: Design of flexible distillation column  

In this case study, the design of a flexible distillation column for the separation of 

benzene from toluene and diphenyl, in a typical hydrodealkylation of toluene plant is 

used as a test bed example. Details of the whole flowsheet are presented in the 

supplementary material.  

The column feed consists of benzene, toluene and diphenyl at a flow rate of 344.8 

kmol/h; molar fractions of the three components are 0.11, 0.88 and 0.001 respectively. 

At least 95% of benzene in the feed stream is to be recovered, with purity of at least 

0.95. The column consists of 40 initial trays (feed entering at the 20th tray – counting 

from the bottom) and operates at a uniform pressure of 200 kPa. Hydraulic calculations 

are performed based on sieve tray, 85% approach to jet flooding, 50% down comer 

backup and tray spacing of 0.609 m.  

4.2.1 Step 1: Description and sampling of uncertain operating conditions 

Following a similar approach to the one demonstrated in Case study 1, the variability 

in the feed condition of the benzene distillation column is generated, as shown in Table 

7. The feed condition considered includes temperature and component molar flow. 

Further details of the steps followed to generate the data are presented in Section S2 of 

the supplementary material. Note that for this case study, all the scenarios are assumed 

to be equally probable. 

 Nominal case design (DNC)  Design D6 

 TAC = $76,502/yr  TAC = $94,641/yr 

Exchanger Area [m2]  Area [m2] 

1 144.7  94.7 

2 7.6  45.8 

3 30.6   

4 (heater) -  2.8 

5 (cooler)    4.8 

Total 183  148 
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Table 7 Sampled data for uncertain feed conditions  

Scenario 

 

Temperature 

(0C) 

Benzene flow 

(kmol/h) 

Toluene flow 

(kmol/h) 

Biphenyl flow 

(kmol/h) 

SNC 132 37.6 306.0 1.2 

S1  131 38.5 279.2 1.5 

S2  132 36.5 322.5 1.0 

S3  130 40.5 215.5 2.3 

S4 132 35.6 344.0 0.9 

S5 130 40.0 232.0 2.0 

S6  133 34.3 378.6 0.7 

S7  131 38.4 299.6 1.4 

S8  131 39.3 246.1 1.8 

S9  129 40.4 196.6 2.4 

S10  131 38.7 269.6 1.5 

*NC = Nominal case  

4.2.2 Step 2: Design of distillation column for each scenario 

The column superstructure originally proposed by Caballero et al. (2005) is adopted 

and used to design the flexible distillation column. To apply this approach, Murphree 

tray efficiency related to each tray in column sections (stripping and rectifying 

sections) is define as a binary variable (1 for active trays and 0 for inactive trays); then 

an upper and lower bound for trays in column sections is defined; and lastly, an 

optimization method is applied to select the number of active trays and column 

operating conditions required to achieve the desired separation at minimum total 

annualized cost. In this work, the column superstructure is set up in Aspen HYSYS 

simulation environment and the column optimization is carried out in MatLab. The 

optimization problem consisting of an objective function and constraints is presented 

in Section S2 of the supplementary material. 

The MINLP problem is solved in MATLAB R2014a using genetic algorithm in the 

Global Optimization Toolboox, on a HP desktop PC with Intel(R) Core i5 processor 

running at 3.2 GHz, and 8 GB of installed RAM. An initial population of 50 

chromosomes is used and the maximum number of generation is set to 100. An 

automation tool developed by Microsoft is used to facilitate the exchange of data 

between Aspen HYSYS and MatLab during optimization. The data exchanged includes 
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independent variables required to simulate the distillation column and dependent 

variables required to calculate the objective function and constraints. The independent 

variables consist of number of trays in column sections, and reflux and boil-up ratios, 

while the dependent variables consists of product specification and recovery, stream 

information, column diameter, jet flooding and down comer backup. It takes between 

247 to 492 seconds to solve the deterministic MINLP model. Table 8 shows the details 

of the optimized designs, i.e., number of trays in column sections, required column 

diameter and total annualized cost (TAC) for each scenario. 

Table 8 Optimal column design for each scenario 

Optimal 

column 

design 

Number of trays 

in rectifying 

section 

Number of trays 

in stripping 

section 

Column 

diameter (m2) 

Total 

annualized 

cost ($ y-1) 

DNC  9 10 1.98 103,877 

D1  10 11 1.83 100,687 

D2  10 11 1.98 109,824 

D3 9 7 1.83 85,172 

D4 10 13 1.98 116,004 

D5  9 8 1.83 87,966 

D6 11 13 2.13 128,928 

D7  9 10 1.98 103,934 

D8  9 8 1.83 89,308 

D9 8 7 1.83 81,350 

D10  9 8 1.98 96,315 

*NC = Nominal case  

As can be seen in Table 8, the nominal case design, DNC, consists of 19 trays: 9 in the 

rectifying section and 10 in the stripping section, and a column diameter of 1.98 m – 

resulting to a total annualized cost of 103,877 $/y. Design D9 has the least number of 

trays standing at 15, and a diameter of 1.83 m – resulting to the least total annualized 

cost (81,350 $/y) among the alternative designs. On the other hand, design D6 has a 

total of 24 trays, which is the highest of all the scenario designs, and also the design has 

the largest diameter of about 2.13 m; consequently resulting to the greatest total 

annualized cost. Apparently, the design with best total annualized cost can be easily be 

identify from Table 8, however, it is not possible to identify the flexible design that can 

feasibly operate over the whole scenario. To achieve this task, further analysis is 
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necessary, which will involve evaluation of each alternative design over the entire 

scenarios. 

The next task is to identify the column design that can feasibly operate over the entire 

scenario, that is, the column design that can meet product quality specifications for all 

scenarios without exceeding jet flooding and down comer backup limits. 

4.2.3 Step 3: Assessment of flexible columns 

In this step, the performance of the individual scenario designs together with the 

nominal case design is assessed over the entire uncertain space, as represented using 

scenarios. The assessment is performed by fixing the number of trays in the rectifying 

and stripping sections, and the column diameter in each design, then all the operating 

scenarios (in Table 7) are optimized on the designs. Similar to Case study 1, the 

performance indicators used to assess each design, including expected total cost, worst 

case performance and total slack (constraint violation) are recorded and presented in 

Figure 8. In this case, the total slack relates to violation in product quality specifications 

and recovery (benzene), and column jet flooding and down comer backup. Note that 

computational results indicate that all the designs were able to meet product 

specifications for all scenarios, although some design alternatives have failed to satisfy 

the hydraulic demand for some scenarios. Therefore, the magnitude of the penalty 

related slack is predominately jet flooding and down comer backup. 
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Figure 8 Normalized performances for the potential column design options, where 

lower values indicate better performance with respect to all the criteria 

The assessment of the alternative designs against the expected variation in feed 

condition provides more insight on the individual design performance. As can be seen 

in Figure 8, the nominal case design (DNC) is unable to cope with the changing feed 

conditions, as indicated by the performance indicator with respect to total slack 

(constraint violation). Again, this observation further emphasis the core premise of this 

work; that is, a design carried out based on the nominal conditions may failed to 

perform well over an expected variability in operating condition. 

Another important observation is that design D9 has the best performance with respect 

to both expected total cost and worst case, however, the design will perform poorly 

over the expected variations in feed condition, as indicated by the slack variable (rank 

7th). Although D6 has the overall highest performance with respect to expected total 

cost and worst case, the design has the best performance with respect to slack variable 

followed by designs D4, D7 and D10 – ranking 2nd, 3rd and 4th respectively. The low value 

of slack variable indicates that these designs have the ability to cope with the expected 

variability in the feed condition.  
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A critical look at design D6 reveals two important factors that contribute to the 

flexibility and operability of the column. First, Design D6 has the highest number of 

trays (24) among all the alternative designs, which apparently increases the installed 

capital cost of the column. The large number of trays enables the column to operate 

over different operating scenarios, providing flexibility for the design to meet the 

required separation whenever the feed composition, flow rate and temperature 

changes from one scenario to another. Second, design D6 has the largest column 

diameter of about 2.13 m. Although the large column diameter incurs high installed 

capital cost, it allows efficient handling of substantial amount of vapour and liquid 

traffic in the column, thereby avoiding the column from being bottlenecked, as 

throughput changes from one scenario to another. 

Design D4 has the same diameter as D7 and D10, although the number of trays is slightly 

higher. Other designs such as D1, D3, D5, D8 and D9 have the least diameter of 1.83 m, 

consequently resulting to a very poor performance with respect to total slack variable; 

this implies that the aforementioned designs cannot efficiently handle the hydraulic 

demand of the entire operating scenarios.  

Considering the number of competing alternative designs in Figure 8, it is difficult to 

select the best design. Hence, the results further support the idea that a multi-criteria-

decision-making tool will be required to identify the least expensive distillation 

column that is flexible and operable. 

4.2.4 Step 4: Selection of flexible and operable column 

In this step, the pairwise comparison matrix described in Section 3 is applied to 

generate weights corresponding to each performance criteria (expected total cost, worst 

case performance and total slack), as shown in Table 9. The magnitude of the weight 

indicates the importance of one performance criterion relative to the other ones. Table 9 

is generated in same way as Table 5. 
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Table 9 Pairwise comparison matrix for criteria employed for selecting the best column 

design 

 Expected total cost Worst case Total slack  Weights 

Expected total cost 1 1/3 1/7  0.096 

Worst case 5 1 1/5  0.162 

Total slack 7 3 1  0.742 

The calculated weights in Table 9 indicates that total slack relating constraint violation 

is the most important criterion, followed by worst case and expected total cost (an 

indication that the design with the lowest constraint violation is the most preferred 

chioce). Note that the weight are not unique, but depends on the designer’s preference. 

Next, the weights are applied in equation (14) together with the performance indicators 

in Figure 8 to determine the aggregate perfomance indicator for each alternative 

design, as shown in Figure 9 

 

Figure 9 Overall ranking of alternative column design options 
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As can be seen in Figure 9, designs D6, D4, D7 and D10 have better overall performance 

compared with the remaining designs. Design D1 with an overall poor performance 

with respect to total slack criterion, has the overall worst performance (0.86). The 

nominal case design, DNC, and design, D2, have a moderate performance of 0.48 and 

0.47 respectively. Although, it is apparent that design D7 is the best design (0.2) 

identified thus far, it is limited to the information the decision maker enters into the 

pairwise comparison matrix (i.e. it may not necessarily be the overall best design in all 

cases). To assess the impact of decision maker’s preference (i.e. by applying different 

combination of weights representing expected total cost, worst case performance and 

total slack), a ternary diagram is constructed, as presented in Figure 10. 

 

Figure 10 Relative ranking of alternative column designs 

In the ternary diagram, each axis represents a performance criterion, and the points in 

red (square), black (pentagram), green (hexagram) and blue (circle) reveals when 

designs D9, D10, D7 and D6 are the best design overall. Apparently, design D9 dominates 

when the decision maker prefers minimum expected total cost and minimum worst 

case performance. Conversely, D6 is the best choice when the decision maker prefers 

smooth operation over the entire scenario (i.e. minimum constraint violation). Other 
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designs such as D7 and D9 dominate when the minimum of all three objectives is 

preferred. 

5. Conclusions 

This paper proposes a new methodology for design of chemical processes under 

uncertainty. The methodology characterizes uncertainty using probability distributions 

and Monte Carlo sampling. Process synthesis and evaluation are carried out using 

mathematical modeling and optimization techniques. The best design alternative(s) are 

selected using the analytic hierarchy process.  

The methodology is illustrated through its application to the design of two relevant 

chemical processes: flexible HENs, applying a modified version of the MINLP model of 

Yee and Grossmann (1990) to generate the flexible HEN alternatives; and flexible 

distillation column.  

The numerical results for both case studies demonstrate that the proposed 

methodology is capable of synthesizing a chemical process that is flexible and feasible 

(operable) under variable operating conditions. In addition, it was found that 

subjective preferences represented using a pairwise comparison matrix, significantly 

influence which design alternative is best.  

Future work will expand the scope and complexity of the problems addressed towards 

developing an approach that is capable of providing practical and economic solutions 

of industrial relevance, for example flexible crude oil distillation systems. 
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HEN    heat exchanger network 

TAC      total annualized total cost  

AHP      analytic hierarchy process 

WC      worst case 

WTC      weighted total cost 

TS      total slack 

CR      consistency ratio 

LP      linear programming 

NLP      non-linear programming  

MINLP   mixed integer non-linear programming 

PFD      probability distribution function 

 

Indices: 

𝑖     hot process stream 

𝑗      cold process stream 

𝑘     superstructure stage 

𝑠     scenario 

 

Sets: 

𝐻𝑃      set of hot process streams 

𝐶𝑃      set of cold process streams 

𝑆𝑇      set of superstructure stages  

𝑆      set of scenarios 

 

Parameters: 

𝑇𝐼𝑁      inlet temperature of process streams  

𝑇𝑂𝑈𝑇     outlet temperature of process streams 

𝐹      heat capacity flow rate of process streams 

𝑈      overall heat transfer coefficient 

𝐶𝐶𝑈        unit cost for cold utility 

𝐶𝐻𝑈      unit cost for hot utility 
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𝐶𝐹      fixed charge for exchangers (heaters and coolers included) 

𝐶      area cost coefficient 

𝛽      index for area cost  

𝑁𝑂𝐾     total number of stages 

Ω      upper bound for heat exchange duty 

Γ      upper bound for temperature difference 

∆𝑇𝑚𝑖𝑛      minimum approach temperature 

 𝐴𝑒𝑥𝑖,𝑗,𝑘  heat exchanger area for match 𝑖 and 𝑗 in stage 𝑘 

 𝐴𝑐𝑢𝑖        cooler area for match 𝑖 

 𝐴ℎ𝑢𝑗      heater area for match 𝑗 

𝜋      penalty (scalar multiplier) 

probs      probability of scenario, s, occurring 

 

Variables: 

𝑡𝑖,𝑘,𝑠      temperature of hot stream 𝑖 at hot end of stage 𝑘 in scenario 𝑠 

𝑡𝑗,𝑘,𝑠      temperature of cold stream 𝑗 at hot end of stage 𝑘 in scenario 𝑠 

𝑞𝑖,𝑗,𝑘,𝑠      heat exchanged between hot stream 𝑖 and cold stream 𝑗 in stage 𝑘 for scenario 

𝑠 

𝑞𝑐𝑢𝑖,𝑠      heat exchanged between hot stream 𝑖 and cold utility 

𝑞ℎ𝑢𝑗,𝑠     heat exchanged between cold stream 𝑗 and hot utility 

𝑑𝑡𝑖,𝑗,𝑘,𝑠    temperature approach for match 𝑖 and 𝑗 at temperature location 𝑘 

𝑑𝑡𝑐𝑢𝑖,𝑠    temperature approach for match between hot stream 𝑖 and cold utility 

𝑑𝑡ℎ𝑢𝑖,𝑠    temperature approach for match between cold stream 𝑗 and hot utility 

 𝑧𝑖,𝑗,𝑘      binary variable to signify that match 𝑖 and 𝑗 exist in stage 𝑘 

 𝑧𝑐𝑢𝑖       binary variable to signify that cold utility exchange heat with hot stream 𝑖   

 𝑧ℎ𝑢𝑗       binary variable to signify that hot utility exchange heat with cold stream 𝑗  

𝑆ℎ1𝑖,𝑠      positive slack variable for hot stream 𝑖 in scenario 𝑠  

𝑆ℎ2𝑖,𝑠      negative slack variable for hot stream 𝑖 in scenario 𝑠  

𝑆𝐶1𝑖,𝑠     positive slack variable for cold stream 𝑗 in scenario 𝑠 

𝑆𝐶2𝑖,𝑠     negative slack variable for cold stream 𝑗 in scenario 𝑠 
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Appendix A: Supplementary material  

Supplementary data associated with this article can be found, in the online version, at 

http://  

References 

Amaran, S., Zhang, T., Sahinidis, N. V., Sharda, B., Bury, S.J., 2016. Medium-term 

maintenance turnaround planning under uncertainty for integrated chemical sites. 

Comput. Chem. Eng. 84, 422–433.   

Bertsimas, D., Brown, D.B.D., Caramanis, C., 2010. Theory and Applications of Robust 

Optimization. Oper. Res. 50.   

Biegler, L. T., Grossmann, I. E. and Westerberg, A. W. (1997). Systematic Methods of 

Chemical Process Design. Upper Saddle River, N.J.: Prentice Hall PTR. 

Caballero, J.A., Milan-Yanez, D and Grossmann I.E. (2005). Rigorous design of 

distillation columns: Integration of disjunctive programming and process 

simulators. Ind Eng Chem Res, 44(17), 6760-6775.   

Chacon-Mondragon, O. L. and Himmelblau, D. M. (1996). Integration of flexibility and 

control in process design. Computers & Chemical Engineering, 20(4), 447-452. 

Chen, C. L. and Hung, P. S. (2004). Simultaneous synthesis of flexible heat-exchange 

networks with uncertain source-stream temperatures and flow rates. Industrial 

& Engineering Chemistry Research, 43(18), 5916-5928. 

Diwekar, A. M. (2008). Introduction to Applied Optimization, Second Edition. New York: 

Springer.  

Diwekar, U. M. (2003). A novel sampling approach to combinatorial optimization 

under uncertainty. Computational Optimization and Applications, 24(2-3), 335-371. 

Diwekar, U. M. and Rubin, E. S. (1994). Parameter design methodology for chemical 

processes using a simulator. Industrial & Engineering Chemistry Research, 33(2), 

292-298. 

Floudas, C. A. and Grossmann, I. E. (1986). Synthesis of flexible heat-exchanger 

networks for multiperiod operation. Computers & Chemical Engineering, 10(2), 

153-168. 



241 
 

GAMS, (2012). Release 24.0.2. GAMS Development Corporation. Washington, DC, 

USA. 

Georgiadis, M.C., Pistikopoulos, E.N., 1999. An Integrated Framework for Robust and 

Flexible Process Systems An Integrated Framework for Robust and Flexible 

Process Systems 38, 133–143.   

Grossmann, I. E. and Guillen-Gosalbez, G. (2010). Scope for the application of 

mathematical programming techniques in the synthesis and planning of 

sustainable processes. Computers & Chemical Engineering, 34(9), 1365-1376. 

Grossmann, I. E., Halemane, K. P. and Swaney, R. E. (1983). Optimization strategies for 

flexible chemical processes. Computers & Chemical Engineering, 7(4), 439-462. 

Guthrie, K.M. (1969). Capital Cost Estimating. Chem Eng, 114–142. 

Halemane, K.P., Grossmann, I.E., 1983. Optimal process design under uncertainty. 

AIChE J. 29, 425–433.   

Ho, W. (2008). Integrated analytic hierarchy process and its applications - A literature 

review. European Journal of Operational Research, 186(1), 211-228. 

Ho, W., Dey, P. K. and Higson, H. E. (2006). Multiple criteria decision‐making 

techniques in higher education. International Journal of Educational Management, 

20(5), 319-337. 

Kleywegt, A. J., Shapiro, A. and Homem-De-Mello, T. (2001). The sample average 

approximation method for stochastic discrete optimization. Siam Journal on 

Optimization, 12(2), 479-502. 

Korpela, J. and Lehmusvaara, A. (1999). A customer oriented approach to warehouse 

network evaluation and design. International Journal of Production Economics, 

59(1-3), 135-146. 

Kostin, A.M., Guillén-Gosálbez, G., Mele, F.D., Bagajewicz, M.J., Jimenez, L., 2012. 

Design and planning of infrastructures for bioethanol and sugar production 

under demand uncertainty. Chem. Eng. Res. Des. 90, 359–376 

MATLAB, (2014). version R2014a. The MathWorks, Inc.: Natick, Massachussetts, 

United States.  



242 
 

Pistikopoulos, E.N., Ierapetritou, M.G., 1995. Novel approach for optimal process 

design under uncertainty. Comput. Chem. Eng. 19, 1089–1110.   

Pistikopoulos, E. N. and Grossmann, I. E. (1988a). Optimal retrofit design for 

improving process flexibility in linear-systems. Computers & Chemical 

Engineering, 12(7), 719-731. 

Pistikopoulos, E. N. and Grossmann, I. E. (1988b). Evaluation and redesign for 

improving flexibility in linear-systems with infeasible nominal conditions. 

Computers & Chemical Engineering, 12(8), 841-843. 

Rogers, A., Ierapetritou, M., 2015. Feasibility and flexibility analysis of black-box 

processes part 2: Surrogate-based flexibility analysis. Chem. Eng. Sci. 137, 1005–

1013.   

Saaty, R. W. (1987). The analytic hierarchy process - what it is and how it is used. 

Mathematical Modelling, 9(3-5), 161-176. 

Saaty, T. L. (1990). How to make a decision - the analytic hierarchy process. European 

Journal of Operational Research, 48(1), 9-26. 

Saaty, T. L., Vargas, L. G. & Dellmann, K. (2003). The allocation of intangible resources: 

the analytic hierarchy process and linear programming. Socio-Economic Planning 

Sciences, 37(3), 169-184. 

Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and 

opportunities. Computers & Chemical Engineering, 28(6-7), 971-983. 

Shang, J. and Sueyoshi, T. (1995). A unified framework for the selection of a flexible 

manufacturing system. European Journal of Operational Research, 85(2), 297-315. 

Smith, R. (2005). Chemical Process Design And Integration. Chichester, West Sussex, 

England ; Hoboken, NJ: Wiley. 

Su, J. C. Y., Chen, S. J. and Lin, L. (2003). A structured approach to measuring 

functional dependency and sequencing of coupled tasks in engineering design. 

Computers & Industrial Engineering, 45(1), 195-214. 

Swaney, R. E. and Grossmann, I. E. (1985). An index for operational flexibility in 

chemical process design .2. Computational algorithms. AIChE Journal, 31(4), 

631-641. 



243 
 

Wagler, R. M. and Douglas, P. L. (1988). A method for the design of flexible distillation 

sequences. Canadian Journal of Chemical Engineering, 66(4), 579-590. 

Wang, G., Huang, S. H. and Dismukes, J. P. (2005). Manufacturing supply chain design 

and evaluation. International Journal of Advanced Manufacturing Technology, 25(1-

2), 93-100. 

Wang, H., Mastragostino, R. and Swartz, C. L. E. (2016). Flexibility analysis of process 

supply chain networks. Computers & Chemical Engineering, 84, 409-421. 

Wang, J., Rong, G., 2010. Robust optimization model for crude oil scheduling under 

uncertainty. Ind. Eng. Chem. Res. 49, 1737–1748.   

Yee, T. F. and Grossmann, I. E. (1990). Simultaneous-optimization models for heat 

integration .2. Heat-exchanger network synthesis. Computers & Chemical 

Engineering, 14(10), 1165-1184. 

Yee, T. F., Grossmann, I. E. and Kravanja, Z. (1990). Simultaneous-optimization models 

for heat integration .3. Process and heat-exchanger network optimization. 

Computers & Chemical Engineering, 14(11), 1185-1200. 

Yeomans, H. and Grossmann I.E. (2000). Optimal design of complex distillation 

columns using rigorous tray-by-tray disjunctive programming models. Ind Eng 

Chem Res, 39(11), 4326-4335.   

Yurdakul, M. (2004). Selection of computer-integrated manufacturing technologies 

using a combined analytic hierarchy process and goal programming model. 

Robotics and Computer-Integrated Manufacturing, 20(4), 329-340. 

Zhang, Q., Lima, R. M. and Grossmann, I. E. (2016). On the relation between flexibility 

analysis and robust optimization for linear systems. AIChE Journal, doi: 

10.1002/aic.15221. 

 

 

 

 

 

 



244 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



245 
 

 

Chapter 6   Conclusions and future work 

6.1 Conclusions 

Today, the petroleum refining industry is faced with several challenges, including high 

operating cost; stringent regulations on product specifications and CO2 emissions 

(greenhouse gas emissions leading to global warming); and uncertainties in terms of 

the quality and quantity of crude oil feedstocks that need to be processed in order to 

maximise the production of market-driven petroleum refined products. To address 

these challenges, systematic methodologies for the design and optimisation of refinery 

heat-integrated crude oil distillation systems are needed.  

This thesis presents new methodologies for the design of heat-integrated crude oil 

distillation systems. First, two new methods that facilitate design of a crude oil 

distillation system that process a specific type of crude oil feedstock are proposed (see 

Chapters 3 and 4). Second, a methodology that takes into account multiple crude oil 

feedstocks to design a flexible heat-integrated crude oil distillation systems is 

developed (see Chapter 5). The three proposed methodologies are optimisation-based, 

in which the distillation column models, pinch analysis for minimum utility 

calculations, and process constraints are incorporated into a unified framework to 

facilitate the search for a cost-effective design configuration that maximises net profit 

and/or minimises total annualised cost. Third, a scenario-based approach is developed 

for design of chemical processes in which some parameters are subject to variability 

(see Chapter 5). 

The main contributions of the work presented in this thesis are summarised below: 
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6.1.1 Design of heat-integrated crude oil distillation systems using  

…………rigorous simulation models 

Existing methodologies for modelling of crude oil distillation units using rigorous 

models takes into account only the continuous variable (operating conditions) of the 

system. Design variables such as number of trays in column sections and locations of 

feed, pump-around, and side-strippers are fixed. Thus, the distillation column models 

are not applicable for optimisation-based design of crude oil distillation systems.  

In this thesis, a new approach for representing crude oil distillation units using 

rigorous models is developed (see Chapter 3). The distillation column model presented 

here takes into account both structural (number of trays in column section) and 

operational degrees of freedom of the system. When this model is implemented in an 

optimisation framework, it is possible to vary both column structure and operating 

conditions in order to select the best design option among several alternatives. 

In the new modelling approach, the column superstructure of Caballero et al. (2005) for 

simple columns is adapted to build the column superstructure of the crude oil 

distillation unit using a rigorous tray-by-tray model in Aspen HYSYS. In the column 

superstructure, Murphree tray efficiencies are treated as binary variables. Thus it is 

possible to vary the total trays in the column by specifying a tray efficiency of either 

one or zero. It is important to emphasise here that this is the first attempt to include 

number of trays as a design variable in modelling of crude oil distillation units using 

rigorous simulation models. 

In this work, the superstructure of the crude oil distillation unit is implemented in an 

optimisation framework together with pinch analysis (for calculating minimum utility 

requirements) in order to search for column design that minimises consumption of 

cooling water and fuel in the furnace, while ensuring product quality specifications are 

satisfied. The use of pinch analysis here enables the framework to account for 

interactions between the distillation column and the heat recovery network. Both the 

structure and operating conditions of the column are optimised, thus exploiting trade-

offs between capital and energy costs. 
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The proposed methodology takes advantage of many useful models (computational 

routines) available in the commercial process simulation package to produce an 

accurate and realistic design solution that can be implemented in practice. Examples of 

models available in the process simulator include crude oil characterisation models, 

physical and thermodynamic property models and column hydraulic models. 

Moreover, the commercial process simulator environment is versatile and user-

friendly, and Aspen HYSYS software is widely applied, making the proposed 

approach easy to implement in practice and accessible to both researchers and 

industrial practitioners. 

The capabilities of the proposed design methodology are illustrated using industrially-

relevant examples. In the first example, the total annualised cost of the crude oil 

distillation unit is optimised by varying column number of trays and operating 

conditions such as pump-around temperature drops and duties, stripping steam flow 

rate, feed temperature and reflux ratio. Numerical results show that a crude oil 

distillation unit with an improved total annualised cost can be obtained without 

affecting product quality constraints. 

However, these results also reveal a slight increase in residue flow rate which is 

undesirable (some valuable products are lose to the residue stream). To avoid losing 

valuable product to the residue, the second example includes constraints on both 

product quality and flow rate (more specifically the residue stream flow rate). In the 

two examples, the optimal distillation column structure differs from the initial starting 

design (base case). This result highlights the need to optimise the column structure in 

addition to operating conditions, which cannot be achieved using existing methods. 

Although the proposed method has been successfully applied to design cost-effective 

crude oil distillation units, significant computational time is required. This makes the 

approach unsuitable for process design with a large number of operating scenarios, for 

example, the design of flexible crude oil distillation system. 
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6.1.2  Design of heat-integrated crude oil distillation systems using 

……….…surrogate models 

Chapter 4 explores the use of surrogate models to replace the rigorous simulation 

models. These surrogate models are fitted to a set of samples generated using the 

rigorous simulation model.  

Established approach using surrogate models for crude oil distillation units do not 

consider both structural and operational degrees of freedom of the complex system. 

Thus, these surrogate models are not applicable for the design of crude oil distillation 

systems.  

This thesis proposes a new methodology for modelling crude oil distillation unit using 

surrogate models. Unlike previous methods, this work takes into account the structural 

and operational degrees of freedom, thus expanding the scope of application to 

grassroots design of crude oil distillation systems.  

An artificial neural network is applied to construct the surrogate model of the complex 

distillation column. The parameters of the artificial neural network are regressed using 

data set generated from using Latin Hypercube sampling. Independent variables that 

have a significant effect on capital investment and energy requirements of the system 

are used. Dependent variables of the system that enable evaluation of the system 

performance and allow checking of constraints on product quality and flow rate are 

applied. 

Data sampling considering both structural and operating degrees of freedom for 

design is highly combinatorial: hence not all samples will satisfy material and energy 

balance, phase equilibrium and product quality constraints, i.e. will correspond to 

‘infeasible’ design. In this work, a support vector machine is used to remove infeasible 

points from the design space, thus increasing the likelihood that a design selected 

during optimisation will be feasible and helping to reduce computational effort by 

restricting the design space.  
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In this thesis, the artificial neural network column model and a support vector machine 

are incorporated in an optimisation framework to aid the design of the crude oil 

distillation system. Pinch analysis is used within the framework to predict minimum 

utility requirements. Thus, the interactions between the column and heat recovery 

network are captured.   

In Chapter 4, a case study is presented to illustrate the capabilities of the proposed 

methodology for identifying cost-effective design solutions that meets both product 

quality and flow rate constraints. When the optimised solution is simulated using the 

rigorous model, good agreement is seen between the performance predicted by the 

surrogate and rigorous models. Thus the approach is reliable and can be applied in the 

refining industries for design, analysis, and optimisation of crude oil distillation 

systems. As expected, the computational time has been significantly reduced as 

compared with the approach that implements rigorous models (see Chapter 3). 

6.1.3 Design of flexible heat-integrated crude oil distillation systems 

In practice, petroleum refineries process different types of crude oil feedstocks and 

blends. A few works (Bagajewicz and Ji, 2001; More et al., 2010) focus on the design of 

crude oil distillation systems that can process multiple crude oil feedstocks. 

Nevertheless, important practical issues, such trade-offs between capital and energy 

costs and simultaneous optimisation of column structural and operational degrees of 

freedom have not been addressed. That is, there are no systematic approaches for 

design and optimisation of flexible heat-integrated crude oil distillation systems 

This thesis presents a systematic methodology for the design of flexible crude oil 

distillation systems that addresses the limitations of existing methods (see Chapter 5). 

The methodology models the distillation column, heat recovery system and all crude 

oil feedstocks to be processed in a unified framework. Optimisation is applied to select 

a column configuration that is not only operable across the range of feedstocks, but 

also economical and energy-efficient. 
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The surrogate modelling approach for a single crude oil proposed in Chapter 4 is 

modified and extended to address multiple crude oils. A surrogate model is developed 

for each crude oil to be processed. A two-stage optimisation framework applies the 

surrogate model for each crude oil, together with pinch analysis. One advantage of this 

approach is that the best column configuration is selected while accounting for 

minimum utility requirements, thus capturing the complex interactions between the 

two sub-systems, and the corresponding trade-offs between capital and energy costs.  

An effective solution strategy has been proposed that decouples the problem into two 

stages. In Stage 1, the optimal flexible column configuration that can operate over the 

entire set of crude oils to be processed is selected, while Stage 2 selects the optimal 

operating conditions for each crude oil to be processed. The approach has the 

advantage of allowing the optimisation algorithms to thoroughly explore the problem 

design space (in Stage 1) and operating space (in Stage 2). 

Chapter 5 presents a case study that demonstrates the capabilities of the proposed 

methodology. The case study is concerned with the design of a flexible crude oil 

distillation system that separates three types of crude oil. The objective is to maximum 

profit, taking into account column capital cost, maximum energy recovery and product 

quality constraints. The results provide evidence that the proposed approach can be 

applied in the refining industries to design flexible crude oil distillation systems. One 

advantage of this design approach, compared with established methods, is that the 

final design is optimal and satisfies relevant practical constraints (e.g., product quality), 

helping the proposed approach to generate realistic solutions. 

The design of a flexible crude oil distillation unit is a highly combinatorial problem. 

Decoupling the problem into two levels reduces the level of complexity, helping the 

problem to be solved effectively. If a large number of crude oil is to be processed, the 

solution method becomes computationally demanding and very difficult to solve.  

To overcome the limitation of the two-stage optimisation approach, a new scenario-

based design approach is also proposed in this thesis. The main advantage of this 
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method is that the complex and highly combinatorial problem is fully decoupled into 

two sub-problems that are solved in separate stages. In the first stage, an optimal 

design is generated for each operating scenario. In the second stage, each design is 

optimised considering all the operating scenarios, taking into account important 

criteria, such as expected total cost, total slack variables (related to violation of 

constraints) and worst case performance. In the final step, a multi-criteria decision-

making tool (in this case, the Analytic Hierarchy Process) is used to select the best 

design alternative among several others. 

The capabilities of the scenario-based design approach is demonstrated using two 

industrially-relevant examples: design of a heat exchange network with uncertain inlet 

stream conditions (inlet temperature and heat capacity flow rate) and design of a 

distillation column with variable inlet conditions (feed flow rate, temperature and 

pressure). 

In this thesis, the proposed methodologies for the design of crude oil distillation 

systems accounts for heat integration using pinch analysis, without considering the 

design of the heat exchanger network. Therefore the capital cost of the heat exchanger 

network is not considered in the analysis. Nevertheless, the optimisation algorithm 

minimises the cost of hot and cold utility demand (calculated using pinch analysis), 

which represents the dominant cost of the heat exchanger network. Additionally, the 

stream information of the optimised crude oil distillation system can be used to design 

the heat exchanger network. 

This research work focuses on the design of flexible crude oil distillation system that 

can process multiple crude oil feedstocks. In practice, for a refinery to effectively 

process multiple feedstocks, other downstream units such as vacuum distillation unit, 

fluid catalytic cracking unit, catalytic reformer unit, hydrocracker unit etc. need to be 

flexible as well. Although with little engineering effort, the methodology proposed in 

Chapter 5 can be extended to design the aforementioned downstream units. 
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6.2 Future work  

Future work in this area can extend the methodology presented in this thesis to 

address the following issues: 

 

1. The new modelling approach presented in this work takes into account both 

structural and operating conditions of the crude oil distillation unit. The 

structural variables considered in this work are limited to the number of trays 

in each column section. The approach can be extended to incorporate additional 

structural variables, such as pump-around and side-stripper locations, and the 

feed inlet location.   

 

2. The new modelling approach presented in this work focuses on the 

atmospheric distillation column. Modelling of other processing units such as a 

flash unit, a pre-fractionator and the vacuum distillation unit can be addressed, 

modelled and incorporated into the proposed methodology. 

 

3. In this work, heat integration is incorporated into the design framework using 

pinch analysis. The proposed methodology can be extended to include details 

of the heat exchanger network configuration and of the individual heat 

exchangers. 

 

4. The methodology proposed in this work focuses on flexible design of new 

crude oil distillation units. The approach can be extended to retrofit design, 

taking into account various modifications to allow an existing distillation 

column to process wide range of feedstock.  

 

5. The flexible design approach presented in this thesis is quite general, thus there 

is potential for it to be extended to other chemical and petrochemical processes, 

for example fluid catalytic cracking unit, catalytic reformer unit, hydrocracker 

unit, hydrotreater unit etc. 
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Appendix A Data for Publications 1, 2, 3 and 

4 

This appendix consists of four sections, in which the Supporting Information/ 

supplementary material for Publications 1, 2, 3 and 4 are presented respectively. Each 

Supporting Information is submitted together with the corresponding paper for 

publication in reputable journals in the field of Chemical Engineering. 
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A.1 Supporting Information for Publication 1 

Ibrahim, D., Jobson, M., Guillén-Gosálbez, G., 2017. Optimization-based Design of 

Crude Oil Distillation Units using Rigorous Simulation Models. Ind. Eng. Chem. 

Res., 2017, 56 (23), pp 6728–6740, DOI: 10.1021/acs.iecr.7b01014 
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Supporting Information   

Table S1 shows the crude oil assay that was used in the case study in Section 4. 

 

Table S1 Physical properties of crude oil (crude oil assay) 

Name (country of origin) Tia Juana light (Venezuela) 

Type Light 

Bulk properties 
 

i. Density (kg m–3) 867.6 

ii. API gravity (ºAPI) 31.6 

Distillation properties  
 

i. Light end analysis Component name Volume % 

  Ethane 0.04 

  Propane 0.37 

  i-Butane 0.27 

  n-Butane 0.89 

  i-Pentane 0.77 

  n-Pentane 1.13 

  
  

ii. TBP curve Temperature (C) Volume % 

  36.1 0 

  64.4 5 

  100.6 10 

  163.9 20 

  221.1 30 

  278.9 40 

  337.2 50 

  397.2 60 

  463.9 70 

 545.0 80 

 

The crude oil assay in Table S1 is cut into 25 pseudo-components using the standard oil 

characterization procedure in Aspen HYSYS v8.6. Table S2 presents the normal boiling 

temperature, compositions and volumetric flow rates of both the pure components and 

the pseudo-components. 
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Table S2 Crude oil feedstock characterization 

Component name NBP (C) Volume fraction Volumetric flow (m3 h-1) 

Ethane -89 0.040 0.265 

Propane -42 0.370 2.451 

i-Butane -12 0.270 1.789 

n-Butane -1 0.890 5.896 

i-Pentane 28 0.770 5.101 

n-Pentane 36 1.130 7.486 

NBP_47 47 4.250 28.157 

NBP_72 72 3.371 22.331 

NBP_97 97 3.263 21.616 

NBP_122 122 3.654 24.207 

NBP_146 146 3.848 25.491 

NBP_171 171 4.028 26.683 

NBP_195 195 4.148 27.479 

NBP_219 219 4.147 27.473 

NBP_244 244 4.083 27.048 

NBP_268 268 4.071 26.970 

NBP_293 293 4.063 26.916 

NBP_317 317 4.031 26.705 

NBP_341 341 4.018 26.615 

NBP_366 366 3.947 26.147 

NBP_390 390 3.822 25.319 

NBP_415 415 3.673 24.332 

NBP_449 449 6.153 40.762 

NBP_493 493 5.466 36.208 

NBP_538 538 4.875 32.294 

NBP_581 581 4.264 28.246 

NBP_625 625 3.214 21.288 

NBP_685 685 4.781 31.674 

NBP_771 771 2.809 18.609 

NBP_858 858 1.408 9.328 

NBP_950 950 1.142 7.563 
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Tables S3 to S6 present the initial design data for the base case. 

 

Table S3 Initial operating conditions 

Operating variable Initial value 

PA 1 duty (MW) 11.2 

PA 2 duty (MW) 17.89 

PA 3 duty (MW) 12.84 

PA 1 DT (ºC) 20 

PA 2 DT (ºC) 50 

PA 3 DT (ºC) 30 

Main stripping steam (kmol h–1) 1200 

HD stripping steam (kmol h–1) 250 

Feed temperature (ºC) 365 

Reflux ratio 4.17 

 

 

 

Table S4 Product quality and flow rate 

Products Quality (C, ASTM D86) Flow rate (m3 h–1) 

 T5% T95%  

LN 25.9 110.6 103.5 

HN 138.9 186.6 78.2 

LD 215.9 301.5 140.3 

HD 310.7 354.4 48.1 

RES 361.4 754.3 292.5 
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Table S5 Utility demand and column cost 

Variable Values Units 

Utility requirements   

Hot utility 54.61 MW 

Cold utility 61.18 MW 

Cost analysis   

Utility cost 8.51 $MM y–1 

Steam cost 1.77 $MM y–1 

   

Total operating cost 10.28 $MM y–1 

Annualised capital cost 0.33 $MM y–1 

Total annualised cost 10.61 $MM y–1 

 $MM y–1 denotes millions of US dollars per annum 

 

 

Table S6 Utility costs (Chen, 2008) 

Utility Price Unit 

Stripping steam (260 C, 4.5 bar) 0.14 $ kmol–1  

Fired heating (1500-800 C) 150 $ (kWy)–1 

Cooling water (10-40 C) 5.25 $ (kWy)–1 
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The solution time for the multiple run genetic algorithm ranges between 4 and 6 hours 

for Case 1; and between 3 and 6 hours for Case 2. The computation results are 

summarised in Tables S7 and S8.   

 

Table S7 Results for CDU design based on genetic algorithm (Case 1) 

Run Objective function 

($MM y–1)* 

CPU time 

(hours) 

No. of 

Generations 

Convergence 

criterion# 

Number of 

simulations 

1 7.84 6.49 199 1 20001 

2 8.10 6.57 200 0 20101 

3 7.85 5.33 173 1 17401 

4 7.84 4.58 200 0 20101 

5 7.84 5.89 200 0 20101 

6 7.84 5.32 200 0 20101 

7 8.15 5.76 175 1 17601 

8 7.84 5.51 188 1 18901 

9 7.84 4.06 171 1 17201 

10 7.85 4.94 162 1 16301 

* $MM y–1 denotes millions of US dollars per annum 

# 1 denotes population convergence; 0 denotes maximum no of generation reached  

 

 

Table S8 Results for CDU design based on genetic algorithm 

Run Objective function  

($MM y–1)* 

CPU time 

(hours) 

No. of 

Generations 

Convergence 

criterion# 

Number of 

simulations 

1 8.49 4.57 200 0 20101 

2 8.53 2.91 200 0 20101 

3 8.52 5.64 200 0 20101 

4 8.51 3.46 188 1 19001 

5 8.52 3.96 200 0 20101 

6 8.47 3.00 200 0 20101 

7 8.50 3.93 153 1 15401 

8 8.49 5.46 200 0 20101 

9 8.52 4.76 200 0 20101 

10 8.47 3.12 200 0 20101 

* $MM y–1 denotes millions of US dollars per annum 

# 1 denotes population convergence; 0 denotes maximum no of generation reached 
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Figures S1 and S2 shows how the population evolves using genetic algorithm to the 

best solution; Run 9 and Run 6 representing the best solutions for Case 1 and Case 2 

respectively. As can be seen, at the start of the algorithm, the mean fitness of the 

individuals in the population is greater than the fitness of the best individual. This 

results from the fact that the initial randomly generated population of individuals is 

diverse. As the algorithm progresses, the fitness of all members of the subsequent 

generations tends to converge to the best solution. As a result, the mean fitness of the 

population and the fitness of the best individual become similar. The algorithm 

terminates on generation 171 in Case 1, when the population converge; i.e. there is no 

significant improvement of the objective value for a given number of generations. In 

Case 2, the algorithm terminates at the maximum generation. 

 

 

 

 

Figure S1 Optimisation progress (Case 1) 
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Figure S2 Optimisation progress (Case 2) 

 

 

Tables S9 and S10 present the process stream information for the optimal crude oil 

distillation unit. This information was used in the heat recovery model to calculate the 

minimum energy targets for the design. 
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Table S9 Process stream information (Case 1) 

Stream Name Tsupply (C) Ttarget (C) ∆H (MW) 

ADU condenser 93 58 43.15 

LN cooler 58 40 0.74 

HN cooler 184 40 6.14 

LD cooler 285 40 17.81 

HD cooler 266 50 5.54 

RES cooler 322 100 44.80 

PA1 157 128 8.41 

PA2 229 174 13.44 

PA3 300 266 10.25 

HN reboiler 178 184 2.70 

LD reboiler 274 285 8.16 

Raw crude oil 25 340 138.11 

 

Table S10 Process stream information (Case 2) 

Stream Name Tsupply  (C) Ttarget  (C) ∆H (MW) 

ADU condenser 93 58 45.16 

LN cooler 58 40 0.76 

HN cooler 185 40 5.76 

LD cooler 281 40 18.09 

HD cooler 275 50 7.04 

RES cooler 338 100 47.08 

PA1 152 131 9.58 

PA2 228 185 16.19 

PA3 305 284 15.20 

HN reboiler 178 185 5.15 

LD reboiler 268 281 8.81 

Raw crude oil 25 361 149.35 

References 

Chen, L., 2008. Heat-Integrated Crude Oil Distillation System Design. PhD Thesis, 
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Supplementary material 

S1 Initial feasible design information 

Table S1 shows the crude oil assay (Watkins, 1979) that was used in the case study in 

Section 4. 

 

Table S1 – Physical properties of crude oil (crude oil assay) 

Name (Country of origin) Tia Juana light (Venezuela) 

Type Light 

Bulk properties 
 

i. Density (kg/m3) 867.6 

ii. API gravity (ºAPI) 31.6 

Distillation properties  
 

i. Light end analysis Comp. name Vol. % 

  Ethane 0.04 

  Propane 0.37 

  i-Butane 0.27 

  n-Butane 0.89 

  i-Pentane 0.77 

  n-Pentane 1.13 

  
  

ii. TBP curve Temp. (0C) Vol. % 

  36.1 0 

  64.4 5 

  100.6 10 

  163.9 20 

  221.1 30 

  278.9 40 

  337.2 50 

  397.2 60 

  463.9 70 

 545.0 80 

 

The crude oil assay in Table S1 is cut into 25 pseudo-components using the standard oil 

characterization procedure in Aspen HYSYS v8.6. Table S2 presents the normal boiling 

temperature, compositions and volumetric flow rates of both the pure components and 

the pseudo-components. 
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Table S2 – Crude oil feedstock characterization 

Comp. name NBP (℃) Volume 

fraction 

Volumetric flow (m3 h-1) 

Ethane -89 0.040 0.265 

Propane -42 0.370 2.451 

i-Butane -12 0.270 1.789 

n-Butane -1 0.890 5.896 

i-Pentane 28 0.770 5.101 

n-Pentane 36 1.130 7.486 

NBP_47 47 4.250 28.157 

NBP_72 72 3.371 22.331 

NBP_97 97 3.263 21.616 

NBP_122 122 3.654 24.207 

NBP_146 146 3.848 25.491 

NBP_171 171 4.028 26.683 

NBP_195 195 4.148 27.479 

NBP_219 219 4.147 27.473 

NBP_244 244 4.083 27.048 

NBP_268 268 4.071 26.970 

NBP_293 293 4.063 26.916 

NBP_317 317 4.031 26.705 

NBP_341 341 4.018 26.615 

NBP_366 366 3.947 26.147 

NBP_390 390 3.822 25.319 

NBP_415 415 3.673 24.332 

NBP_449 449 6.153 40.762 

NBP_493 493 5.466 36.208 

NBP_538 538 4.875 32.294 

NBP_581 581 4.264 28.246 

NBP_625 625 3.214 21.288 

NBP_685 685 4.781 31.674 

NBP_771 771 2.809 18.609 

NBP_858 858 1.408 9.328 

NBP_950 950 1.142 7.563 

 

 

Tables S3 to S5 present the initial design data for the base case. 
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Table S3 – Initial operating conditions 

Operating variable Initial value 

PA 1 duty (MW) 11.2 

PA 2 duty (MW) 17.89 

PA 3 duty (MW) 12.84 

PA 1 DT (ºC) 20 

PA 2 DT (ºC) 50 

PA 3 DT (ºC) 30 

Main stripping steam (kmol h–1) 1200 

HD stripping steam (kmol h–1) 250 

Feed temperature (ºC) 365 

Reflux ratio 4.17 

 

Table S4 – Product quality and flow rate 

Products Quality (C, ASTM D86) Flow rate (m3 h–1) 

 T5% T95%  

LN 25.9 110.6 103.5 

HN 138.9 186.6 78.2 

LD 215.9 301.5 140.3 

HD 310.7 354.4 48.1 

RES 361.4 754.3 292.5 

 

Table S5 – Utility demand and column cost 

Variable Values Units 

Utility requirements   

Hot utility 54.61 MW 

Cold utility 61.18 MW 

Cost analysis   

Utility cost 8.51 $MM a–1 

Steam cost 1.77 $MM a–1 

   

Total operating cost 10.28 $MM a–1 

Annualised capital cost 0.33 $MM a–1 

Total annualised cost 10.61 $MM a–1 

 $MM a–1 denotes millions of US dollars per annum 
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S2 Capital cost models  

The column shell costs (𝑆𝐶) and tray costs (𝑇𝐶) are estimated using the correlations 

proposed by Guthrie (Guthrie, 1969). 

 

               𝑆𝐶 = (
𝑀&𝑆 𝐼𝑛𝑑𝑒𝑥2011

280
) 101.9(𝐷)1.066(𝐻)0.802(2.18 + 𝐹𝑐1)                                     (S1) 

 

where M&S Index2011 is the Marshall and Swift chemical equipment cost index for year 

2011 (4th quarter)(“Chemical Engineering magazine,” 2012) allowing costs to be 

updated from 1969 (when the M&S Index was 280); the cost is updated to current 

equipment cost using Eq. (S3); 𝐷  is the sectional diameter of the column, 𝐻  is the 

sectional height, which depends on tray spacing and 𝐹𝑐1 is the column cost factor, 

which depends on the column material of construction and column operating pressure. 

 

            𝑇𝐶 = (
𝑀&𝑆 𝐼𝑛𝑑𝑒𝑥2011

280
) 4.7(𝐷)1.55𝐻𝐹𝑐2                                                                         (S2) 

 

The tray cost factor 𝐹𝑐2  depends on the type of tray, tray spacing and material of 

construction.  

 

                      (
𝐶𝐸𝑃𝐶𝐼2014

𝐶𝐸𝑃𝐶𝐼2011
) × 𝐶𝑜𝑠𝑡2011                                                                                       (S3) 

 

where CEPCI2011 and CEPCI2014 are the chemical engineering plant cost index for year 

2011 (4th quarter) (“Chemical Engineering magazine,” 2012) and 2014 (4th quarter) 

(“Chemical Engineering magazine,” 2014) respectively; Cost2011 is the equipment cost 

for year 2011, calculated using Eq. (S1) and Eq. (S2). The M&S Index2011, CEPCI2011 and 

CEPCI2014 are 1536.5, 590.1 and 575.7 respectively. 
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S3 Optimization results 

Table S6 Results for multiple optimization runs  

Run Objective function 

($MM a–1)* 

CPU time  

(s) 

No. of 

Generations 

1 8.54 85 300 

2 8.49 90 300 

3 8.44 83 300 

4 8.48 68 240 

5 8.46 84 300 

6 8.47 82 300 

7 8.44 75 270 

8 8.46 87 300 

9 8.49 80 300 

10 8.48 79 300 

 

 

 

 

Figure S1 Optimisation progress for Run 3 
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S4 Simulation of ANN results on rigorous model 

 

Table S7 Product quality, supply and target temperature 

Variables Tia Juana light Variables Tia Juana light 

Product  

quality (℃) 

Rigorous 

model 

ANN 

model 

Diff. Product  

flow rates (m3 h–1) 

Rigorous 

model 

ANN 

model 

Diff. 

LN T5% 24.51 24.68 -0.17 LN 99.39 98.87 0.52 

HN T5% 131.09 128.58 2.51 HN 85.47 86.25 -0.78 

LD T5% 215.71 215.63 0.07 LD 134.71 134.28 0.43 

HD T5% 306.87 307.47 -0.60 HD 49.76 50.71 -0.95 

RES T5% 360.38 360.61 -0.24 RES 293.27 292.52 0.76 

LN T95% 110.56 110.57 -0.01 
Exchanger  

duties (MW)    

HN T95% 186.79 186.56 0.23 ADU condenser 44.58 44.57 0.00 

LD T95% 301.47 301.48 0.00 LN cooler 0.75 0.76 -0.01 

HD T95% 354.38 354.38 0.00 HN cooler 6.11 6.12 -0.01 

RES T95% 754.14 754.22 -0.07 LD cooler 18.43 18.50 -0.07 

Supply  

temperature (℃)    
HD cooler 6.52 6.48 0.04 

ADU condenser 93.13 91.64 1.49 RES cooler 47.12 47.10 0.02 

LN cooler 58.21 57.81 0.41 HN reboiler 3.41 3.37 0.05 

HN cooler 185.15 183.87 1.29 LD reboiler 8.71 8.68 0.02 

LD cooler 284.65 284.65 0.01 Fired heater 49.62 49.62 0.00 

HD cooler 276.92 277.16 -0.25 
Column  

diameter (𝒎𝟐)    

RES cooler 337.46 336.83 0.62 Main column 
   

PA1 156.49 156.40 0.09 Section 1 6.10 6.30 -0.21 

PA2 232.32 232.94 -0.62 Section 2 5.94 6.06 -0.11 

PA3 309.32 309.56 -0.24 Section 3 6.40 6.43 -0.03 

HN reboiler 178.77 177.56 1.21 Section 4 5.49 5.56 -0.07 

LD reboiler 272.38 272.98 -0.59 Section 5 5.03 5.04 -0.01 

Target  

temperature (℃)    
HN side-stripper 2.59 2.36 0.23 

ADU condenser 58.21 58.04 0.17 LD side-stripper 2.59 2.59 0.00 

HN reboiler 185.15 184.11 1.05 HD side-stripper 1.37 1.48 -0.11 

LD reboiler 284.65 285.16 -0.50 
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Table S8 Validation of artificial neural network results on rigorous model in Aspen 

HYSYS 

Variable Rigorous model ANN model Diff. Units 

Utility requirements  
   

 

Hot utility 44.46 44.53 -0.07 MW 

Cold utility 46.04 44.87 1.17 MW 

Cost  
   

 

Utility cost 6.91 6.92 -0.01 $MM a–1 

Steam cost 1.33 1.33 0.00 $MM a–1 

    
 

Total operating cost 8.24 8.24 -0.01 $MM a–1 

Annualized capital cost 0.21 0.21 0.00 $MM a–1 

Total annualized cost 8.44 8.45 -0.01 $MM a–1 

 

Table S9 presents the process stream information for the optimal crude oil distillation 

unit. This information was used in the heat recovery model to calculate the minimum 

energy targets for the design. 

 

Table S9 Process stream information 

Stream Name Tsupply (C) Ttarget (C) ∆H (MW) 

ADU condenser 93 58 44.58 

LN cooler 58 40 0.75 

HN cooler 185 40 6.11 

LD cooler 285 40 18.43 

HD cooler 277 50 6.52 

RES cooler 337 100 47.12 

PA1 156 136 11.05 

PA2 232 176 14.01 

PA3 309 281 14.35 

HN reboiler 179 185 3.41 

LD reboiler 272 285 8.71 

Raw crude oil 25 361 149.24 
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Table S10 Validation results for artificial neural network classifier.  

Prediction class True prediction False prediction 

Positive class 

(Converged samples, +1) 

952 

[94.4%] 

56 

[5.6%] 

   

Negative class  

(Unconverged samples, −1) 

400 

[53.9%] 

342 

[446.1%] 

   Overall: Correct prediction 77% 

              Wrong prediction 23% 

 

 

Table S11 Optimisation with and without support vector machine 

 

With SVM 

 

Without SVM 

Run 

Objective function 

($MM y–1)* 

CPU time 

(s) 

No. of 

Generations 

 

Objective function 

($MM y–1)* 

CPU time 

(s) 

No. of 

Generations 

1 8.54 85 300 

 

fail to converge on rigorous model 

2 8.49 90 300 

 

8.64 55 300 

3 8.44 83 300 

 

8.59 55 300 

4 8.48 68 240 

 

fail to converge on rigorous model 

5 8.46 84 300 

 

8.60 54 300 

6 8.47 82 300 

 

8.64 56 300 

7 8.44 75 270 

 

8.63 55 300 

8 8.46 87 300 

 

8.61 55 300 

9 8.49 80 300 

 

8.58 55 300 

10 8.48 79 300 

 

fail to converge on rigorous model 

 

All results presented in Table 11 have been validated on a rigorous simulation model. 
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Supplementary material  

 

S1   Crude oil assay 

Table S1 Physical properties of three variety of crude oil used in this work (Watkins, 

1979; TOTAL, 2015)  

Name  

(Country of origin) 

Tia Juana light* 

(Venezuela) 

Bonny light** 

(Nigeria) 

Brent** 

(United Kingdom) 

Type Light Light Light 

Bulk properties 
   

Density (kg m-3) 867.6 849 833.7 

API gravity (0API) 31.6 35.1 38.1 

Distillation properties  

Light end analysis 
Comp. 

name 

Vol. 

(%) 

Comp. 

name 

Vol. 

(%) 

Comp. 

name 

Vol.  

(%)  

  Ethane 0.04 Ethane 0.05 Ethane 0.23  

  Propane 0.37 Propane 0.35 Propane 1.48  

  i-Butane 0.27 i-Butane 0.42 i-Butane 0.44  

  n-Butane 0.89 n-Butane 0.89 n-Butane 2.00  

  i-Pentane 0.77 i-Pentane - i-Pentane -  

  n-Pentane 1.13 n-Pentane - n-Pentane -  

  
      

TBP curve 
Temp. 

(0C) 

Vol. 

% 

Temp. 

(0C) 

Vol. 

% 

Temp 

(0C) 

Vol.  

% 

Temp 

(0C) 

Vol. 

% 

  36.1 0 -0.50 0 -0.50 0 330 59.76 

  64.4 5 015 1.37 080 11.95 340 61.53 

  100.6 10 080 9.26 140 25.65 350 63.26 

  163.9 20 150 23.80 150 27.80 360 64.94 

  221.1 30 175 28.67 160 29.79 370 66.56 

  278.9 40 230 39.65 180 33.43 380 68.12 

  337.2 50 325 64.37 200 36.77 390 69.61 

  397.2 60 350 69.63 220 40.03 400 71.03 

  463.9 70 375 74.30 240 43.39 450 77.39 

 545.0 80 550 93.68 250 45.14 475 80.26 

    565 95.39 260 46.93 500 83.02 

     300 54.28 525 85.78 

     310 56.13 550 88.61 

     320 57.96 565 90.36 

  

 

The assay for each crude oil in Table S1 is cut into 25 pseudo-components using the 

standard oil characterization procedure in Aspen HYSYS v8.6. In addition to the 
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pseudo-components, there are six light ends in the case of Tia Juana and four light ends 

in the case of Bonny light and Brent (see Table S1). 

S2   Initial feasible design information 

Table S2 Initial crude oil distillation unit design parameters (Ibrahim et al., 2017a) 

Parameter Tia Juana light* Bonny light Brent 

Number of trays in main column 41 41 42 

Number of trays in side strippers – HN, LD, HD 6, 7, 5 7, 7, 6 5, 5, 6 

HN side-stripper draw and return trays 32, 33 31, 32 32, 33 

LD side-stripper draw and return trays 24, 25 22, 23 23, 24 

HD side-stripper draw and return trays 14, 15 12, 13 13, 14 

Pump-around 1 (PA 1) draw and return trays 32, 34 31, 33 32, 34 

Pump-around 2 (PA 2) draw and return trays 24, 26 22, 24 23, 25 

Pump-around 3 (PA 3) draw and return trays 14, 16 12, 14 13, 15 

Stripping steam feed tray 1 1 1 

Crude oil feed tray 5 3 4 

  

 

Table S3 Initial crude oil distillation unit operating conditions   

Operating condition Tia Juana light Bonny light Brent 

PA 1 duty (MW) 11.20 12.00 10.00 

PA 2 duty (MW) 17.89 14.58 26.31 

PA 3 duty (MW) 12.84 14.00 25.00 

PA 1 DT (℃) 20 60 60 

PA 2 DT (℃) 50 25 65 

PA 3 DT (℃) 30 20 35 

Main steam (kmol h-1) 1200 1200 1000 

HD steam (kmol h-1) 250 250 250 

Feed temperature (℃) 365 365 365 

Reflux ratio 4.17 4.17 3 
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Table S4 Product type, quality and flow rate 

Products 
Quality (0C) 

[ASTM D86] 
Flow rates (m3 h-1) 

 

T5% T95% 
Tia Juana 

light 

Bonny 

light 
Brent 

LN 25.99* 110.56 103.5 116.3 161.1 

HN 138.89 186.57 78.2 103.5 91.1 

LD 215.96 301.47 140.3 190.5 135.5 

HD 310.66 354.38 48.1 70.3 51.6 

RES 361.40 754.31* 292.5 181.9 223.5 

*   The T5% boiling temperature for Bonny light and Brent are 25.36℃ and 4.07℃, while 

the T95% boiling temperature are 617.90℃ and 652.50℃ respectively. 

S3 Capital cost models and price of feed, products and utilities 

S3.1 Capital cost correlations 

The column shell costs (𝑆𝐶) and tray costs (𝑇𝐶) are estimated using the correlations 

proposed by Guthrie (1969): 

               𝑆𝐶 = (
𝑀&𝑆 𝐼𝑛𝑑𝑒𝑥2011

280
) 101.9(𝐷)1.066(𝐻)0.802(2.18 + 𝐹𝑐1)                                     (S1) 

 

where M&S Index2011 is the Marshall and Swift chemical equipment cost index for year 

2011 (4th quarter)(Chemical Engineering, 2012) allowing costs to be updated from 1969 

(when the M&S Index was 280); the cost is updated to current equipment cost using Eq. 

(S3); 𝐷 is the sectional diameter of the column, 𝐻 is the sectional height, which depends 

on tray spacing and 𝐹𝑐1 is the column cost factor, which depends on the column 

material of construction and column operating pressure. In this case study, the column 

is design using sieve trays, and the diameter of each column section is estimated using 

the tray sizing utility in Aspen HYSYS. The eight sections of the column are cost 

according to their respective diameter and number of trays. 

The column factor 𝐹𝑐1 is the sum of material factor 𝐹𝑚1 (value is 1 for sieve trays) and 

pressure factor 𝐹𝑝 (value is 1 for sieve trays). Similarly, 𝐹𝑐2 is the correction factor for 

sieve trays, and is the sum of tray spacing factor, type factor and material factor, with 

values of 1, 0 and 0 respectively. 
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            𝑇𝐶 = (
𝑀&𝑆 𝐼𝑛𝑑𝑒𝑥2011

280
) 4.7(𝐷)1.55𝐻𝐹𝑐2                                                                         (S2) 

 

The tray cost factor 𝐹𝑐2  depends on the type of tray, tray spacing and material of 

construction.  

The cost is further updated using CEPCI values for 2011 and 2014: 

 

                      (
𝐶𝐸𝑃𝐶𝐼2014

𝐶𝐸𝑃𝐶𝐼2011
) × 𝐶𝑜𝑠𝑡2011                                                                                       (S3) 

 

where CEPCI2011 and CEPCI2014 are the Chemical Engineering Plant Cost Indices for 

2011 (4th quarter) (Chemical Engineering, 2012) and 2014 (4th quarter) (Chemical 

Engineering, 2014) respectively; Cost2011 is the equipment cost for year 2011, calculated 

using Eq. (S1) and Eq. (S2). The values used for M&S Index2011, CEPCI2011 and CEPCI2014 

are 1536.5, 590.1 and 575.7, respectively. 

S3.2 Price of commodities 

Table S5a presents the prices of intermediate products and the spot price of crude oil 

(EIA, 2016). The price of the intermediate products are calculated using the method 

presented in (Chen, 2008) 

Table S5a Price of products, and cost of crude oils and utilities 

Commodity Price ($ m–3) Price ($ bbl–1) 

Tia Juana light 288.32 45.84 

Bonny light 290.27 46.15 

Brent 263.79 41.94 

Light naphtha (LN) 386.34 61.42 

Heavy naphtha (HN) 358.95 57.07 

Light distillate (LD) 280.91 44.66 

Heavy distillate (HD) 369.84 58.80 

Residue (RES) 218.06 34.67 
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Table S5b presents the cost of utilities (Chen, 2008).  

Table S5b Cost of utilities 

Utility Price Unit 

Stripping steam (260 ºC, 4.5 bar) 0.14 $ kmol–1 

Fired heating (1500-800 ºC) 150 $ kW–1 a–1 

Cooling water (10-40℃) 5.25 $ kW–1 a–1  

 

S4 Bounds for data sampling and optimization 

Table S6 Initial distribution of trays in column sections and their bounds 

Section Tia Juana Bonny 

light 

Brent Lower 

bound 

Upper  

bound 

1 5 3 4 3 6 

2 9 9 9 7 10 

3 10 10 10 8 11 

4 8 9 9 6 10 

5 9 10 10 7 11 

6 5 6 6 3 7 

7 7 7 5 3 8 

8 6 7 5 3 8 
 

 

 

Table S7 Initial distillation operating conditions and their bounds (Tia Juana) 

Operating condition Lower 

 bound 

Initial feasible 

design 

Upper 

bound 

PA 1 duty (MW) 8.4 11.2 14 

PA 2 duty (MW) 13.42 17.89 22.36 

PA 3 duty (MW) 9.63 12.84 16.05 

PA 1 DT (℃) 20 20 30 

PA 2 DT (℃) 40 50 60 

PA 3 DT (℃) 20 30 40 

Main steam (kmol h–1) 900 1200 1500 

HD steam (kmol h–1) 188 250 313 

Feed temperature (℃) 340 365 375 

Reflux ratio 3.17 4.17 6.17 
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Table S8 Initial distillation operating conditions and their bounds (Bonny light) 

Operating condition Lower 

 bound 

Initial feasible 

design 

Upper 

bound 

PA 1 duty (MW) 9 12 15 

PA 2 duty (MW) 11.58 14.58 17.58 

PA 3 duty (MW) 11 14 17 

PA 1 DT (℃) 50 60 70 

PA 2 DT (℃) 15 25 35 

PA 3 DT (℃) 15 20 30 

Main steam (kmol h–1) 900 1200 1500 

HD steam (kmol h–1) 118 250 313 

Feed temperature (℃) 345 365 375 

Reflux ratio 4.17 4.18 4.35 

 

 

Table S9 Initial distillation operating conditions and their bounds (Brent) 

Operating condition Lower 

 bound 

Initial feasible 

design 

Upper 

bound 

PA 1 duty (MW) 7 10 13 

PA 2 duty (MW) 23.31 26.31 29.31 

PA 3 duty (MW) 22 25 28 

PA 1 DT (℃) 50 60 70 

PA 2 DT (℃) 55 65 75 

PA 3 DT (℃) 25 35 45 

Main steam (kmol h–1) 700 1000 1300 

HD steam (kmol h–1) 118 250 313 

Feed temperature (℃) 345 365 375 

Reflux ratio 2.97 3 4 

  

 

 

 

 

 

 



283 
 

S5 Surrogate modelling results: performance of artificial neural 

network model 

S5.1 Tia Juana 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1 Parity plots comparing predictions of ANN and rigorous model: Tia Juana 

 
 

Note that the figures are presented in a different order to the models, as described in 

Table S5.1: 
 

Table S5.1 Description of artificial neural network models  

ANN number Description Outputs R2  

1 Product quality (T5 %) 5 0.999 

2 Product quality (T95 %) 5 0.999 

3 Product flow rate 5 0.999 

4 Column diameter 8 0.999 

5 Enthalpy change 9 0.999 

6 Supply temperature 11 0.999 

7 Target temperature 3 0.999 
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S5.2 Bonny light 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2 Parity plots comparing predictions of ANN and rigorous model:  Bonny light 

 

Table S5.2 Description of artificial neural network models  

ANN number Description Outputs R2  

1 Product quality (T5 %) 5 0.999 

2 Product quality (T95 %) 5 0.999 

3 Product flow rate 5 0.999 

4 Column diameter 8 0.999 

5 Enthalpy change 9 0.999 

6 Supply temperature 11 0.999 

7 Target temperature 3 0.999 
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S5.3 Brent 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S3 Parity plots comparing predictions of ANN and rigorous model: Brent 

 

Table S5.3 Description of artificial neural network models  

ANN number Description Outputs R2   

1 Product quality (T5 %) 5 0.999 

2 Product quality (T95 %) 5 0.999 

3 Product flow rate 5 0.999 

4 Column diameter 8 0.992 

5 Enthalpy change 9 0.998 

6 Supply temperature 11 0.999 

7 Target temperature 3 0.999 
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S6 Optimization results 

S6.1 Optimization results for multiple runs 

Table S10 Optimization results for flexible crude oil distillation unit 

Run Objective function  

($MM y–1)* 

CPU time (seconds) 

1 100.91 3426 

2 101.16 3940 

3 101.27 3976 

4 101.27 4081 

5 101.27 3998 

6 100.91 3817 

7 101.27 3686 

8 101.27 3754 

9 101.27 3566 

10 101.27 4480 

*$MM denotes millions of dollars 

 

Figures S4 shows how the initial population evolves to the best solution using genetic 

algorithm: Run 7.  

 

 
 

Figure S4 Optimization progress 
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S6.2 Validation: Rigorous simulation of optimized designs  

 

Table S11 Product quality, supply, and target temperature 

Variables Tia Juana light Bonny light Brent 

Product quality (℃) 
Rigorous 

model 

ANN 

model 

Diff. Rigorous 

model 

ANN 

model 

Diff. Rigorous 

model 

ANN 

model 

Diff. 

LN T5% 25.92 25.49 0.43 25.00 25.08 -0.07 3.90 3.90 0.01 

HN T5% 137.82 135.94 1.88 133.07 132.75 0.32 136.07 136.47 -0.40 

LD T5% 215.97 217.87 -1.90 215.93 215.91 0.02 214.48 215.87 -1.40 

HD T5% 308.28 308.18 0.10 299.93 299.43 0.51 308.14 308.17 -0.03 

RES T5% 369.28 367.80 1.49 377.91 377.37 0.54 375.75 373.85 1.89 

LN T95% 110.56 110.56 0.00 110.56 110.58 -0.02 110.02 110.91 -0.89 

HN T95% 186.72 186.55 0.18 186.57 186.57 0.00 186.57 186.16 0.41 

LD T95% 301.47 301.47 0.00 301.47 301.44 0.03 301.47 301.47 0.00 

HD T95% 354.38 354.39 0.00 354.38 354.39 0.00 354.38 354.38 0.00 

RES T95% 755.68 755.61 0.06 620.64 620.22 0.43 658.26 657.82 0.44 

Supply temperature (℃) 
         

ADU condenser 92.43 91.92 0.51 96.09 96.34 -0.25 93.74 93.71 0.03 

LN cooler 59.27 59.14 0.13 55.47 55.46 0.02 35.68 35.64 0.04 

HN cooler 188.38 188.13 0.25 184.28 183.88 0.40 186.40 186.10 0.30 

LD cooler 283.58 285.20 -1.62 284.70 284.71 -0.01 285.06 285.16 -0.10 

HD cooler 280.97 282.84 -1.87 295.48 293.61 1.87 275.83 276.36 -0.53 

RES cooler 336.25 338.31 -2.06 318.04 319.00 -0.96 330.66 331.49 -0.83 

PA1 151.82 154.25 -2.43 158.73 158.56 0.17 148.29 146.70 1.59 

PA2 232.96 231.42 1.55 244.47 244.62 -0.16 225.14 225.40 -0.25 

PA3 311.88 312.41 -0.53 315.38 314.85 0.54 307.54 308.00 -0.47 

HN reboiler 181.79 182.17 -0.38 179.27 178.90 0.37 180.68 180.18 0.50 

LD reboiler 273.41 274.37 -0.96 276.04 275.96 0.08 273.93 274.17 -0.24 

Target temperature (℃) 
         

ADU condenser 59.27 59.08 0.19 55.47 55.41 0.06 35.68 35.54 0.14 

HN reboiler 188.38 188.35 0.03 184.28 183.69 0.59 186.40 185.87 0.53 

LD reboiler 283.58 285.50 -1.91 284.70 284.75 -0.05 285.06 285.03 0.03 

Diff: difference between temperature predicted by rigorous model and that of optimum solution 

obtained using surrogate models 
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Table S12 Product flow rate, enthalpy change and column diameter 

Variables Tia Juana light Bonny light Brent 

Product flow rates 

(𝐦𝟑 𝐡−𝟏) 

Rigorous 

model 

ANN 

model 

Diff. Rigorous 

model 

ANN 

model 

Diff. Rigorous 

model 

ANN 

model 

Diff. 

LN 103.32 103.33 -0.01 115.00 115.46 -0.46 160.52 160.40 0.12 

HN 80.10 82.17 -2.06 105.46 104.86 0.60 92.17 91.95 0.22 

LD 134.53 131.71 2.82 183.60 184.49 -0.88 133.21 133.12 0.10 

HD 58.60 60.33 -1.73 87.84 86.82 1.01 64.68 64.85 -0.17 

RES 286.00 285.10 0.91 170.64 171.01 -0.37 211.95 212.26 -0.31 

Exchanger duties 

(MW)          

ADU condenser 56.21 55.08 1.13 69.04 69.05 -0.01 71.28 70.78 0.50 

LN cooler 0.83 0.76 0.07 0.74 0.74 0.00 0.43 0.42 0.01 

HN cooler 5.88 6.13 -0.25 7.54 7.52 0.02 6.66 6.61 0.05 

LD cooler 18.31 18.31 0.00 25.23 25.31 -0.08 18.25 18.81 -0.55 

HD cooler 7.85 7.77 0.08 12.67 12.55 0.12 8.43 8.01 0.42 

RES cooler 45.76 45.57 0.19 24.47 24.56 -0.09 32.59 32.26 0.34 

HN reboiler 6.17 3.60 2.57 5.04 5.13 -0.09 12.58 14.45 -1.87 

LD reboiler 6.74 8.23 -1.49 6.26 6.17 0.09 8.99 7.66 1.33 

Fired heater 57.28 56.86 0.43 58.91 58.90 0.01 54.97 55.04 -0.07 

Column diameter 

(𝐦𝟐)          

Main column 
         

Section 1 7.77 7.61 0.16 7.01 6.98 0.03 6.86 6.62 0.24 

Section 2 6.71 6.69 0.02 10.67 10.51 0.16 6.86 6.56 0.30 

Section 3 7.01 9.19 -2.18 7.62 7.62 0.00 7.62 7.62 0.00 

Section 4 8.84 6.33 2.51 10.06 9.99 0.07 9.75 9.59 0.16 

Section 5 8.53 5.51 3.02 6.55 6.50 0.05 7.16 7.10 0.07 

HN side-stripper 2.44 2.36 0.08 2.29 2.19 0.09 3.51 3.84 -0.33 

LD side-stripper 2.59 2.59 0.00 2.59 2.60 -0.01 2.90 2.37 0.52 

HD side-stripper 1.68 1.55 0.13 1.83 1.83 0.00 1.68 1.73 -0.06 

Diff: difference between variable predicted by rigorous model and that of optimum solution 

obtained using surrogate models 
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Supplementary material 

 

S1 Information for HEN design 

The modified version of the MINLP heat exchanger network model proposed by Yee 

and Grossmann (1990) is presented below. The modifications implemented include 

adding slacks to both stage and overall heat balance equations; slack related penalties 

are also added to the objective function.  

Objective function 

The objective of the heat exchanger network design problem is to identify a network 

with the smallest total annualized cost. Hence, the objective function is formulated as 

the sum of annual utility costs, annualized cost of exchangers (including fixed charge 

and area-dependent cost), and penalty terms expressed in terms of costs. The model 

presented next is the stochastic (multi-scenario) model used to assess the design 

alternatives. A deterministic model can easily be obtained from the stochastic (multi-

scenario) model by considering a single scenario (and removing the penalty terms).  

 

min        ∑ 𝑝𝑟𝑜𝑏𝑠 (∑  

𝑠∈𝑆

∑ 𝐶𝐶𝑈  𝑞𝑐𝑢𝑖,𝑠

𝑖∈𝐻𝑃

+ ∑  

𝑠∈𝑆

∑ 𝐶𝐻𝑈  𝑞ℎ𝑢𝑗,𝑠

𝑗∈𝐶𝑃

+ ∑ ∑ ∑  

𝑘∈𝑆𝑇

𝐶𝐹𝑖,𝑗

𝑗∈𝐶𝑃𝑖∈𝐻𝑃

 𝑧𝑖,𝑗,𝑘

𝑠∈𝑆

+ ∑ 𝐶𝐹𝑖,𝐶𝑈  𝑧𝑐𝑢𝑖

𝑖∈𝐻𝑃

+ ∑ 𝐶𝐹𝑗,𝐻𝑈  𝑧ℎ𝑢𝑗

𝑗∈𝐶𝑃

+ ∑ ∑ ∑  

𝑘∈𝑆𝑇

𝐶𝑖𝑗

𝑗∈𝐶𝑃𝑖∈𝐻𝑃

 𝐴𝑒𝑥𝑖,𝑗,𝑘

+ ∑ 𝐶𝑖,𝐶𝑈  𝐴𝑐𝑢𝑖

𝑖∈𝐻𝑃

+ ∑ 𝐶𝑗,𝐻𝑈  𝐴ℎ𝑢𝑗

𝑗∈𝐶𝑃

+ 𝜋 ∑  

𝑠∈𝑆

∑ 𝑆ℎ1𝑖,𝑠 + 𝑆ℎ2𝑖,𝑠

𝑖∈𝐻𝑃

+ 𝜋 ∑  

𝑠∈𝑆

∑ 𝑆𝐶1𝑖,𝑠 + 𝑆𝐶2𝑖,𝑠

𝑗∈𝐶𝑃

) 

 

where the areas ( 𝐴𝑒𝑥𝑖,𝑗,𝑘, 𝐴𝑐𝑢𝑖,𝐴ℎ𝑢𝑗) are given by the following equations (Yee and 

Grossmann, 1990). 

 

 𝐴𝑒𝑥𝑖𝑗𝑘 = [𝑞𝑖,𝑗,𝑘,𝑠/ (𝑈𝑖,𝑗,𝑠[(𝑑𝑡𝑖,𝑗,𝑘,𝑠𝑑𝑡𝑖,𝑗,𝑘+1,𝑠)((𝑑𝑡𝑖,𝑗,𝑘,𝑠 + (𝑑𝑡𝑖,𝑗,𝑘+1,𝑠)/2]
1/3

)]
𝛽𝑖𝑗
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 𝐴𝑐𝑢𝑖 = [𝑞𝑐𝑢𝑖,𝑠/ (𝑈𝑖,𝐶𝑈,𝑠[(𝑑𝑡𝑐𝑢𝑖,𝑠)(𝑇𝑂𝑈𝑇𝑖,𝑠 − 𝑇𝐼𝑁𝐶𝑈)(𝑑𝑡𝑐𝑢𝑖,𝑠 + (𝑇𝑂𝑈𝑇𝑖,𝑠

− 𝑇𝐼𝑁𝐶𝑈))/2]
1/3

)]
𝛽𝑖,𝐶𝑈

 

 𝐴ℎ𝑢𝑗 = [𝑞ℎ𝑢𝑗,𝑠

/ (𝑈𝑗,𝐻𝑈,𝑠[(𝑑𝑡ℎ𝑢𝑗)(𝑇𝐼𝑁𝐻𝑈 − 𝑇𝑂𝑈𝑇𝑗)(𝑑𝑡ℎ𝑢𝑗,𝑠 + (𝑇𝐼𝑁𝐻𝑈

− 𝑇𝑂𝑈𝑇𝑗))/2]
1/3

)]
𝛽𝑗,𝐻𝑈

 

 

The objective function presented above includes both continuous and discrete 

variables. The discrete variables ( 𝑧𝑖,𝑗,𝑘, 𝑧𝑐𝑢𝑖 and 𝑧ℎ𝑢𝑗) model the existence (or not) of an 

exchanger match in each stage of the superstructure, while the continuous variables 

determine the area and duty of each exchanger match. 

Constraints 

The objective function presented above is evaluated within a search space that is 

defined by the process constraints. The constraints include overall heat balance, stage 

heat balance, initialization of inlet temperature for exchangers the superstructure, 

temperature feasibility, utility loads, existence of matches and minimum approach 

temperature. Each constraint is presented below. 

 

(i) Overall heat balance 

(𝑇𝐼𝑁𝑖,𝑠 − 𝑇𝑂𝑈𝑇𝑖,𝑠)𝐹𝑖,𝑠 + 𝑆ℎ1𝑖,𝑠 − 𝑆ℎ2𝑖,𝑠

= ∑  

𝑘∈𝑆𝑇

∑ 𝑞𝑖,𝑗,𝑘,𝑠 + 𝑞𝑐𝑢𝑖,𝑠                              𝑖 ∈ 𝐻𝑃, 𝑠 ∈ 𝑆

𝑗∈𝐶𝑃

 

(𝑇𝑂𝑈𝑇𝑗,𝑠 − 𝑇𝐼𝑁𝑗,𝑠)𝐹𝑗,𝑠 + 𝑆𝐶1𝑖,𝑠 − 𝑆𝐶2𝑖,𝑠

= ∑ ∑ 𝑞𝑖,𝑗,𝑘,𝑠 + 𝑞ℎ𝑢𝑗,𝑠                              𝑖 ∈ 𝐶𝑃, 𝑠 ∈ 𝑆

𝑖∈𝐻𝑃

 

𝑘∈𝑆𝑇

 

 

(ii) Stage heat balance 

(𝑡𝑖,𝑘,𝑠 − 𝑡𝑖,𝑘+1,𝑠)𝐹𝑖,𝑠+ 𝑆ℎ1𝑖,𝑠 − 𝑆ℎ2𝑖,𝑠 = ∑ 𝑞𝑖,𝑗,𝑘,𝑠                𝑘 ∈ 𝑆𝑇, 𝑖 ∈ 𝐻𝑃, 𝑠 ∈ 𝑆

𝑗∈𝐶𝑃
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(𝑡𝑗,𝑘,𝑠 − 𝑡𝑗,𝑘+1,𝑠)𝐹𝑗,𝑠 + 𝑆𝐶1𝑖,𝑠 − 𝑆𝐶2𝑖,𝑠

= ∑ 𝑞𝑖,𝑗,𝑘,𝑠                                              𝑘 ∈ 𝑆𝑇, 𝑗 ∈ 𝐶𝑃, 𝑠 ∈ 𝑆

𝑗∈𝐻𝑃

 

 

(iii) Inlet temperature assignment for superstructure 

𝑇𝐼𝑁𝑖,𝑠 = 𝑡𝑖,1,𝑠     𝑇𝐼𝑁𝑗,𝑠 = 𝑡𝑗,𝑁𝑂𝐾+1,𝑠 

 

(iv) Temperature feasibility 

𝑡𝑖,𝑘,𝑠 ≥ 𝑡𝑖,𝑘+1,𝑠                                 𝑘 ∈ 𝑆𝑇, 𝑖 ∈ 𝐻𝑃, 𝑠 ∈ 𝑆 

𝑡𝑗,𝑘,𝑠 ≥ 𝑡𝑗,𝑘+1,𝑠                                 𝑘 ∈ 𝑆𝑇, 𝑗 ∈ 𝐶𝑃, 𝑠 ∈ 𝑆 

𝑇𝑂𝑈𝑇𝑖,𝑠 ≤ 𝑡𝑖,𝑁𝑂𝐾+1,𝑠                                  𝑖 ∈ 𝐻𝑃, 𝑠 ∈ 𝑆 

𝑇𝑂𝑈𝑇𝑗,𝑠 ≥ 𝑡𝑖,1,𝑠                                           𝑗 ∈ 𝐶𝑃, 𝑠 ∈ 𝑆 

 

(v) Utility load (hot and cold) 

(𝑡𝑖,𝑁𝑂𝐾+1,𝑠 − 𝑇𝑂𝑈𝑇𝑖,𝑠) 𝐹𝑖,𝑠 = 𝑞𝑐𝑢𝑖,𝑠            𝑖 ∈ 𝐻𝑃, 𝑠 ∈ 𝑆 

( 𝑇𝑂𝑈𝑇𝑗,𝑠 − 𝑡𝑖,1,𝑠)𝐹𝑗,𝑠 =  𝑞ℎ𝑢𝑗,𝑠                   𝑗 ∈ 𝐶𝑃, 𝑠 ∈ 𝑆 

 

(vi) Logical constraints 

𝑞𝑖,𝑗,𝑘,𝑠 − Ω 𝑧𝑖,𝑗,𝑘 ≤ 0      𝑖 ∈ 𝐻𝑃, 𝑗 ∈ 𝐶𝑃, 𝑘 ∈ 𝑆𝑇, 𝑠 ∈ 𝑆   

𝑞𝑐𝑢𝑖,𝑠 − Ω 𝑧𝑐𝑢𝑖 ≤ 0                                𝑖 ∈ 𝐻𝑃, 𝑠 ∈ 𝑆 

𝑞ℎ𝑢𝑗,𝑠 − Ω 𝑧ℎ𝑢𝑗 ≤ 0                               𝑗 ∈ 𝐶𝑃, 𝑠 ∈ 𝑆 

 

(vii) Minimum approach temperature constraints 

𝑑𝑡𝑖,𝑗,𝑘,𝑠 ≤ 𝑡𝑖,𝑘,𝑠 − 𝑡𝑗,𝑘,𝑠 + Γ(1 −  𝑧𝑖,𝑗,𝑘)                  𝑖 ∈ 𝐻𝑃, 𝑗 ∈ 𝐶𝑃, 𝑘 ∈ 𝑆𝑇, 𝑠 ∈ 𝑆   

𝑑𝑡𝑖,𝑗,𝑘+1,𝑠 ≤ 𝑡𝑖,𝑘+1,𝑠 − 𝑡𝑗,𝑘+1,𝑠 + Γ(1 −  𝑧𝑖,𝑗,𝑘)      𝑖 ∈ 𝐻𝑃, 𝑗 ∈ 𝐶𝑃, 𝑘 ∈ 𝑆𝑇, 𝑠 ∈ 𝑆   

𝑑𝑡𝑐𝑢𝑖,𝑠 ≤ 𝑡𝑖,𝑁𝑂𝐾+1,𝑠 − 𝑇𝑂𝑈𝑇𝐶𝑈 + Γ(1 −  𝑧𝑐𝑢𝑖 )                          𝑖 ∈ 𝐻𝑃, 𝑠 ∈ 𝑆   

𝑑𝑡ℎ𝑢𝑖,𝑠 ≤ 𝑇𝑂𝑈𝑇𝐶𝑈,𝑠 − 𝑡𝑗,1,𝑠 + Γ(1 −  𝑧ℎ𝑢𝑗)                                 𝑖 ∈ 𝐶𝑃, 𝑠 ∈ 𝑆   

 

(viii) Minimum approach temperature bounds 

𝑑𝑡𝑖,𝑗,𝑘,𝑠 , 𝑑𝑡𝑖,𝑗,𝑘+1,𝑠 , 𝑑𝑡𝑐𝑢𝑖,𝑠 , 𝑑𝑡ℎ𝑢𝑖,𝑠 ≥ ∆𝑇𝑚𝑖𝑛 
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(ix) Positivity constraints 

𝑡𝑖,𝑘,𝑠 , 𝑡𝑖,𝑘+1,𝑠 , 𝑡𝑗,𝑘,𝑠 , 𝑡𝑗,𝑘+1,𝑠 ≥ 0 

𝑞𝑖,𝑗,𝑘,𝑠 , 𝑞𝑐𝑢𝑖,𝑠 , 𝑞ℎ𝑢𝑗,𝑠 ≥ 0 

𝑆ℎ1𝑖,𝑠 , 𝑆ℎ2𝑖,𝑠 , 𝑆𝐶1𝑖,𝑠 , 𝑆𝐶2𝑖,𝑠 ≥ 0 

 

(x) Binary variables 

 𝑧𝑖,𝑗,𝑘 ,  𝑧𝑐𝑢𝑖 ,  𝑧ℎ𝑢𝑗 ∈ {0,1} 

 

∀ 𝑖 ∈ 𝐻𝑃, 𝑗 ∈ 𝐶𝑃, 𝑘 ∈ 𝑆𝑇, 𝑠 ∈ 𝑆 

 

S2 Information for distillation column design 

Description and sampling of uncertain operating conditions (benzene 

column) 

The overall flowsheet (shown in Figure S1) for the production of benzene via 

hydrodealkylation of toluene (Douglas, 1985) consists of feed mixer, fired heater, 

reactor, cooler, flash unit, purge stream, stabilizer, benzene column and toluene 

column.  

 

Figure S1 hydrodealkylation of toluene 
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Two homogenous reactions (Eq. 1 and Eq. 2) occur in the reactor. The first reaction 

produces benzene (desired product), while the second reaction produce diphenyl 

(undesired product). 

Primary reaction (desirable) 

C6H5CH3 + H2 → C6H6 + CH4                                            (1) 

Side reaction (undesirable) 

2C6H6 ↔ C6H5–C6H5 + H2                               (2) 

The reactor exit gas, which consists of benzene, methane, hydrogen, diphenyl and 

unreacted toluene, is quenched in a partial condenser and subsequently in a flash 

separator to condense and separate the aromatics from the non-condensable methane 

and hydrogen. The remaining traces of hydrogen and methane in the aromatics are 

removed in a stabilizer column; benzene is recovered in the benzene column, and 

lastly, toluene is separated from diphenyl and is recycled back into the process. The 

flashed vapour is rich in hydrogen (with traces of methane) and is recycled back into 

the reactor. The design specification required to simulate the overall flowsheet are 

presented in Tables S1 and S2. 
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Table S1 Key data and specifications for HDA processing   

Item Specifications 

Pre-heater 
 Pressure drop: 20 kPa  

outlet temperature: 230°C  

Fired heater (furnace) 
Pressure drop: 20 kPa  

outlet temperature: 725°C  

Reactor 

 Void fraction: 1.0  

Geometry: 1 tube  

Pressure drop: 20 kPa  

Volume: 300 m3  

Diameter: 4.0 m  

Cooler 1 
Pressure drop: 20 kPa  

outlet temperature: 200°C  

Cooler 2 
 Outlet temperature: 40oC  

Pressure drop: 20 kPa  

Flash unit operating pressure: 1000 kPa  

Stabiliser column 

99% recovery of benzene to bottom product  

the feed enters on the top tray.  

Design: 4 trays  

Operating pressure: 200 kPa  

Benzene column 

95 mol% purity of benzene product  

Design: 20 trays; feed stage: 10  

Operating pressure: 200 kPa    

Specification: 95% recovery of benzene  

Toluene column 

 >95% recovery of diphenyl  

Design: 20 trays; feed stage: 10  

Operating pressure: 200 kPa   

Value for recovery of toluene: 95%  

Value for reflux ratio: 0.05  

Purge splitter 
Value for purge (fraction of flash vapour 

product): 0.20  

Hydrogen feed  

160 kmol/h  

40oC, 3500 kPa  

Composition: 99 mol% H2, 1 mol% CH4  

Toluene  

 

58 kmol/h  

40oC, 3500 kPa  

Composition: 100% pure  

Steam 5 bar, 160oC (7.78 $/GJ) 

Cooling water 30 – 40oC (0.354 $/GJ) 

Heat transfer coefficient–column condenser  800 W/(m2 K)  

Heat transfer coefficient column reboiler 820 W/(m2 K) 

Operating hours per year 8000 

Interest rate 10% 

Plant life 5 years 
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Table S2 Key data for HDA reactions (T: Toluene; H: Hydrogen; B: Benzene; D: 

Diphenyl) 

Reaction rate expression  
 

Parameters  

𝑟𝑇 = −𝐴𝑒
𝐸𝐴
𝑅𝑇𝑝𝑇𝑝𝐻

0.5  
Units of r: kmol m–3 s–1  

A = 737 kmol m–3 s–1 kPa–1.5  

EA = 2.3∙105 kJ kmol–1  

𝑟𝐵 = −2𝐴1𝑒
𝐸𝐴1
𝑅𝑇 𝑝𝐵

2 + 𝐴2𝑒
𝐸𝐴2
𝑅𝑇 𝑝𝐷𝑝𝐻  

Units of r: kmol m–3 s–1  

A1 = 336 kmol m–3 s–1 kPa–2  

EA1 = 2.13∙105 kJ kmol–1  

A2 = 1434 kmol m–3 s–1 kPa–2  

EA2 = 2.13∙105 kJ kmol–1  

 

The main purpose of the purge stream in the process flowsheet is to avoid build-up of 

methane in the vapour recycle loop (Douglas, 1985). Mainly for the purpose of 

illustrating the proposed methodology, here the purged gas fraction is treated as an 

uncertain parameter that is represented using scenarios.  In the way, stream conditions 

(calculated based on material and energy balances) at different purged gas fraction can 

be generated and recorded. Therefore, the unit operations on the process flowsheet are 

to be designed to accommodate these variations. Of particular interest in this work is 

the application of our proposed methodology to design the benzene distillation column 

with variations in feed condition (such as temperature, flow rate and compositions). 

Nonetheless, the proposed methodology can also be applied to design the remaining 

unit operations in the process flowsheet. 

To this end, the uncertain parameter (i.e. purged gas fraction) is described using 

uniform distribution.  Table S3 shows the nominal condition and the ten set of 

operating scenarios generated from the distribution using sampling method. Note that 

for this case study, all the scenarios are assumed to be equally probable. 

Table S3 Sampled data for purged gas fraction  

 

SNC S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Split 

ratio 0.200 0.227 0.181 0.313 0.164 0.289 0.142 0.212 0.262 0.330 0.105 

 

Next, a simulation model of the overall flowsheet for the production of benzene via 

hydrodealkylation of toluene (Douglas, 1985) is built in Aspen HYSYS using the data 
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presented in Tables S1 and S2. Each split ratio presented in Table S3 is used as input to 

the flowsheet and the corresponding inlet conditions to the benzene column are 

recorded and presented in Table 7.  

Objective function and constraints 

The objective of distillation column design is to identify the best column structure and 

operation conditions that can perform a desired separation at minimum total 

annualized cost. Therefore, the objective function and constraints can be defined as 

follows 

 

 min            𝐴𝐶𝐶 + ∑ 𝑝𝑟𝑜𝑏𝑠  × (𝑂𝐶𝑠  + 𝜋(𝑠𝑠
ℎ+ + 𝑠𝑠

ℎ− + 𝑠𝑠
𝑔

)

𝑠∈𝑆

) 

 

  𝑠. 𝑡               ℎ𝐼(𝑑, 𝑧𝑠 , 𝜃𝑠) + 𝑠𝑠
ℎ+ + 𝑠𝑠

ℎ− = 0   ∀𝑠 ∈ 𝑆                

                                                 ℎ𝐸(𝑑, 𝑧𝑠 , 𝜃𝑠) − 𝑠𝑠
𝑔

≤ 0  ∀𝑠 ∈ 𝑆                           

                                                 𝑔𝐸(𝑑, 𝑧𝑠 , 𝜃𝑠) − 𝑠𝑠
𝑔

≤ 0  ∀𝑠 ∈ 𝑆                           

 

               𝑧𝑠 ∈ 𝑍; 𝑠𝑠
ℎ+, 𝑠𝑠

ℎ−, 𝑠𝑠
𝑔

∈ ℝ+ 

 

where 𝑑, 𝑧𝑠, 𝜃𝑠 represent design variable, operating condition, and uncertain parameter 

respectively. Subscript 𝑠 denotes scenario and 𝑆 is the total number of scenarios. The 

objective function is the sum of operating cost (OC), annualized capital cost (ACC) and 

a penalty term, which consists of a penalty weighting (𝜋) that penalizes the violation of 

the equality and inequality constraints and slack variables ( 𝑠𝑠
ℎ+, 𝑠𝑠

ℎ−  and 𝑠𝑠
𝑔

) 

representing the extent of deviation from feasible operation. The annualized capital 

cost including cost of column shell, trays, condenser and reboiler is calculated using 

Guthrie cost correlations (Guthrie, 1969), and updated using 2014 Chemical 

Engineering Plant cost Index (4th quarter) (“Chemical Engineering magazine,” 2014). 

The capital cost is annualized using the annualization factor described by Smith (2005). 

The operating cost is the sum of hot utility (steam) and cold utility (cooling water). 
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For the constraints; ℎ𝐼  denotes the set of implicit equality constraints representing 

material, energy, thermodynamic equations and hydraulic constraints embedded in the 

process simulator; ℎ𝐸 is the set of explicit equality constraints while 𝑔𝐸  is the set of 

inequality constraints.  
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